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EXISTENCE AND REGULARITY OF SOLUTIONS TO 1-D

FRACTIONAL ORDER DIFFUSION EQUATIONS

LUELING JIA, HUANZHEN CHEN, VINCENT J. ERVIN

Abstract. In this article we investigate the existence and regularity of 1-
D steady state fractional order diffusion equations. Two models are investi-

gated: the Riemann-Liouville fractional diffusion equation, and the Riemann-

Liouville-Caputo fractional diffusion equation. For these models we explicitly
show how the regularity of the solution depends upon the right hand side func-

tion. We also establish for which Dirichlet and Neumann boundary conditions

the models are well posed.

1. Introduction

In recent years nonlocal models have been proposed for a number of phenomena
whose behavior differ significantly from that predicted by usual local models, i.e.,
integer order differential equations. Several areas where nonlocal models have been
used include contaminant transport in ground water flow [5], viscoelasticity [14],
image processing [6, 10], turbulent flow [14, 20], and chaotic dynamics [24].

Two nonlocal approaches that are currently being investigated as models for
anomalous diffusion are fractional differential equations [17, 13] and equations in-
volving the fractional Laplacian [18]. (For recent results on the regularity of the
solution to equations involving the fractional Laplacian see [2, 3].) The focus of this
article is on the regularity of the solution to fractional diffusion equations. Two
such models that have appeared in the literature,which we denote by RLCDαr · [8, 9],
and RLDαr · [19], are defined by

RLCDαr u(x) := −D
(
rD−(2−α) + (1− r)D−(2−α)∗

)
Du(x) = f(x), (1.1)

RLDαr u(x) := −D2
(
rD−(2−α) + (1− r)D−(2−α)∗

)
u(x) = f(x), (1.2)

for 0 < x < 1, where D denotes the usual differential operator, and D−β and D−β∗

denote the left and right fractional integral operators, respectively (defined in Sec-
tion 2). We refer to RLCDαr as the Riemann-Liouville-Caputo fractional differential
operator, and RLDαr as the Riemann-Liouville fractional differential operator

A variational solution, u ∈ H
α/2
0 (0, 1), to (1.1) and (1.2), subject to u(0) =

u(1) = 0, and f ∈ H−α/2(0, 1) was established in [9]. A detailed analysis of the
existence and regularity of solutions to (1.1) and (1.2) for r = 1 (i.e., one sided
fractional diffusion equations) was given by Jin, Lazarov, et al. in [12]. Recently
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Wang and Yang [22] investigated the well posedness of solutions to (1.1) and (1.2)
for r = 1 subject to three different Neumann boundary conditions. They showed
that for at least one of the boundary conditions that the modeling equations were
ill posed. A physical interpretation of absorbing and reflecting boundary conditions
for (1.2) for r = 1 was recently presented by Baeumer, Kovács, et al. in [4]. Also, for
r = 1 the existence and regularity of solutions to (1.1) having a variable diffusion
coefficient was analyzed by Yang, Chen and Wang in [23].

In this article we investigate the existence and regularity of the solutions to (1.1)
and (1.2), subject to various boundary conditions. A goal of this investigations
is to provide engineers and scientists insight into determining which equation may
more appropriately model their problem of interest.

For clarity in our discussion we say that g(x), x ∈ (0, 1) is algebraically regular if
g(x) ∼ Cxa, as x→ 0 for 0 < a < 1 or g(x) ∼ C(1−x)b, as x→ 1 for 0 < b < 1, and
algebraically singular if g(x) ∼ Cx−a, as x→ 0 for 0 < a < 1 or g(x) ∼ C(1−x)−b,
as x→ 1 for 0 < b < 1.

