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PERIODIC SOLUTIONS FOR SEASONAL SIQRS MODELS WITH
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Abstract. In this work, we considered a family of SIRS models for a fa-
tal disease, with seasonal variation in the contact rate and isolation control

strategies. We establish the existence of periodic orbits of seasonal SIQRS dis-

ease, by using Leray-Schauder degree theory. Examples related to the seasonal
variation in respiratory syncytial virus infection are included.

1. Introduction

Some infectious diseases confer temporal acquired immunity. This types of
diseases can be modeled by classical susceptible-infectious-recovered-susceptible
(SIRS) models. The SIRS type epidemic system and its related extensions have
been used to model several topics such as malaria [5], Japanese encephalitis [20],
cholera [21], respiratory syncytial virus [29], and others.

In the classic SIRS model, the incidence rate is assumed to be mass action in-
cidence with bilinear interactions given βSI, where S and I are the numbers of
infectious and susceptible individuals, respectively. The parameter β is the trans-
mission rate. However, there are many reasons for using non-linear incidence rates,
such as saturated function βSI/(1 + kI) has been first proposed by Capasso and
Serio [4]. SIRS models with non-linear incidence rates are numerous in the lit-
erature [14, 16, 17, 22, 30, 28]. For instance, Liu and coworkers [16, 17] showed
that the incidence rate βSpIq, with p and q are positive constants, can exhibit
qualitatively different dynamical behaviors, including Hopf bifurcations, saddle-
node bifurcations, and homoclinic loop bifurcations. To incorporate the effect of
behavioral changes, some scholars [16, 22] used a non-linear incidence rate given
βSI l/(1 + kIh) with k, l, h > 0. In this incidence rate, the term βI l measures the
infection force of the disease and 1/(1 + kIh) measures the inhibition effect from
the behavioral change of the susceptible individuals when their number increases or
from the crowding effect of the infectious individuals. Xiao and Ruan [30] investi-
gated a non-monotone incidence rate, which is a particular case with l = 1, h = 2.
In [3] used the incidence rate β ln(1 + kI)S with k > 0. Korobeinikov [14] used
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Lyapunov functions to proved global stability of the disease-free and endemic equi-
librium states of SIRS models with non-linear transmission rate of a very general
form f(S, I).

The SIRS models have also been extended to incorporate control strategies, such
as vaccination [8, 24], treatment [15], quarantine or isolation measures [10, 24].
Sun and Yang [24] developed an SIRS model with both vaccination and isolation
control strategies. This system can exhibit different qualitative behaviors depending
on the value of the vaccination-isolation reproductive number. Li and Cui [15]
considered an SIRS model with nonlinear incidence rate and treatment, and it can
undergo a Hopf bifurcation at the positive equilibrium. Gumel and his colleagues [8]
proposed an SIRS model subject to an imperfect vaccine with waning natural and
vaccine-induced immunity. The model undergoes backward bifurcation when the
vaccination reproductive number is less than unity. Recently, Huang and coworkers
[10] analyzed an SIRS epidemic model with quarantine and vaccination on complex
heterogeneous networks. In particular, some conditions for global stability of the
unique endemic equilibrium are obtained by using a monotone iterative technique.

A few studies have considered including in the classic SIRS model in the seasonal
process. On the one hand, some works are focused to study the stability properties
of the systems [11, 12, 18, 25, 26]. Thieme [25, 26] derived threshold results for
the global stability of disease-free equilibrium and disease persistence for an SIRS
model with very general time-heterogeneous coefficients. Greenhalgh and Moneim
[11] analyzed the global stability of disease-free equilibrium of a model with gen-
eral seasonal variation in the contact rate. Jódar and coworkers [12] studied the
existence and the behavior of periodic solutions of a generalized model with general
time-heterogeneous coefficients, by using a continuation theorem based on coinci-
dence degree theory. In the above models have been considered that the constant
population size; instead, Liu and Zhang [18] considered a model with density de-
pendent birth rate and assumed that the total number of the population is governed
by a logistic equation. On the other hand, a few seasonal models have focused on
the estimation of parameters using epidemiological data. In particular, Weber and
coworkers [29] used SIRS and MSEIRS models to interpret the pattern of seasonal
epidemics of respiratory syncytial virus (RSV) disease observed in Gambia, Florida,
Finland and Singapore, and they estimated the parameters for RSV infection. For
an excellent review of seasonal epidemiological models, see [2]. In this paper, we
consider a seasonal SIQRS model with disease-induced mortality.

