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ANISOTROPIC LOGARITHMIC SOBOLEV INEQUALITY WITH

A GAUSSIAN WEIGHT AND ITS APPLICATIONS

FILOMENA FEO, GABRIELLA PADERNI

Abstract. In this article we prove a Logarithmic Sobolev type inequality and

a Poincaré type inequality for functions in the anisotropic Gaussian Sobolev
space. As an application we study a class of equations, whose anisotropic

elliptic condition is given in term of the density of Gauss measure. Finally

some extensions of the main results are given for a class of weighted (not
Gaussian one) anisotropic Sobolev spaces.

1. Introduction

In the previous years anisotropic problems and spaces have been extensively
studied by many authors, motivated by their applications to the mathematical
modeling of physical and mechanical processes in anisotropic continuous medium.

Let N ≥ 2 and 1 ≤ p1, . . . , pN < +∞. Roughly speaking an anisotropic Sobolev
space is a space of functions u such that i-th partial derivative of u belongs to
the Lebesgue space Lpi with some exponent pi. If Ω is a bounded open set of
RN with Lipschitz continuous boundary a Sobolev type inequality (see e.g. [24] for
Sobolev type inequalities in the Lebesgue spaces and [23] for similar inequalities in
the Lorentz spaces) holds for functions belonging to the anisotropic Sobolev space

W 1,−→p
0 (Ω), defined as the closure of C∞0 (Ω) with respect to norm

∑N
i=1 ‖∂xiu‖Lpi (Ω).

Indeed (see e.g. [24]) there exists a constant CS such that

‖u‖Lq(Ω) ≤ CS
N∑
i=1

‖∂xiu‖Lpi (Ω) ∀u ∈W 1,−→p
0 (Ω), (1.1)

where q = p∗ = Np
N−p if p < N or q ∈ [1,+∞[ if p ≥ N and p denote the harmonic

mean, i.e. 1
p = 1

N

∑N
i=1

1
pi

. Moreover an anisotropic Poincaré inequality holds (see

e.g. [15]):

‖u‖Lpi (Ω) ≤
pi
2
c(Ω)‖∂xiu‖Lpi (Ω) ∀u ∈W 1,−→p

0 (Ω) ∀i = 1, . . . , N, (1.2)

where c(Ω) = supx,y∈Ω (x− y, ei), {e1, . . . , eN} is the canonical basis of RN and

(·, ·) denotes the standard scalar product in RN . When p < N , inequality (1.1)

implies the continuous embedding of W 1,−→p
0 (Ω) into Lq(Ω) for every q ∈ [1, p∗]. On
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the other hand the continuity of the embedding W 1,−→p
0 (Ω) ⊂ Lpmax(Ω) with pmax :=

max{p1, . . . , pN} relies on inequality (1.7). Then p∞ := max{p∗, pmax} turns out

to be the critical exponent: there is a continuous embedding W 1,−→p
0 (Ω) ⊂ Lq(Ω) for

q ∈ [1, p∞].
Also there is an increasing interest to Sobolev type inequalities involving weighted

Sobolev spaces. In this article we take into account the Gaussian weight. In this
contest Gross [17] proved (see [14] for more comments and references) the inequality∫

RN
|u|p log |u|dγ ≤ p

2

∫
RN
|∇u|2|u|p−2 dγ + ‖u‖p

Lp(RN ,γ)
log ‖u‖Lp(RN ,γ) (1.3)

for u ∈ W 1,p(RN , γ) with 1 < p < +∞, where γ states for the Gauss measure.
Unlike the classical Sobolev inequality it is independent on dimension and easily
extends to the infinite dimensional case. In terms of functional spaces inequal-
ity (1.3) implies the imbedding of weighted Sobolev space W 1,p(RN , γ) into the
weighted Zygmund space Lp(logL)1/2(RN , γ) (see §2.2 for definition). The imbed-
ding holds for p = 1 as well and it is related to Gaussian isoperimetric inequality.
For p = 2 Gross inequality (1.3) entails [9] that

‖u− uγ‖∗L2(logL)1/2(RN ,γ) ≤ C‖∇u‖Lp(RN ,γ),

where uγ :=
∫
RN u(x) γ and then

‖u‖∗L2(logL)1/2(RN ,γ) ≤ C(‖∇u‖L2(RN ,γ) + ‖u‖L2(RN ,γ))

for some constant independent on the dimension. Here ‖·‖∗
L2(logL)1/2(RN ,γ)

states for

the rearrangement invariant quasinorm in the Zygmund space L2(logL)1/2(RN , γ)
(see §2.2 for definition). This kind of inequalities hold for 1 ≤ p < +∞ as well (see
e.g. [9, 20]).