From a course in differential equations we have that the general solution to the
linear differential equation Lu = f can be expressed as u = uhomog + ups, where
uhomog satisfies the associated homogeneous differential equation (i.e., uhomog ∈
ker(L)), and ups is a particular solution. The regularity of the solution u depends
on two factors: (i) the operator L, and (ii) the RHS function f . The regularity of
uhomog is solely determined by the operator L. The regularity of ups depends on f ,
and also on the operator L. For (1.1) we have that ker(RLCDαr ) is algebraically reg-
ular (Section 3), whereas for (1.2) we have that ker(RLDαr ) is algebraically singular
(Section 4).

Equation (1.2) represents the steady-state fractional diffusion equation derived
in [19], assuming a heavy tail random walk process. Equation (1.1) and (1.2) only
differ in the location of one of the derivative operators: either before the fractional
integral terms or after them. A physical interpretation of the difference between
the two equations can be obtained by considering the 1-D heat equation, modeling
the cross sectional temperature along a bar that is insulated along its lateral surface
[7].

∂

∂t
u(x, t)− ∂

∂x
q(x, t) = f(x, t), 0 < x < 1, t > 0 . (1.3)

Here u(x, t), q(x, t), and f(x, t) represent the temperature (synonymous with en-
ergy), energy flux, and an energy source density, respectively, at cross section x at
time t. Corresponding to (1.1),

q(x, t) =
1

Γ(2− α)

(
r

∫ x

0

1

(x− s)α−1
(−∂u(s, t)

∂x
) ds

− (1− r)
∫ 1

x

1

(s− x)α−1
∂u(s, t)

∂x
ds
)
.

The first term in the parenthesis on the right hand side implies that if the local

temperature around s is not constant (i.e., ∂u(s,t)∂x 6= 0) then energy flows from this
point. The contribution of this flow of energy to a point a distant (x − s) units
away is given by

1

Γ(2− α)

1

(x− s)α−1
(−∂u(s, t)

∂x
)∆s .
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A similar interpretation applies to the second term in the parenthesis. Hence, in
(1.1) the flux at a point is the weighted sum of local energy variations along the
bar, which may be interpreted as a nonlocal version of Fick’s Law.

For equation (1.2), we let

E(x, t) =
1

Γ(2− α)

(
r

∫ x

0

1

(x− s)α−1
u(s, t) ds

+ (1− r)
∫ 1

x

1

(s− x)α−1
u(s, t) ds

)
.

This expression can be interpreted as the weighted sum of local energy distributed
throughout the bar, with the energy (temperature) at s contributing an amount

1

Γ(2− α)

1

(x− s)α−1
u(s, t)∆s.

Then, as q(x, t) = − ∂
∂xE(x, t), the flux at x is due to the variation in the weighted

energy at x. Note that each point s contributes to the weighted energy at x,
E(x, t), corresponding to a random walk process as derived in [19]. So, in (1.2)
there is an underlying energy flow occurring throughout the bar, however there is
only a resulting flux at x if there is a local imbalance in this weighted energy at x.

In the next section we introduce notation and several key lemmas we use in the
analysis of the solutions to (1.1) and (1.2). In Section 3 we present the existence and
regularity results for the solution of (1.1), subject to various boundary conditions. A
shift theorem for (1.1) is investigated in Section 3.2. The analysis of the solution to
(1.2), subject to various boundary conditions, is presented in Section 4. A summary
of the difference in the solutions of (1.1) and (1.2) is given in the Conclusions. Proofs
of a number of the results used in Sections 3 and 4 are given in the appendix.

2. Preliminaries

Let u a function defined on (a, b) and σ > 0. We define the Left Fractional
Integral Operator as

aD
−σ
x u(x) :=

1

Γ(σ)

∫ x

a

(x− s)σ−1u(s) ds,

and the Right Fractional Integral Operator as

xD
−σ
b u(x) :=

1

Γ(σ)

∫ b

x

(s− x)σ−1u(s) ds .