The organization of this article is as follows. In Section 2, we formulate a family
SIRS models incorporating a seasonal variation in the contact rate, isolation control
strategies and disease-induced death. In Section 3, we discuss and establish the
conditions for the existence of periodic orbits. In Section 4, we use epidemiologically
realistic range of parameter values to present some numerical simulations. Lastly,
in Section 4, we provide a few concluding remarks.

2. Formulation of seasonal SIQRS model

In most classic disease transmission models, the total population is assumed to be
constant. Anderson and May [1] formulated one of the first epidemiological models
where the total population is not constant. This model that includes recruitment
rate of susceptible individuals into the community and that the disease produces
non-negligible death in the infectious class. The model is given by the following
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coupled system of ordinary differential equations:

S′ = Λ− βSI − dS + ξR,

I ′ = βSI − (γ + d+ α)I,

R′ = γI − (d+ ξ)R,

(2.1)

Individuals are susceptible (S(t)), then infectious (I(t)), then recovered with
temporary immunity (R(t)), and then susceptible again when the immunity is lost.
Λ is the recruitment rate of susceptibles, d is the natural death rate and α is the
disease-induced mortality. The parameter β is the disease transmission coefficient,
γ describes the rate that the infectious population becomes recovered and ξ denotes
the rate which recovered individuals return to the susceptible statue due to loss of
immunity. All parameters are positive.

Quarantine and isolation are control strategies used to stop or limit the spread
of infectious diseases. The basic idea of the isolation consists in separate sick
individuals who have a communicable disease from those who are healthy. SIRS
diseases are commonly recurrent due to social and weather-related factors, that is
to say, disease vary according to an almost regular annual cycle. For these reason,
it is important to incorporate a isolation control strategies and a time-varying rate
of contact into the SIRS model (2.1).

We consider the following family of SIRS models for a fatal disease, with seasonal
variation in the contact rate and isolation control strategies:

S′ = Λ− β(t)Sf(I)− dS + ξR

I ′ = β(t)Sf(I)− (γ + δ + d+ α1)I,

Q′ = δI − (ε+ d+ α2)Q,

R′ = γI + εQ− (d+ ξ)R,

(2.2)

where S is the number of individuals in the susceptible class, I is the number of
individuals who are infectious but not isolated, Q is the number of individuals
who are isolated (Q as in quarantine), and R is the number of individuals who
are recovered. The parameter δ is the rate constant for individuals leaving the
infectious class I for the isolated class Q, ε is the rate that the infectious-isolated
class becomes recovered, and α1 and α2 represent the extra disease-related death
rate constants in classes I and Q, respectively. The other parameters are the same
as in the previous model (2.1). The parameters are positive constants. In short,
we call these models as seasonal SIQRS models.

The seasonal force of infection is given by β(t)f(I), we make the following as-
sumptions:

(A1) β(t) is a non-constant continuous T -periodic function.
(A2) f(0) = 0, f(I) > 0 and f ′(I) > 0 for all I ≥ 0.
(A3) f(I) is concave; i.e. f ′′(I) ≤ 0.

Remark: As was observed in [7, 27], the condition (A3) implies that f is uni-
formly sublinear; i.e.

If ′(I) ≤ f(I). (2.3)

An example of a seasonally forced function is

β(t) = b0(1 + b1 cos(2πf(t+ φ))),
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where b0 ≥ 0 is the baseline transmission parameter, b1 measures the amplitude of
the seasonal variation in transmission, f is the frequency of seasonal cycles and φ
is the phase shift.