A Logarithmic Sobolev-Poincaré inequality (see [13]) is proved in for functions

in the weighted Sobolev space W 1,p
0 (Ω, γ), defined as the closure of C∞0 (Ω) with

respect to norm ‖∇u‖Lp(Ω,γ). Let 1 ≤ p < +∞ and Ω be an open subset of RN (not

necessary bounded) with γ(Ω) < 1 and u ∈W 1,p
0 (Ω, γ), then u ∈ Lp(logL)1/2(Ω, γ)

and

‖u‖∗Lp(logL)1/2(Ω,γ) ≤ C‖∇u‖Lp(Ω,γ) (1.4)

for some constant C depending only on p and γ(Ω) (see [13]). Using the continuous
embedding between Zygmund spaces the previous inequality yields the following
Poincaré inequality:

‖u‖Lp(Ω,γ) ≤ C‖∇u‖Lp(Ω,γ) ∀u ∈W 1,p
0 (Ω, γ) (1.5)

for some positive constant C(independent of u, but depending on γ(Ω) and p). If
γ(Ω) = 1 inequality (1.4) holds if in the right hand-side we take into account the
norm of u as well. We recall that the analogue inequality when u ∈ W 1,p(Ω, γ) is
studied in [13] and, as one can expect, smoothness assumption on ∂Ω has to be
required.

In this article we consider functions such that i-th partial derivative of u belongs
to some weighted (with respect to Gauss measure) Lebesgue space Lpi for some
exponent pi. More precisely we prove a Logarithmic Sobolev inequality type in-
equality and a Poincaré type inequality for functions belonging to the anisotropic
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Gaussian Sobolev space W 1,−→p
0 (Ω, γ) (see §2 for the definition). As in the Gauss-

ian isotropic case we have to require some additional hypothesis on Ω. Instead of
γ(Ω) < 1 we assume that Ω is an open subset of RN such that

(H1) γ1(ai, bi) < 1 with ai = infx∈Ω (x, ei) and bi = supx∈Ω (x, ei). for a fixed
i = 1, . . . , N .

Theorem 1.1. Let N ≥ 2 and Ω be an open subset of RN with Lipschitz boundary

such that (H1) holds for a fixed i = 1, . . . , N . Then for any u ∈W 1,−→p
0 (Ω, γ),(∫

Ω

|u(x)|pi logpi/2(2 + |u(x)|)ϕ(x) dx
)1/pi

≤ c1(pi)
[1

2

(
1− 1

log(γ1(ai, bi))

)]1/2∥∥ ∂u
∂xi

∥∥
Lpi (Ω,γ)

,

(1.6)

where c1(pi) is a constant depending only on pi.

Moreover an anisotropic Poincaré inequality holds.

Theorem 1.2. Let N ≥ 2 and Ω be an open subset of RN with Lipschitz boundary

such that (H1) holds for a fixed i = 1, . . . , N . Then for any u ∈W 1,−→p
0 (Ω, γ),

‖u‖Lpi (Ω,γ) ≤ c2(pi)
[
− 1

2 log(γ1(ai, bi))

]1/2‖∂xiu‖Lpi (Ω,γ), (1.7)

where c2(pi) is a constant depending only on pi.

The constants in (1.6) and (1.7) depend on the 1-dimensional Gauss measure
of the diameter of Ω in i-th direction as it happens in (1.2), where the Lebesgue
measure of the diameter is involved. In order to emphasize that a 1-dimensional
measure is considered we used the notation γ1.

We stress that hypothesis (H1) guarantees that ai or bi is finite. Let us consider
examples of sets for which the previous theorem can be applied. If Ω = {x ∈
RN : x1 > ω} or Ω = {x ∈ RN : x1 < ω} for some ω ∈ R, then the previous
theorems hold for i = 1 but not for i = 2, . . . , N . Instead if we take into account
Ω = {x ∈ RN : xi > ωi for i = 1, . . . , N} for some ω1, . . . , ωN ∈ R, Theorems 1.1
and 1.2 holds for any i = 1, . . . , N .

Corollary 1.3. Let N ≥ 2 and Ω be an open subset of RN with Lipschitz boundary

such that (H1) is in force for any i = 1, . . . , N . Then for any u ∈W 1,−→p
0 (Ω, γ)(∫

Ω

|u(x)|pmax log
pmax

2 (2 + |u(x)|)ϕ(x) dx
) 1
pmax

≤ c(pmax)
[1

2

(
1− 1

log(γ1(amax, bmax))

)]1/2 N∑
i=1

∥∥ ∂u
∂xi

∥∥
Lpi (Ω,γ)

,

(1.8)

where pmax = max {p1, . . . , pN} = pj for some j ∈ {1, . . . , N}, amax = aj, bmax = bj
and c(pmax) is a constant depending only on pmax.

An anisotropic Sobolev-Poincaré inequality with Orlicz target norm reads as
follows:

‖u‖Lpmax (logL)1/2 ≤ c(pmax)
[1

2

(
1− 1

log(γ1(amax, bmax))

)]1/2 N∑
i=1

∥∥ ∂u
∂xi

∥∥
Lpi (Ω,γ)

,
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where ‖u‖Lpmax (logL)1/2 is the Orlicz norm of u in Lpmax(logL)1/2(Ω, γ) (see (2.5)

for a definition). As consequence the continuous embedding of W 1,−→p
0 (Ω, γ) into the

Zygmund space Lpmax(logL)1/2(Ω, γ) is proved.
This embedding and the previous results are no longer true if the zero trace

condition on the boundary is removed as in the isotropic case with weight or not.
Moreover we stress that if (H1) is not in force inequality (1.6) holds if in the right
hand-side we take into account the norm of u as well.