For µ > 0, n is the smallest integer greater than µ (i.e. n− 1 ≤ µ < n), σ = n− µ,
and D the derivative operator, we define the Left Riemann-Liouville Fractional
Differential Operator of order µ as

RL
a Dµ

xu(x) := Dn
aD
−σ
x u(x) =

1

Γ(σ)

dn

dxn

∫ x

a

(x− s)σ−1u(s) ds

and the Right Riemann-Liouville Fractional Differential Operator of order µ as

RL
x Dµ

b u(x) := (−D)nxD
−σ
b u(x) =

(−1)n

Γ(σ)

dn

dxn

∫ b

x

(s− x)σ−1u(s) ds .

Note that the Riemann-Liouville and Caputo fractional differential operators differ
in the location of the derivative operator.
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The Left Caputo Fractional Differential Operator of order µ is

C
aD

µ
xu(x) := aD

−σ
x Dnu(x) =

1

Γ(σ)

∫ x

a

(x− s)σ−1 d
n

dsn
u(s) ds .

The Right Caputo Fractional Differential Operator of order µ is

C
xD

µ
b u(x) := (−1)nxD

−σ
b Dnu(x) =

(−1)n

Γ(σ)

∫ b

x

(s− x)σ−1
dn

dsn
u(s) ds .

As our interest is in the solution of fractional diffusion equations on a bounded,
connected subinterval of R, without loss of generality we restrict our attention to
the unit interval I := (0, 1).

For ease of notation, we use D−σ := 0D
−σ
x and D−σ∗ := xD

−σ
1 . Let

Isru(x) := rD−su(x) + (1− r)D−s∗u(x) . (2.1)

Then

RLCDαr u(x) = −DI2−αr Du(x), RLDαr u(x) = −D2I2−αr u(x).

For the RLC fractional diffusion equation, the flux is RLCFu(x) = −I2−αr Du(x),
and for the RL fractional diffusion equation, the flux is RLFu(x) = −DI2−αr u(x).

Jacobi polynomials play an important role in the analysis. We briefly review
their definition and some of their properties [1, 21]. Jacobi Polynomials are defined
as

P (α,β)
n (x) :=

n∑
m=0

pn,m(x− 1)(n−m)(x+ 1)m,

for −1 < x < 1, where

pn,m :=
1

2n

(
n+ α

m

)(
n+ β

n−m

)
. (2.2)

Orthogonality property:∫ 1

−1
(1− x)α(1 + x)βP

(α,β)
j (x)P

(α,β)
k (x) dx =

{
0, k 6= j

|‖P (α,β)
j |‖2, k = j

where

|‖P (α,β)
j |‖ =

( 2(α+β+1)

(2j + α+ β + 1)

Γ(j + α+ 1)Γ(j + β + 1)

Γ(j + 1)Γ(j + α+ β + 1)

)1/2
. (2.3)

To transform the domain of the family of Jacobi polynomials to [0, 1], let x →
2t− 1 and introduce G

(α,β)
n (t) = P

(α,β)
n (x(t)). From (2.3), we have∫ 1

−1
(1− x)α(1 + x)βP

(α,β)
j (x)P

(α,β)
k (x) dx

=

∫ 1

t=0

2α(1− t)α2βtβP
(α,β)
j (2t− 1)P

(α,β)
k (2t− 1)2 dt

= 2α+β+1

∫ 1

t=0

(1− t)αtβG(α,β)
j (t)G

(α,β)
k (t) dt

=

{
0, k 6= j,

2α+β+1|‖G(α,β)
j |‖2, k = j .

(2.4)

where

|‖G(α,β)
j |‖ =

( 1

(2j + α+ β + 1)

Γ(j + α+ 1)Γ(j + β + 1)

Γ(j + 1)Γ(j + α+ β + 1)

)1/2
.
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Note that
|‖G(α,β)

j |‖ = |‖G(β,α)
j |‖, (2.5)

and that from [1, 21],

G
(α,β)
j (0) = (−1)j

Γ(j + β + 1)

Γ(j + 1)Γ(β + 1)
. (2.6)

From [15, equation (2.19)] we have

dk

dxk
P (α,β)
n (x) =

Γ(n+ k + α+ β + 1)

2kΓ(n+ α+ β + 1)
P

(α+k,β+k)
n−k (x). (2.7)

Hence,
dk

dtk
G(α,β)
n (t) =

Γ(n+ k + α+ β + 1)

Γ(n+ α+ β + 1)
G

(α+k,β+k)
n−k (t). (2.8)

Also, from [15, equation (2.15)],

dk

dxk
{

(1− x)α+k(1 + x)β+kP
(α+k,β+k)
n−k (x)

}
=

(−1)k2kn!