An SIRS model with constant population and force of infection β(t)f(I) =
b0(1 + b1 cos(2πt))I, and without isolation was studied in [11]. The case of an
SIQRS model with β-constant and f(I) = I was recently considered in [10]. Our
model includes a wide variety of cases, which have not been considered in literature,
such as, the following non-linear forces of infection β(t)f(I) = β(t)I/(1 + kI) and
β(t)f(I) = β(t) ln(1 + kI) with k > 0 [3].

We define the total population size as N(t) = S(t) + I(t) +Q(t) +R(t), implies
N(t)′ = Λ−dN(t)−α1I(t)−α2Q(t). We can see that in the absence of disease, the
population size N converges to the equilibrium Λ/d. The differential equation for
N implies that solutions of (2.2) starting in R4

+ either approach, enter, or remain
in the subset of R4 defined by

Σ := {(S, I,Q,R) : S ≥ 0, I ≥ 0, Q ≥ 0, Q ≥ 0, S + I +Q+R ≤ Λ/d},

Thus it suffices to consider solutions in the region Σ.

3. Existence of periodic orbits

The system always has a disease-free equilibrium (S0, I0, Q0, R0) = (Λ/d, 0, 0, 0).
We define the basic reproductive number R0 for system (2.2) when β is constant
as

R0 =
β(Λ/d)f ′(0)

γ + δ + d+ α1
,

which is a product of the number Λ/d of susceptibles at the disease-free equilibrium,
the transmission coefficient β, and the average residence time 1/(γ + δ + d + α1)
in the infectious individuals class. Thus R0 is the average number of secondary
infections that occur when one infectious individual is introduced into a completely
susceptible population.

Motivated by this, we consider R0 for system (2.2) as

R0 :=
β(Λ/d)f ′(0)

γ + δ + d+ α1
, where β :=

1

T

∫ T

0

β(t)dt.

We write

β(t) = β + β0(t), where

∫ T

0

β0(t)dt = 0.

The proof of the existence of periodic orbits for systems (2.2) will be done in
two steps. First, we consider the case ξ = 0,

S′ = Λ− β(t)Sf(I)− dS,
I ′ = β(t)Sf(I)− (γ + δ + d+ α1)I,

Q′ = δI − (ε+ d+ α2)Q,

R′ = γI + εQ− dR,

(3.1)

and prove the existence of solutions on this system. Then, we construct an homo-
topy between (3.1) and (2.2).
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For λ ∈ [0, 1] we define the homotopy

S′ = Λ− βλSf(I)− dS,
I ′ = βλSf(I)− (γ + δ + d+ α1)I,

Q′ = δI − (ε+ d+ α2)Q,

R′ = γI + εQ− dR,

(3.2)

where βλ := β + λβ0(t).
To show the existence of a positive periodic solution, we shall use the Leray-

Schauder degree theory. For this, we extend the work done in [13] and establish
suitable modifications to describe system (3.1). To do so, we need to reformulate
the problem in a functional setting in the following way.

For l = 0, 1 we consider the Banach spaces

ClT :=
{

(S, I,Q,R) : S, I,Q,R ∈ Cl(R,R), S(t+ T ) = S(t), I(t+ T ) = I(t),

Q(t+ T ) = Q(t), R(t+ T ) = R(t)
}
.

Let L : C1
T → C0 and Nλ : C0

T → C0
T be the operators given by

L(S, I,Q,R) := (S′+dS, I ′+(γ+δ+d+α1)I, Q′+(ε+d+α2)Q, R′+dR), (3.3)

and

Nλ(S, I,Q,R) := (Λ− βλSf(I), βλSf(I), δI, γI + εQ).