This article is organized as follows. In Section 2 we recall some definitions and
properties. The main results are proved in Section 3. Section 4 is dedicated to the
application of these inequalities to study a class of equations, whose anisotropic
elliptic condition is given in term of the density of Gauss measure. In particular
we prove some uniqueness results. Finally in the last section we show some gener-
alization of our main results to a class of weighted (not Gaussian one) anisotropic
Sobolev spaces.

2. Preliminaries

2.1. Gauss measure and Gaussian rearrangements. Let γ be the N -dimen-
sional Gauss measure on RN defined by

dγ := ϕ(x)dx := (2π)−N/2 exp
(
− |x|

2

2

)
dx, x ∈ RN

normalized by γ(RN ) = 1.
Let N ≥ 2 and Ω be an open subset of RN not necessary bounded with Lipschitz

boundary and let 1 ≤ p1, . . . , pN <∞ be N real numbers. A measurable function u
belongs to Lpi(Ω, γ) if

∫
Ω
|u|pi dγ < +∞. The anisotropic Gaussian Sobolev space

(see e.g. [24] for the definition without weight) is defined as

W 1,−→p (Ω, γ) = {u ∈W 1,1(Ω, γ) : uxi ∈ Lpi(Ω, γ) for i = 1, . . . , N}
and is a Banach space with respect to the norm

‖u‖W 1,−→p (Ω,γ) = ‖u‖L1(Ω,γ) +

N∑
i=1

‖uxi‖Lpi (Ω,γ). (2.1)

As usual the space W 1,−→p
0 (Ω, γ) is defined as the closure of C∞0 (Ω) with respect to

the norm (2.1). When inequality (1.7) is in force, the norm (2.1) is equivalent to
the norm that involves only the partial derivatives.

It is well known that an isoperimetric inequality with respect to Gauss measure
(see e.g. [10]) holds. For all subsets E ⊂ RN it follows that P (E) ≥ ϕ(Φ−1(γ(E))),
where Φ(τ) is the Gauss measure of the half-space

{
x ∈ RN : x1 > τ

}
for every

τ ∈ R ∪ {−∞} and P (E) is the perimeter with respect to Gauss measure of E. We
recall that the isoperimetric function Iγ(t) has the following asymptotic behavior

Iγ(t) := ϕ(Φ−1(t)) ∼ t
(

2 log
1

t

)1/2

for t→ 0+; 1−. (2.2)

Following [10] we define the one dimensional Gaussian decreasing rearrangement of
u by

u~(s) = inf{t ≥ 0 : γ({x ∈ Ω : |u(x)| > t}) ≤ s} s ∈]0, 1],

and the Gaussian rearrangement of u by u?(x) = u~(Φ(x1)) for x ∈ Ω?, where

Ω? = {x = (x1, . . . , xN ) ∈ RN : x1 > ω}



EJDE-2019/89 ANISOTROPIC LOGARITHMIC SOBOLEV INEQUALITY 5

is the half-space such that γ(Ω?) = γ(Ω). A Polya-Szëgo type inequality (see [22])
holds for 1 ≤ p < +∞:

‖∇u?‖Lp(Ω?,γ) ≤ ‖∇u‖Lp(Ω,γ) ∀u ∈W 1,p
0 (Ω, γ). (2.3)

2.2. Zygmund spaces. We say that a measurable u belongs to the Zygmund space
(see e.g. [3]) Lr(logL)α(Ω, γ) for 1 ≤ r < +∞ and α ∈ R if the quantity

‖u‖∗Lr(logL)α(Ω,γ) :=
(∫ γ(Ω)

0

[(1− log t)αu~(t)]rdt
)1/r

(2.4)

is finite. We emphasize that the Zygmund space Lr(logL)α(Ω, γ) coincides with
the Lebesgue space Lr(Ω, γ) when α = 0. If 1 < r < p < ∞ and −∞ < α, β < ∞
we obtain Lp(logL)α(Ω, γ) ↪→ Lr(logL)β(Ω, γ). It is clear from (2.4) that the space
Lr(logL)α(ϕ,Ω) decreases as α increases. We remark that (2.4) is a quasinorm and

is equivalent to the norm obtained replacing u~(t) with u~~(t) := 1
t

∫ t
0
u~(s) ds for

p > 1. Moreover u, u~ and u? have the same Zygmund quasinorm.
If we consider the Zygmund space Lr(logL)α(Ω, γ) as an Orlicz space, a mea-

surable function u belongs to it if and only if [|u(x)| logα(2 + |u(x)|)]r is integrable
with respect to γ. Moreover its Orlicz norm is defined as

‖u‖Lr(logL)α(Ω,γ) := inf
{
λ > 0 :

∫
Ω

[∣∣u(x)

λ

∣∣ logα(2 +
∣∣u(x)

λ

∣∣)]r dγ ≤ 1
}

(2.5)

and it is not in general equivalent to the quasinorm (2.4). The following inequality
is useful in working with Zygmund spaces.

Proposition 2.1. Suppose r > 0, 1 ≤ q < +∞ and −∞ < α < +∞. Let ψ be
a nonnegative measurable function on (0, b) with 0 < b ≤ 1, then the following
inequality holds:(∫ 1

0

(
tr(1− log t)α

∫ 1

t

ψ(s) ds
)q dt

t

)1/q

≤ c
(∫ 1

0

(t1+r(1− log t)αψ(t))q
dt

t

)1/q

(2.6)
with a constant c = c(r, q, α) are independent on ψ and on b.