(n− k)!
(1− x)α(1 + x)βP (α,β)

n (x), n ≥ k ≥ 0,

(2.9)

from which it follows that

dk

dtk
{

(1− t)α+ktβ+kG(α+k,β+k)
n−k (t)

}
=

(−1)kn!

(n− k)!
(1− t)αtβG(α,β)

n (t). (2.10)

For compactness of notation we introduce

ρ(α,β) = ρ(α,β)(x) := (1− x)αxβ . (2.11)

We use yn ∼ np to denote that there exists constants c and C > 0 such that, as
n→∞, cnp ≤ |yn| ≤ Cnp. Also, from Stirling’s formula we have

lim
n→∞

Γ(n+ σ)

Γ(n)nσ
= 1, for σ ∈ R. (2.12)

Function spaces L2
ω(I) and H l

ρ(a,b),A
(I). The weighted L2(I) spaces are appropri-

ate for studying the existence and regularity of solutions. For ω(x) > 0, x ∈ (0, 1),
let

L2
ω(0, 1) :=

{
f(x) :

∫ 1

0

ω(x)f(x)2 dx < ∞
}
.

Associated with L2
ω(0, 1) is the inner product, and norm

〈f, g〉ω :=

∫ 1

0

ω(x)f(x)g(x) dx, ‖f‖ω :=
(
〈f, f〉ω

)1/2
.

Following [11], we introduce the weighted Sobolev spaces

H l
ρ(a,b),A(I) :=

{
v|v is measurable and ‖v‖l,ρ(a,b),A <∞

}
, l ∈ N, (2.13)

with associated norm and semi-norm

‖v‖l,ρ(a,b),A :=
( l∑
j=0

‖Djv‖2ρ(a+j,b+j)
)1/2

, |v|l,ρ(a,b),A := ‖Dlv‖ρ(a+l,b+l) .

Throughout this article we assume that α, β, and r satisfy a fixed relationship.
Additionally a constant defined by α and β occurs sufficiently often that we denote
it by c∗∗. We refer to these relationships as follows
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Condition (A1). The parameters α, β, and r and constant c∗∗ satisfy: 1 < α < 2,
α− 1 ≤ β, α− β ≤ 1, 0 ≤ r ≤ 1

c∗∗ =
sin(πα)

sin(π(α− β)) + sin(πβ)
, (2.14)

where β is determined by

r =
sin(πβ)

sin(π(α− β)) + sin(πβ)
. (2.15)

The following three lemmas are useful in determining the solutions of (1.1) and
(1.2).

Lemma 2.1. Under Condition (A1),

ker(DI2−αr ) = span{ρ(α−β−1,β−1)(x)}. (2.16)

Additionally,

DI2−αr (xρ(α−β−1,β−1)(x)) = −c∗∗Γ(α) = µ−1G
(δ,γ)
0 (x), (2.17)

DI2−αr ((1− x)ρ(α−β−1,β−1)(x)) = −µ−1G(δ,γ)
0 (x), (2.18)

where µ−1 := −c∗∗Γ(α).

Proof. The proof of (2.16) is given in [8]. Properties (2.17) and (2.18) follow from

Lemma 5.1 (in the appendix), and that G
(δ,γ)
0 (x) = 1. �

Lemma 2.2. Under Condition (A1), for n = 0, 1, 2, . . .