Since L is invertible we define

Fλ(S, I,Q,R) := (S, I,Q,R)− L−1 ◦Nλ(S, I,Q,R) . (3.4)

Since C1
T is compactly embedded in C0

T , we can think of L−1 as going from C0
T to

C0
T , therefore L−1 ◦Nλ : C0

T → C0
T is a compact operator. In a similar fashion, we

can consider Fλ : C0
T → C0

T . Thus, (3.4) is a functional reformulation of problem
(3.2); in particular, periodic solutions of (3.2) correspond to zeroes of Fλ.

We consider the open sets

D := {(S, I,Q,R) ∈ C0
T : S > 0, I > 0, Q > 0, R > 0, S + I +Q+R < Λ/d}

G := {(S, I,Q,R) ∈ D : min
[0,T ]

S(t) < r(Λ/d)},

for a fixed 0 < r < 1. For our main result we will assume 1
R0

<
f ′( Λ

d )

f ′(0) , so we choose

r such that
1

R0
< r

f ′(Λ
d )

f ′(0)
and

Λ

d+ βf(I1)
< r(

Λ

d
). (3.5)

Recall that the existence of a solution for F1 in G via Leray-Schauder de-
gree is guaranteed if deg(F0, G) 6= 0 and Fλ is an admissible homotopy i.e. 0 /∈
Fλ(∂G),∀λ ∈ [0, 1]. The next result says that Fλ is admissible.

Lemma 3.1. If R0 >
f ′(0)

f ′( Λ
d )

, then for any λ ∈ [0, 1] there are no solutions (S, I,Q,R)

of (3.2) on ∂G.

Proof. First note that the arguments in [13, Lemma 1] prove that (S0, I0, Q0, R0)
is the only solution of (3.2) entirely contained in ∂D for any λ ∈ [0, 1]. So, if
(S, I,Q,R) ∈ ∂G, then (S, I,Q,R) /∈ ∂D so

(S, I,Q,R) ∈ D and S(t) ≥ r(Λ/d), ∀t. (3.6)
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By integrating the second equation in (3.2) on the interval [0, T ], we have that∫ T

0

I ′

I
dt+ (γ + δ + d+ α1)T =

∫ T

0

βλS
f(I)

I
dt,

but
∫ T

0
I′

I dt = 0 because I is T -periodic and by (2.3) we obtain

γ + δ + d+ α1 =
1

T

∫ T

0

βλSf
′(I)dt,

by using the hypothesis (A3), f ′(Λ
d ) ≤ f ′(I) ≤ f ′(0) and inequality (3.6) one obtain

γ + δ + d+ α1 ≥
1

T

∫ T

0

βλSf
′(

Λ

d
)dt ≥ r(Λ/d)β

f ′(Λ
d )

f ′(0)
f ′(0),

Now from our hypothesis we obtain

γ + δ + d+ α1 > β(Λ/d)f ′(0)
1

R0
= γ + δ + d+ α1, (3.7)

which is a contradiction. �

Lemma 3.2. When λ = 0 and R0 > 1, the system (3.2) has exactly two periodic
orbits in C1 being these: S0 = Λ/d, I0 = 0, Q0 = 0, R0 = 0 and the second satisfies

S1 =
Λ

d+ βf(I1)
, Q1 =

δI1
ε+ d+ α2

, R1 =
(
γ +

δε

ε+ d+ α2

)I1
d

and I1 is the unique solution of:

βΛf(I)

d+ βf(I)
− (γ + δ + d+ α1)I = 0, (3.8)

these in fact are critical points.

Proof. It is clear that the system admits an unique infection-free equilibrium state
(S0 = Λ/d, I0 = 0, Q0 = 0, R0 = 0). Since f satisfies 2.3 the existence and unique-
ness of the endemic point follows the same lines as in Dénes and Röst in [7, Lemma
2.3]. and Röst in [7] or the arguments in [14, Theorem 2.1]. �

Proposition 3.3. If R0 > 1 then for the open set G, we have that deg(F0, G) 6= 0.