When b = 1 the previous inequality is proved in [3]. The proof works for 0 <
b < 1 as well and it is easy to check that the constant does not depend on b.

3. Proofs of main results

The idea is to estimate u as a function of xi variable using the Logarithmic
Sobolev-Poincaré inequality with respect to Gauss measure in dimension 1. To do
this we need an explicit dependence of the involved constant with respect to the
data. For convenience of the reader we detail the dependence of such a constant.

3.1. Comments on logarithmic Sobolev-Poincaré inequality (1.4). The main
aim of this subsection is to obtain an explicit dependence of the constant with re-
spect to the domain Ω in (1.4). The proof of this inequality is based on properties
of rearrangements of functions and on asymptotic behaviour Gaussian isoperimetric
function.

Let u ∈W 1,p
0 (Ω, γ). First we observe that

(1− log t) ≤
(

1− 1

log(γ(Ω))

)
log

1

t
for 0 < t < γ(Ω). (3.1)
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Using (2.4), (2.6), (2.2), (3.1) and (2.3) we obtain(
‖u‖∗Lp(logL)1/2(Ω,γ)

)p
≤ c(p)

∫ γ(Ω)

0

[
t(1− log t)1/2

∣∣ d
dt
u~(t)

∣∣]pdt
≤ c(p)

[1

2

(
1− 1

log(γ(Ω))

)]p/2 ∫ γ(Ω)

0

[∣∣ d
dt
u~(t)

∣∣ϕ1(Φ−1(t))
]p
dt

= c(p)
[1

2

(
1− 1

log(γ(Ω))

)]p/2
‖∇u?‖pLp(Ω?,γ)

≤ c(p)
[1

2

(
1− 1

log(γ(Ω))

)]p/2
‖∇u‖pLp(Ω,γ)

for some positive constant c(p)depending on p, that can be vary from line to line,
yielding(

‖u‖∗Lp(logL)1/2(Ω,γ)

)p
≤ c(p)

[1

2

(
1− 1

log(γ(Ω))

)]p/2
‖∇u‖pLp(Ω,γ), (3.2)

i.e. (1.4) with an explicit dependence of the constant on the set Ω.
An easy consequence of (3.2) is the inequality∫

Ω

|u(x)|p logp/2(2 + |u(x)|)ϕ(x) dx

≤ c3(p)
[1

2
(1− 1

log(γ(Ω))
)
]p/2
‖∇u‖pLp(Ω,γ)

(3.3)

for some positive constant c3(p) depending on p. Indeed observing that by proper-
ties of rearrangements of functions it follows that

u~(t) ≤ u~~(t) :=
1

t

∫ t

0

u~(s) ds ≤
‖u‖L1(Ω,γ)

t

and using (3.2) we obtain∫
Ω

|u(x)|p logp/2(2 + |u(x)|)ϕ(x) dx

≤
∫ γ(Ω)

0

[
u~(t) log1/2(2 + u~(t))

]p
dt

≤
∫ γ(Ω)

0

[u~(t) log1/2
(

2 +
‖u‖L1(Ω,γ)

t

)
]pdt

≤ c(p)
∫ γ(Ω)

0

[
u~(t)(1− log t)1/2

]p
dt

:= c(p)
(
‖u‖∗Lp(logL)1/2(Ω,γ)

)p
≤ c(p)

[1

2

(
1− 1

log(γ(Ω))

)]p/2
‖∇u‖pLp(Ω,γ).

where c(p) is a positive constant depending on p, that can be vary from line to line.
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3.2. From 1-dimensional to anisotropic logarithmic Sobolev-Poincaré in-
equality. By denseness it is sufficient to prove (1.6) for u ∈ C1

0 (Ω). Let us fix i ∈
{1, . . . , N} such that γ1(ai, bi) < 1 with ai = infx∈Ω (x, ei) and bi = supx∈Ω (x, ei).
This hypothesis guarantees that the section of Ω in the direction ei is not all the
line a.e.. We assume without loss of generality that ai ∈ R and bi ∈ R ∪ {+∞}.
It follows that Ω ⊆ {x ∈ RN : ai < xi < bi}. We consider u as defined on the
whole RN , setting to 0 outside suppt(u). For for all x ∈ RN , we set x = (xi, x

′)
in order to emphasize its i-th component. Since the Gauss measure is a product
measure we can write ϕ(x) = ϕN−1(x′)ϕ1(xi), where ϕN−1 and ϕ1 are the density
of the (N − 1)-dimensional Gauss measure γN−1 and 1-dimensional Gauss measure
γ1 respectively. For any fixed x′ ∈ RN−1, by (3.3) and properties of rearrangement
of functions we obtain∫ bi

ai

|u(xi, x
′)|pi logpi/2(2 + |u(xi, x

′)|)ϕ1(xi) dxi

≤ c(pi)
[1

2

(
1− 1

log(γ(ai, bi))

)]pi/2 ∫ bi

ai

|∂xiu(xi, x
′)|piϕ1(xi) dxi

(3.4)

for some constant c(pi) depending only on pi. Now multiplying by ϕN−1(x′) and
integrating on RN−1, we obtain∫

Ω

|u(x)|pi logpi/2(2 + |u(x)|)ϕ(x) dx

≤ c(pi)
[1

2

(
1− 1

log(γ(ai, bi))

)]pi/2 ∫
Ω

∣∣ ∂
∂xi

u(x)
∣∣piϕ(x) dx,

which is (1.6).