I2−αr (1− x)α−β−1xβ−1G(α−β−1,β−1)
n (x) = σnG

(β−1,α−β−1)
n (x), (2.19)

where

σn := −c∗∗Γ(n+ α− 1)/Γ(n+ 1) . (2.20)

The proof of this lemma is given in the appendix.

Lemma 2.3. [16] Under Condition (A1), for n = 0, 1, 2, . . .

DI2−αr (1− x)α−βxβG(α−β,β)
n (x) = µnG

(β−1,α−β−1)
n+1 (x), (2.21)

where

µn = c∗∗
Γ(n+ α)

Γ(n+ 1)
. (2.22)

3. Existence and regularity of the RLC fractional diffusion model

In this section we investigate the existence and regularity of the solution of the
steady state RLC fractional diffusion model subject to various boundary conditions.
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3.1. Dirichlet boundary conditions. From [8] we have

ker(RLCDαr ) = span
{

1,

∫ x

0

(1− s)α−β−1sβ−1 ds
}

= span{k0(x), k1(x)} (3.1)

where

k0(x) :=

∫ 1

x

(1− s)α−β−1sβ−1 ds, k1(x) :=

∫ x

0

(1− s)α−β−1sβ−1 ds .

The singular endpoint behavior of the kernel at both endpoints, i.e., (1 − x)α−β

and xβ , is more apparent using the basis k0(x) and k1(x).
With C1 and C2 appropriately chosen, the change of variable ũ(x) = u(x) +

C1k0(x) + C2k1(x) transform the problem

RLCDαr ũ(x) = f(x), 0 < x < 1, subject to ũ(0) = A, ũ(1) = B, (3.2)

to the problem

RLCDαr u(x) = f(x), 0 < x < 1, subject to u(0) = 0, u(1) = 0. (3.3)

Note that f(x) ∈ L2
ρ(β,α−β)(I) may be expressed as

f(x) =

∞∑
i=0

fi

|‖G(β,α−β)
i |‖2

G
(β,α−β)
i (x),

where

fi :=

∫ 1

0

ρ(β,α−β)(x)f(x)G
(β,α−β)
i (x) dx. (3.4)

Let

fN (x) =

N∑
i=0

fi

|‖G(β,α−β)
i |‖2

G
(β,α−β)
i (x),

uN (x) = ρ(α−β,β)(x)

N∑
i=0

ciG
(α−β,β)
i (x),

(3.5)

where

λi = −c∗∗
Γ(i+ 1 + α)

Γ(i+ 1)
, ci =

1

λi|‖G(β,α−β)
i |‖2

fi. (3.6)

Theorem 3.1 ([8]). Let f(x) ∈ L2
ρ(β,α−β)(I) and uN (x) be as defined in (3.5). Then

u(x) := lim
N→∞

uN (x) = ρ(α−β,β)(x)

∞∑
j=0

cjG
(α−β,β)
j (x) ∈ L2

ρ(−(α−β),−β)(I).

In addition, u(x) satisfies (3.3).

The regularity of Du is given by the following corollary.

Corollary 3.2. For f(x) ∈ L2
ρ(β,α−β)(I) and u(x) satisfying (3.3) we have that

Du ∈ L2
ρ(−(α−β)+1,−β+1)(I).

Proof. Consider

‖DuM −DuN‖2ρ(−(α−β)+1,−β+1)

=
(
ρ(α−β−1,β−1)(x)

M+1∑
i=N+2

ci−1iG
(α−β−1,β−1)
i (x),

M+1∑
i=N+2

ci−1iG
(α−β−1,β−1)
i (x)

)
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=

M+1∑
i=N+2

c2i−1i
2|‖G(α−β−1,β−1)

i (x)|‖2.