Proof. Since R0 > 1 by Lemma 3.2, (S1, I1, Q1, R1) is the unique periodic solution
of F0(S, I,Q,R) = 0 in G. So to establish the degree deg(F0, G) 6= 0 we need
only to prove that DF0(S1, I1, Q1, R1) is invertible. We have that F0 is a compact
perturbation of the identity, so by the Fredholm alternative it is enough to prove
that the

ker(DF0(S1, I1, Q1, R1)) = {0}.
Consider (U, V,W,Z) ∈ C0 so that (U, V,W,Z) ∈ ker(DF0(S1, I1, Q1, R1)), by the
definition of F0, we obtain that L(U, V,W,Z) = DN0(S1, I1, Q1, R1)(U, V,W,Z),
since

N0(S, I,Q,R) = (Λ− β̄Sf(I), β̄Sf(I)S, δI, γI + εQ).

Then, we obtain

DN0(S1, I1, Q1, R1)(U, V,W,Z)

= (−β̄(Uf(I1) + S1f
′(I1)V ), β̄(Uf(I1) + S1f

′(I1)V ), δV, γV + εW ).
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Using the definition

L(U, V,W,Z) = (U ′ + dU, V ′ + (γ + δ + d+ α1)V,W ′ + (ε+ d+ α2)W,Z ′ + dZ),

we obtain

(U ′, V ′,W ′, Z ′) = (−(dU + β̄Uf(I1) + β̄S1f
′(I1)V ), β̄Uf(I1)− (β̄S1f

′(I1)

+ (γ + δ + d+ α1))V,−(ε+ d+ α2)W + δV,−dZ + γV + εW ).

Rewriting in matrix form, we have
U ′

V ′

W ′

Z ′

 = A


U
V
W
Z

 . (3.9)

where

A =


−(d+ β̄f(I1)) −β̄S1f

′(I1) 0 0
β̄f(I1) β̄S1f

′(I1)− (δ + γ + d+ α1) 0 0
0 δ −(ε+ d+ α2) 0
0 γ ε −d


The the characteristic polynomial of this matrix is

p(λ) = (λ+ d)(λ+ ε+ dα2)(λ2 − Tr(B)λ+ det(B)), (3.10)

where

B =

(
−(d+ β̄f(I1)) −β̄S1f

′(I1)
β̄f(I1) β̄S1f

′(I1)− (δ + γ + d+ α1)

)
. (3.11)

To prove that the characteristic polynomial is Hurwitz, it is sufficient to prove that
Tr(B) < 0 and det(B) > 0. In this way,

Tr(B) = β̄S1f
′(I1)− β̄f(I1)− (δ + γ + 2d+ α1), f(I1) ≥ I1f ′(I1)

≤ β̄S1
f(I1)

I1
− β̄f(I1)− (δ + γ + 2d+ α1), substituting S1 and (3.8)

≤ (δ + γ + d+ α1)− β̄f(I1)− (δ + γ + 2d+ α1), < 0.

In (3.11), we add the first row to the second row to obtain

det(B) = (d+ β̄f(I1))(δ + γ + d+ α1)− β̄dS1f
′(I1), f(I1) ≥ I1f ′(I1)

≥ (d+ β̄f(I1))(δ + γ + d+ α1)− β̄dS1
f(I1)

I1
= (d+ β̄f(I1))(δ + γ + d+ α1)− d(δ + γ + d+ α1) > 0.

substituting S1 and (3.8).
Thus the inequalities are valid, and the characteristic polynomial of system (3.9)

is Hurwitz. Therefore the linear system (3.9) has no periodic orbits different to the
trivial solution. �

Theorem 3.4. If R0 > f ′(0)/f ′(Λ/d), then the system (3.1) admits a non-trivial
periodic solution.