3.3. From 1-D logarithmic Sobolev-Poincaré inequality to anisotropic
Poincaré inequality. By denseness it is sufficient to prove (1.7) for u ∈ C1

0 (Ω).
We consider the same notations and assumptions of the previous subsection. For
any fixed x′ ∈ RN−1, by (3.2) and properties of rearrangement of functions we
obtain ∫ bi

ai

|u(xi, x
′)|piϕ1(xi) dxi

=

∫ γ(ai,bi)

0

|u~(ti, x
′)|pi dt

≤ sup
0<t<γ1(ai,bi)

(1− log t)−
pi
2

∫ γ1(ai,bi)

0

[
u~(t, x′)(1− log t)1/2

]pi
dt

:= sup
0<t<γ1(ai,bi)

(1− log t)−
pi
2 ‖u(·, x′)‖Lpi (logL)1/2((ai,bi),γ1)

≤ c(pi)
[1

2

(
1− 1

log(γ1(ai, bi))

)]pi/2(
1− log(γ1(ai, bi))

)−pi/2
×
∫ bi

ai

∣∣ ∂
∂xi

u(xi, x
′)
∣∣piϕ1(xi) dxi,

where u~(t, x′) is one dimensional Gaussian decreasing rearrangement of u with
respect to xi, for each x′ fixed. Now multiplying by ϕN−1(x′) and integrating on
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RN−1, we obtain∫
Ω

|u(x)|piϕ(x) dx ≤ c(pi)
[
− 1

2 log(γ(ai, bi))

]pi/2 ∫
Ω

∣∣ ∂
∂xi

u(x)
∣∣piϕ(x) dxi,

for some constant c(pi) depending only on pi; thus inequality (1.7) is proved.

Remark 3.1. A similar computation proves that the constant in (1.5) is given by
c(p)[− 1

2 log(γ(Ω)) ]1/2 for some constant c(p) depending only on p.

4. Application to PDEs

Let us consider the class of nonlinear homogeneous Dirichlet problems

−
N∑
i=1

∂xiai(x, u,∇u) = F in Ω

u = 0 on ∂Ω,

(4.1)

where N ≥ 2, Ω is an open subset of RN with Lipschitz boundary such that (H1)

holds for every i = 1, . . . , N , ai : Ω × R× RN → R is a Carathéodory function
fulfilling the degenerated anisotropic ellipticity condition

N∑
i=1

ai(x, s, ξ)ξi ≥ λ
N∑
i=1

|ξi|piϕ(x) ∀s ∈ R, ξ ∈ RN a.e. x ∈ Ω, (4.2)

with 1 < pi <∞ and λ > 0 and the growth condition

|ai(x, s, ξ)| ≤ [ν1|s|pi−1 + ν2|ξi|pi−1]ϕ(x) ∀s ∈ R, ξ ∈ RN a.e. x ∈ Ω, (4.3)

with ν1 ≥ 0 and ν2 > 0 and F is an element of dual space. For example the datum

can be given by fϕ−
∑N
i=1(giϕ)xi with f ∈ Lp′max(logL)−

1
2 (Ω, γ) and gi ∈ Lp

′
i(Ω, γ),

where p′i states for the Hölder conjugate exponent of pi. We observe that the
equation in (4.1) is related to Ornstein-Uhlenbeck operator in the isotropic case.

We take into account weak solutions to problem (4.1). The natural space for

searching them is the weighted anisotropic Sobolev space W 1,−→p
0 (Ω, γ). When the

datum F is in the dual space a weak solution to problem (4.1) is a function u ∈
W 1,−→p

0 (Ω, γ) such that∫
Ω

ai(x, u,∇u)
∂

∂xi
ψ dx = 〈F,ψ〉 ∀ψ ∈W 1,−→p

0 (Ω, γ), (4.4)

where 〈·, ·〉 is the duality pairing. We stress that under the assumptions (4.2)-

(4.3) every term in (4.4) is well-defined and the operator −
∑N
i=1 ∂xiai(x, u,∇u)

is monotone and coercive on the weighted anisotropic Sobolev space W 1,−→p
0 (Ω, γ).

Then there exists (see e.g. [19]) at least a weak solution u ∈W 1,−→p
0 (Ω, γ) to problem

(4.1).
In what follows we are interested in some uniqueness results. As in the classical

case, to guarantee uniqueness the main hypotheses are a strongly monotonicity and
a Lipschitz continuity of the involved operator. More precisely we suppose that
every function ai satisfies the following strongly monotonicity condition

(ai(x, s, ξ)− ai(x, s, ξ′))(ξi − ξ′i) ≥ α(ε+ |ξi|+ |ξ′i|)pi−2|ξi − ξ′i|2 (4.5)

with α > 0 and ε ≥ 0 and the following locally Lipschitz continuity

|ai(x, s, ξ)− ai(x, s′, ξ)| ≤ β|ξi|pi−1|s− s′| (4.6)
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with β > 0. We stress Lipschitz continuity condition (4.6) is necessary to get the
uniqueness of a solution ( for a counterexample see e.g. [4] in the weighted case and
[7] in a bounded domain when ϕ(x) ≡ 1).