From (5.9),

1

2
|‖G(β−1,α−β−1)

i (x)|‖2 ≤ |‖G(α−β,β)
i−1 (x)|‖2,

thus

‖DuM −DuN‖2ρ(−(α−β−1),−(β−1))

≤ 2

M+1∑
i=N+2

i2
f2i−1

λ2i−1|‖G
(β,α−β)
i−1 (x)|‖4

|‖G(β,α−β)
i−1 (x)|‖2

= 2

M∑
i=N+1

(i+ 1)2

λ2i

f2i

|‖G(β,α−β)
i (x)|‖2

= 2
(
ρ(β,α−β)(x)

M∑
i=N+1

(i+ 1)2

λ2i

fi

|‖G(β,α−β)
i (x)|‖2

G
(β,α−β)
i (x),

M∑
i=N+1

fi

|‖G(β,α−β)
i (x)|‖2

G
(β,α−β)
i (x)

)
.

Using Stirling’s formula (2.12), (i+1)2

λ2
i

is bounded as i→∞. Hence

‖DuM −DuN‖2ρ(−(α−β)+1,−β+1)

≤ C
(
ρ(β,α−β)(x)

M∑
i=N+1

fi

|‖G(β,α−β)
i (x)|‖2

G
(β,α−β)
i (x),

M∑
i=N+1

fi

|‖G(β,α−β)
i (x)|‖2

G
(β,α−β)
i (x)

)
= C‖fM (x)− fN (x)‖2ρ(β,α−β)) .

(3.7)

As f ∈ L2(I)ρ(β,α−β) , then {fn} is a Cauchy sequence in L2
ρ(β,α−β)(I). Thus we can

conclude that Du ∈ L2
ρ(−(α−β)+1,−β+1)(I). �

3.2. Regularity of u(x). Next we investigate if f(x) is “nicer”, i.e., a more regular
function, does that increased regularity transfer over to the solution u(x). The
following lemma is useful in helping to provide an answer to that question.

Lemma 3.3. For j ∈ N, if Dj−1f ∈ L2
ρ(β+j−1,α−β+j−1)(I), then Dj 1

ρ(α−β,β)(x)
u(x) ∈

L2
ρ(α−β+j,β+j)(I).
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Proof. From (2.8), and (3.5),

Dj
( 1

ρ(α−β,β)(x)
uN (x)

)
= Dj

N∑
i=0

ciG
(α−β,β)
i (x)

=

N−j∑
i=0

ci+j
Γ(i+ 2j + α+ 1)

Γ(i+ j + α+ 1)
G

(α−β+j,β+j)
i (x),

Dj−1fN (x) =

N−j∑
i=−1

fi+j

|‖G(β,α−β)
i+j |‖2

Γ(i+ 2j + α)

Γ(i+ j + α+ 1)
G

(β+j−1,α−β+j−1)
i+1 (x).

(3.8)

Then, for M > N ,

‖Dj
( 1

ρ(α−β,β)(x)
(uM − uN )

)
‖2ρ(α−β+j,β+j)

=

M−j∑
i=N−j+1

c2i+j

(Γ(i+ 2j + α+ 1)

Γ(i+ j + α+ 1)

)2
|‖G(α−β+j,β+j)

i |‖2

=

M−j∑
i=N−j+1

f2i+j

λ2i+j |‖G
(β,α−β)
i+j |‖4

(Γ(i+ 2j + α+ 1)

Γ(i+ j + α+ 1)

)2
|‖G(α−β+j,β+j)

i |‖2

≤ C
M−j∑

i=N−j+1

f2i+j

|‖G(β,α−β)
i+j |‖4

( Γ(i+ 2j + α)

Γ(i+ j + α+ 1)

)2
|‖G(β+j−1,α−β+j−1)

i+1 |‖2

= C‖Dj−1fM −Dj−1fN‖2ρ(β+j−1,α−β+j−1)

(3.9)

where we have used (3.6), (5.11), and (3.8) . AssumingDj−1f ∈ L2
ρ(β+j−1,α−β+j−1)(I),

then {Dj−1fn} is a Cauchy sequence in L2
ρ(β+j−1,α−β+j−1)(I). Thus we conclude that

Dj 1
ρ(α−β,β)(x)

u(x) ∈ L2
ρ(α−β+j,β+j)(I). �

Combining Lemma 3.3 with the definition of H l
ρ(a,b),A

(I), (2.13), we have the

following theorem.