Proof. Using the invariance of the Leray-Schauder degree under homotopy, by
Lemma 3.1 and Proposition 3.3 we obtain that deg(F1, G) 6= 0, then the system
(3.1) admits a non-trivial periodic solution, which proves Theorem 3.4. �
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We now establish the existence of periodic solutions in the case of system (2.2).
For τ ∈ [0, 1] we define the homotopy

S′ = Λ− β(t)Sf(I) + ξτR

I ′ = β(t)Sf(I)− (γ + δ + d+ α1)I,

Q′ = δI − (ε+ d+ α2)Q,

R′ = γI + εQ− (d+ ξτ)R,

(3.12)

We consider the operators Mτ : C0 → C0 and Lτ : C1 → C0 given by

Mτ (S, I,Q,R) := (Λ + ξτR− β(t)Sf(I), β(t)Sf(I)), δI, γI + εQ),

Lτ (S, I,Q,R)

:= (S′ + dS, I ′ + (γ + δ + d+ α1)I, Q′ + (ε+ d+ α2)Q, R′ + (d+ ξτ)R),

we define

Hτ (S, I,Q,R) := (S, I,Q,R)− L−1
τ ◦Mτ (S, I,Q,R). (3.13)

Thus, (3.13) is a functional reformulation of problem (2.2); in particular, peri-
odic solutions of (2.2) correspond to zeroes of Hτ . Note that H0 = F1, therefore
deg(H0, G) 6= 0. Recall that the existence of a solution for H1 in G is guaranteed
via Leray-Schauder degree if deg(H0, G) 6= 0 and Hτ is an admissible homotopy
i.e. 0 /∈ Hτ (∂G),∀τ ∈ [0, 1]. So we need only establish that Hτ is an admissible
homotopy, note that the same proof of lemma 3.1 applies to obtain the following
result.

Lemma 3.5. If R0 > f ′(0)/f ′(Λ/d), then for any τ ∈ [0, 1] there are no solutions
(S, I,Q,R) of (3.12) on ∂G.

Hence Hτ is an admissible homotopy, as required. By combining our observations
we obtain the following theorem.

Theorem 3.6. If R0 > f ′(0)/f ′(Λ/d), then there is at least one T -periodic orbit
of (2.2) whose components are positive.

4. Applications

In the previous section, we analyzed the existence of periodic solutions of a
seasonal SIQRS models for a fatal disease. The object of this section is to show
numerical evidence of the existence of periodic solutions of two SIQRS models. A
representative example of an SIRS-type disease is the RSV infection. This disease
is a common cause of acute respiratory illness in children and older adults, with
a cyclic annual pattern. We will use the estimated parameters for the country of
Finland given in [29].

4.1. SIQRS models with bilinear incidence. We proposed an SIQRS model
with bilinear incidence rate, isolation control strategy and seasonal variation in the
contact rate of period T = 1 year:

S′ = Λ− β(t)SI − dS + ξR,

I ′ = β(t)SI − (γ + δ + d+ α1)I,

Q′ = δI − (ε+ d+ α2)Q,

R′ = γI + εQ− (d+ ξ)R,

(4.1)
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where the initial conditions are: S(0) = 2554, I(0) = 50, Q(0) = 0 and R(0) = 0.
The seasonally forced function is determined by β(t) = 0.0169(1 + 0.36 cos(2π(t +
0.60))).

Figure 1 shows the effect of the presence or absence (δ = ε = 0) of isolation in the
time plots of system (4.1). We observed that the presence of the isolation control

strategy decreases the reproductive number fromRSIRS0 = 1.222 toRSIQRS
0 = 1.023,

and consequently also the number of infected cases decreases.
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Figure 1. Time plots for the seasonal SIRS model (4.1) with pres-
ence (dashed line) or absence (solid line) isolation control strategy.
The parameter values are as in [29], except the following parame-
ters: Λ = 3.3852 people/year, δ = 7/year, ε = 54/year, b0 = 0.0169
year/person and α1 = α2 = 0.0/year. These are: d = 0.0013/year,
γ = 36/year, ξ = 1.8/year, b1 = 0.36 and φ = 0.60 year.
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Figure 2. Time plots for the seasonal SIRS model (4.2) with pres-
ence (dashed line) or absence (solid line) isolation control strat-
egy. The parameters chosen are the following: δ = 4/year and
k = 0.048 year/person, and the other parameters are the same as
in the SIQRS model with bilinear incidence rate. It is clear that

the inequality RSIQRS
0 > f ′(0)/f ′(1) = 1.0983 is satisfied.