As in no weighted case (see e.g. [2]) we are able to prove an uniqueness result
when ε = 0 in (4.5) and at least one pi ≤ 2.

Theorem 4.1. Let us suppose that there exists j ∈ {1, . . . , N} such that pj ≤ 2
and that (4.5) with ε = 0 and (4.6) hold. Then problem (4.1) has at most one weak

solution in W 1,−→p
0 (Ω, γ).

As in the no weighted case if all pi > 2 for every i = 1, . . . , N we have to take
into account only the case ε > 0 in ((4.5). Indeed otherwise the uniqueness is not
guaranteed as for the p−Laplace operator (for a counterexample see e.g. [4] in the
weighted case and [1] in a bounded domain when ϕ(x) ≡ 1).

Theorem 4.2. Let us assume that pi > 2 for every i = 1, . . . , N and that (4.5)
with ε > 0 and (4.6) hold. Then problem (4.1) has at most one weak solution in

W 1,−→p
0 (Ω, γ).

The proofs of Theorems 4.1 and 4.2 follow the idea in [1] (see also [4] for isotropic
weighted case).

Let us consider the case when the datum is fϕ with f ∈ Lp′max(logL)−
1
2 (Ω, γ).

The restriction ε > 0 when all pi > 2 can be avoided if f does not change sign (see [8]
and [12] in the no weighted case and [4] for isotropic weighted case). We obtain the

following uniqueness result holding for the model operator
∑N
i=1(|∂xiu|pi−2∂xiuϕ)xi

with all pi > 2, which does not fulfill (4.5) with ε > 0.

Theorem 4.3. Let us assume that pi > 2 for every i = 1, . . . , N and that (4.3)
with ν1 = 0, (4.5) with ε = 0 and (4.6) hold and that the sign of f is constant on

Ω. Then problem (4.1) has at most one weak solution in W 1,−→p
0 (Ω, γ).

When ϕ(x) ≡ 1 and Ω is bounded, uniqueness results for elliptic problems are
proved for example in [1, 5, 8, 12, 16, 21] (see also the bibliography therein).

4.1. Proof of Theorem 4.1. Let u and v be two weak solutions to problem (4.1).
Let (u − v)+ := max {0, u− v}, D = {x ∈ Ω : (u − v)+ > 0}, Dt = {x ∈ D :
(u − v)+ < t} for t ∈ [0, sup(u − v)+[ and let us suppose that D has positive
measure. Let Tt(s) be the truncation function at level t, i.e.

Tt(s) = min{t,max{s,−t}}. (4.7)

Taking Tt((u−v)+)
t as test function in (4.4) written for u and v, making the difference

of the two equations, we obtain

N∑
i=1

∫
Dt

[ai(x, u,∇u)− ai(x, v,∇v)]∂xiψ dx ≤ 0.

Hypothesis (4.5) with ε = 0 and (4.6) yield

N∑
i=1

∫
Dt

|∂xiψ|2(|∂xiu|+ |∂xiv|)pi−2 dγ ≤ β

α

N∑
i=1

∫
Dt

|∂xiv|pi−1|∂xiψ| dγ. (4.8)
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By Young inequality with some δ > 0 we obtain∫
Dt

|∂xiv|pi−1|∂xiψ| dγ

≤ δ

2

∫
Dt

|∂xiψ|2(|∂xiu|+ |∂xiv|)pi−2 dγ +
1

4δ

∫
Dt

(|∂xiv|+ |∂xiv|)pi dγ.
(4.9)

Putting (4.9) in (4.8) and choosing δ small enough we obtain

N∑
i=1

∫
Dt

|∂xiψ|2(|∂xiu|+ |∂xiv|)pi−2 dγ ≤ c1
N∑
i=1

∫
Dt

(|∂xiv|+ |∂xiv|)pi dγ (4.10)

for some positive constant c1 independent on t. Let pj ≤ 2. Using Poincaré
inequality (1.7), Young inequality and (4.10) we obtain

γ(D\Dt) =

∫
Dt

|ψ| dγ ≤ C
∫
Dt

|∂xiψ| dγ

≤ C

2

[ ∫
Dt

|∂xjψ|
2

(|∂xju| dγ+|∂xj v|)
2−pj dγ +

∫
Dt

(|∂xjv|+ |∂xjv|)2−pj dγ
]

≤ c1C

2

N∑
i=1

∫
Dt

(|∂xiu|+ |∂xiv|)pi dγ +
C

2

∫
Dt

(|∂xju|+ |∂xjv|)2−pj dγ

=: Λ(t),

where C is the constant in Poincaré inequality (1.7). Since limt→0 Λ(t) = 0 we
obtain

γ(D) = lim
t→0

γ(D\Dt) = 0 (4.11)

and the conclusion follows.

Remark 4.4. In the last step of proof of Theorem (4.1) we only need that Poincaré
inequality (1.7) holds for j ∈ {1, . . . , N} such that pj < 2. Then that we can relax
the hypothesis on Ω, requiring that (H1) is fulfilled for such a index j.