4.2. SIQRS models with saturated incidence rate. We proposed the following
SIQRS model with saturated incidence rate:

S′ = Λ− β(t)
IS

1 + kI
− dS + ξR,

I ′ = β(t)
IS

1 + kI
− (γ + δ + d+ α1)I,

Q′ = δI − (ε+ d+ α2)Q,

R′ = γI + εQ− (d+ ξ)R,

(4.2)

where 1/(1 + kI) measures the psychological or inhibitory from the behavioral
change of the susceptible individuals when their number increases or from the
crowding effect of the infected individuals. The seasonally forced function is β(t) =
44(1+0.36cos(2π(t+0.60))), and initial conditions are S(0) = 0.9808, I(0) = 0.0192,
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Q(0) = 0 and R(0) = 0. Similarly, we observed that the isolation of symp-
tomatic individuals decreases the reproductive number from RSIRS0 = 1.222 to

RSIQRS
0 = 1.099. (See Figure 2).

5. Conclusions

In this paper, we studied a non-autonomous epidemic system that describes the
isolation control measures for infectious diseases with temporary immunity and
seasonal cycles. This seasonal variation may be due to social and weather-related
factors.

A classic problem in differential equations is to prove the existence of periodic
orbits. Usually, it is difficult to prove the existence of periodic orbits of ODE
systems in dimensions greater than or equal to three. We used the Leray-Schauder
degree theory to prove the existence of a non-trivial periodic endemic solution.

In our work, we established analytically the existence of a periodic endemic orbit
in a family of SIRS epidemic model with isolation control strategy and seasonal
variation in a wide class of nonlinear infection force β(t)f(I). This seasonal force
of infection includes various special nonlinear functions f(I) and seasonally forced
functions β(t). If f(I) = I, then the incidence rate β(t)f(I)S becomes a classic
bilinear form, and if f(I) = I/(1 + kI) then the incidence rate describes saturated
effects, which is proposed in [4]. In addition, f(I) = ln(1 + kI), then the incidence
rate is one of the form proposed in Briggs and Godfray [3]. The most common
seasonal function is β(t) = b0(1 + b1 cos(2π(t + φ))), and we proposed another
sinusoidal form β(t) = b0(1−b1 sin(2πf(t+φ))), where f is the frequency of seasonal
cycles.

A example of an SIRS-type disease is the respiratory syncytial virus infection. We
used estimated parameters given in [29] of this disease to show numerical evidence of
the existence of such periodic endemic solutions by means of numerical simulations
of two SIQRS epidemic models.

Finally, we analyzed the relationship between the SIQRS model and its basic
reproductive number,R0. On the one hand, we observed that theR0 is independent
of the following parameters: recovery rate (ε) and disease-related death rate (α2)
of isolated individuals Q, and the loss of immunity rate (ξ) of recovered individuals
R. It is not surprising that the recovery rate of isolated individuals does not affect
the threshold quantity R0, since the SIQRS model assumed that people in the
isolation class Q do not infect others and people are not infectious when they
move out of the isolation class. On the other hand, the R0 do depend on the
parameter δ, which governs the transfer rate out of the infectious class into the
isolation class. In practice, the parameter δ is the most easily controlled, that is
the isolation rate of infectious individuals. We can see that the effective infectious
period 1/(γ + δ + d + α1) and the basic reproductive number R0 decrease as the
isolation rate constant δ increases. By means of this result, we showed that seasonal
epidemic outbreaks can be controlled.
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