4.2. Proof of Theorem 4.2. Arguing as in the proof of Theorem 4.1 we obtain

N∑
i=1

∫
Dt

(ε+ |∂xiu|+ |∂xiv|)pi−2|∂xiψ|2 dγ ≤
β

α

N∑
i=1

∫
Dt

|∂xiv|pi−1|∂xiψ| dγ (4.12)

Let us estimate the right hand side. By Young inequality with some δ > 0 we have∫
Dt

|∂xiv|p−1|∂xiψ| dγ ≤
1

4δ

∫
Dt

|∂xiv|pi dγ +
δ

2

∫
Dt

|∂xiv|pi−2|∂xiψ|2 dγ. (4.13)

Choosing δ small enough inequalities (4.13) and (4.12) yield

N∑
i=1

∫
Dt

(ε+ |∂xiu|+ |∂xiv|)p−2|∂xiψ|2 dγ ≤ c1
N∑
i=1

∫
Dt

|∂xiv|pi dγ := Λ(t) (4.14)

for some constant c1 independent of t. Moreover Young inequality and (4.14) imply∫
D

|∂xiψ| dγ =

∫
Dt

|∂xiψ| dγ

≤ 1

2
γ(Dt) +

1

2

∫
Dt

|∂xiψ|2 dγ ≤
γ(Dt)

2
+

Λ(t)

2εpi−2
.

(4.15)
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On the other hand Poincaré inequality (1.7) gives

γ(D\Dt) =

∫
D\Dt

ψ dγ ≤
∫
D

ψ dγ ≤ C
∫
D

|∂xiψ| dγ.

Observing that limt→0 Λ(t) = 0, by (4.15) we obtain (4.11) and we have the con-
clusion.

4.3. Proof of Theorem 4.3. Let u and v be two weak solutions to problem (4.1)
and let (u − v)+ := max {0, u− v}, D = {x ∈ Ω : (u− v)+ > 0}, Dt = {x ∈ D :
(u−v)+ < t} for t > 0 and let us suppose that D has positive measure. We proceed
by steps.

Step 1. We prove that

lim
t→0

1

t2

N∑
i=1

∫
Dt

(|∂xiu|+ |∂xiv|)pi−2|∂xi(u− v)|2 dγ = 0. (4.16)

For t > 0, denoting by Tt the function defined as in (4.7), putting as test function
Tt[(u− v)+] in (4.4) we obtain

N∑
i=1

∫
Ω

[ai(x, u,∇u)− ai(x, v,∇v)]∂xiTt[(u− v)+] dx = 0.

Denoting D1
i = {x ∈ Dt, |∂xiu| ≤ |∂xiv|} and D2

i = {x ∈ Dt, |∂xiv| ≤ |∂xiu|}, we
obtain

N∑
i=1

∫
D1
i

[ai(x, v,∇u)− ai(x, v,∇v)]∂xi(u− v) dx

+

N∑
i=1

∫
D2
i

[ai(x, u,∇u)− ai(x, u,∇v)]∂xi(u− v) dx

≤ −
N∑
i=1

∫
D1
i

[ai(x, u,∇u)− ai(x, v,∇u)]∂xi(u− v) dx

−
N∑
i=1

∫
D2
i

[ai(x, u,∇v)− ai(x, v,∇v)]∂xi(u− v) dx

for every t > 0. By (4.5) and (4.6) we have

α

N∑
i=1

∫
Dt

(|∂xiu|+ |∂xiv|)pi−2|∂xi(u− v)|2 dγ

≤ β
N∑
i=1

∫
D1
i

|∂xiu|pi−1|∂xi(u− v)| |u− v|dγ

+ β

N∑
i=1

∫
D2
i

|∂xiv|pi−1|∂xi(u− v)| |u− v| dγ

≤ βt
N∑
i=1

∫
Dt

[min{|∂xiu|, |∂xiv|}]pi−1|∂xi(u− v)| dγ.

(4.17)
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Using Young’s inequality we obtain

α

N∑
i=1

∫
Dt

(|∂xiu|+ |∂xiv|)pi−2|∂xi(u− v)|2 dγ

≤ βt
N∑
i=1

∫
Dt

(|∂xiu|+ |∂xiv|)pi−1|∂xi(u− v)| dγ

≤ α

2

N∑
i=1

∫
Dt

(|∂xiu|+ |∂xi |)pi−2|∂xi(u− v)|2 dγ

+
β2t2

2α

N∑
i=1

∫
Dt

(|∂xiu|+ |∂xiv|)pi dγ

and then

α

2t2

N∑
i=1

∫
Dt

(|∂xiu|+ |∂xiv|)pi−2|∂xi(u− v)|2 dγ

≤ β2

2α

N∑
i=1

∫
Dt

(|∂xiu|+ |∂xiv|)pi dγ.

Since the second term in the previous estimate approaches zero as t → 0, (4.16)
follows.

Step 2. We prove that

N∑
i=1

∫
D

ai(x, u,∇u)∂xiΨ dx = lim
t→0

∫
Ω

f
Tt[(u− v)+]

t
Ψ dγ

N∑
i=1

∫
D

ai(x, v,∇v)∂xiΨ dx = lim
t→0

∫
Ω

f
Tt[(u− v)+]

t
Ψ dγ

(4.18)

for every Ψ ∈ L∞(Ω) ∩W 1,−→p (Ω, γ).

Taking Tt[(u−v)+]
t Ψ as test function in (4.4), we obtain

N∑
i=1

∫
Ω

ai(x, u,∇u)∂xiΨ
Tt[(u− v)+]

t
dx+

1

t

N∑
i=1

∫
Dt

ai(x, u,∇u)∂xi(u− v)Ψ dx

=

∫
Ω

f
Tt[(u− v)+]

t
Ψ dγ.

We easily pass to the limit in the first term by using Lebesgue dominated conver-
gence theorem. For the second term using (4.3) and Hölder inequality we obtain

1

t

∫
Dt

ai(x, u,∇u)∂xi(u− v)Ψ dx

≤ ν2‖Ψ‖L∞(Ω)

( 1

t2

∫
Dt

(|∂xiu|+ |∂xiv|)pi−2|∂xi(u− v)|2 dγ
)1/2

×
(∫

Dt

(|∂xiu|+ |∂xiv|)pi dγ
)1/2

,

which tends to zero by (4.16). Then we obtain (4.18).
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Step 3. We prove that D has zero measure. Taking Ψ = 1 in (4.18) we obtain

lim
t→0

∫
Ω

f
Tt[(u− v)+]

t
dγ = 0.

Since the sign of f is constant we obtain fχD = 0 a.e. in Ω and the right-hand side
of (4.18) is zero.

Now taking ψ = Tk(u) in (4.18) and passing to the limit as k →∞, we obtain

N∑
i=1

∫
D

ai(x, u,∇u)∂xiu dx = 0.

By (4.5) with ε = 0 and (4.3) with ν1 = 0 we obtain

N∑
i=1

∫
D

|∂xiu|pi dγ = 0.

Then
∂xiu = 0 a.e. on D for every i ∈ {1, . . . , N}. (4.19)

By (4.17) and (4.19) it follows that ∂xiv = 0 a.e. on Dt for every t > 0 and for
every i ∈ {1, . . . , N} and then in D. Then ∂xi(u − v) = 0 a.e. on D for every
i ∈ {1, . . . , N}. Since u = v = 0 on ∂Ω, by Poincaré inequality (1.7)∫

D

|u− v|pi dγ =

∫
Ω

|(u− v)+|pi dγ ≤ C
∫
D

|∂xi(u− v)|pi dγ = 0.

Then the conclusion follows.

Remark 4.5. In the last step of proofs of Theorems (4.2) and (4.3) we only need
that Poincaré inequality (1.7) holds for some j ∈ {1, . . . , N}, that means that we can
relax the hypothesis on Ω, requiring that (H1) is fulfilled for some j ∈ {1, . . . , N}.

5. An extension to Boltzmann measures

Let us consider the weight

Z−1 exp(−W (x)) ∈ L1(Rn), (5.1)

where W (x) is a positive smooth function. We can see (5.1) as the density of the
following measure on RN , called Boltzmann measure, defined by

dµ = Z−1 exp(−W (x)) dx x ∈ RN

and normalized by µ(RN ) = 1. Let us suppose that measure µ satisfies an isoperi-
metric inequality and its isoperimetric function Iµ(t) is estimated by the Gaussian
isoperimetric function:

Iµ(t) ≤ cµIγ(t) (5.2)

for a suitable positive constant cµ > 0. For example (5.2) is satisfied if the Hessian
matrix satisfies

D2W (x) ≥ c2µId (5.3)

as symmetric matrix uniformly in x (see [18]). We remark that the Gauss measureγ
is such a measure.

Under the previous assumption arguing as in subsection 3.1 it is possible to prove
that (

‖u‖◦Lp(logL)1/2(Ω,µ)

)p
≤ cµc(p)

[1

2

(
1− 1

log(µ(Ω))

)]p/2
‖∇u‖pLp(Ω,µ) (5.4)
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for some constant c(p) depending only on p, and then the analogue of our main
results. The main tools are a suitable definition of rearrangement and Polya-Szëgo
inequality for it. If u is a measurable function in Ω, we define

u◦(s) = inf{t ≥ 0 : µ({x ∈ Ω : |u| > t}) ≤ s} for s ∈]0, 1]

the one dimensional rearrangement of u with respect to Boltzmann measure and
u�(x) = u◦(Φ(x1)) for x ∈ Ω� the rearrangement with respect to Boltzmann, where
Ω� is the half-space such that γ(Ω�) = µ(Ω). In [11] is proved the Polya-Szëgo
inequality

‖∇u�‖Lp(Ω�,γ) ≤
√
cµ‖∇u‖Lp(Ω,µ). (5.5)

In this framework u◦, u� and (5.5) play the role of u~, u? and (2.3) respectively.
Moreover ‖u‖◦

Lp(logL)1/2(Ω,µ)
is defined as in (2.4) with u~ replaced by u◦.

Stating from (5.4) arguing as in §3.2 and §3.3 we can prove the analogue of
Theorem 1.1, Theorem 1.2, and Corollary 1.3. Moreover using such inequalities
it is possible to study the analogue of problem (4.1), where the density of Gauss
measure is replaced by the (5.1) following the ideas of §4.
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