Theorem 3.4. For j ∈ N, if f(x) ∈ Hj−1
ρ(β,α−β),A

(I), then

1

ρ(α−β,β)(x)
u(x) ∈ Hj

ρ(α−β,β),A
(I).

In the theory of linear differential equations a shift theorem typically establishes
that if the regularity of the right hand side is improved by one order then the
regularity of the solution also increases by one order.

As ρ(α−β,β)(x) ∈ C∞(a, b), for 0 < a < b < 1, then û(x) := 1
ρ(α−β,β)(x)

u(x) will

have the same regularity as u(x) on (a, b). Theorem 3.4 shows that away from the
endpoints if the regularity of f is improved by one order than the regularity of the
solution also improves by one order.

It is worth to note that, even though RLCDαr is a nonlocal operator, Theorem
3.4 shows that f may be singular at the endpoints without affecting the regularity
of the solution away from the endpoints.
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Summary of solution to (3.2). For 0 ≤ r ≤ 1 and f ∈ Hj−1
ρ(β,α−β),A

(I) the RLC

fractional diffusion equation is well posed for all Dirichlet boundary conditions.
The solution ũ(x) is decomposable into three pieces. Two pieces are explicitly
determined by the values of the boundary conditions, whereas the third piece u(x)

is determined by f(x) and satisfies 1
ρ(α−β,β)(x)

u(x) ∈ Hj
ρ(α−β,β),A

(I).

3.3. Dirichlet and Neumann boundary conditions. Of interest in this section
is the solution ũ(x) of

RLCDαr ũ(x) = f(x), 0 < x < 1,

subject to RLCF ũ(0) = A, ũ(1) = B.
(3.10)

For 0 ≤ r < 1, we consider ũ(x) = u(x) + C1k0(x) + B, with u(x) given by
Theorem 3.1, and k0(x) by (3.1). Then RLCDαr ũ(x) = f(x), 0 < x < 1, and
ũ(1) = B.

Noting that, as u(0) = u(1) = 0, RLCFu(x) = RLFu(x), and using (2.21) and
(2.19) we obtain

RLCF ũ(x) = −
∞∑
i=0

µiciG
(β−1,α−β−1)
i+1 (x) + C1σ0. (3.11)

Therefore, RLCF ũ((0) = A implies

C1 =
1

σ0

(
A+

∞∑
i=0

µiciG
(β−1,α−β−1)
i+1 (0)

)
, (3.12)

where convergence of the series is established in Lemma 5.5 for 0 ≤ r < 1.
For r = 1 (for which β = α−1), and for f ∈ L2

ρ(α−1,1)(I) we have that a necessary

and sufficient condition for ũ(x) satisfying RLCDαr ũ(x) = f(x), x ∈ I, ũ(1) = B to
satisfy RLCF ũ(0) = A is that the series in (3.12), with β = α − 1, converges.
However, we consider

f(x) =

∞∑
i=2

fi

|‖G(α−1,1)
i |‖2

G
(α−1,1)
i (x), where fi = (−1)i

1

log(i)
.

Using (2.4),

|‖G(α−1,1)
i |‖2 =

1

2i+ α+ 1

Γ(i+ α)Γ(i+ 2)

Γ(i+ 1)Γ(i+ α+ 1)
=

1

2i+ α+ 1

i+ 1

i+ α
∼ 1

2i
.

Note that

‖f‖2L2

ρ(α−1,1)
=

∞∑
i=2

f2i

|‖G(α−1,1)
i |‖2

∼ 2

∫ ∞
2

x
1

x2(log(x))2
dx

= 2(−1) (log(x))
−1 |∞x=2 =

2

log(2)
<∞.

However, corresponding to the series in (3.12) we have

∞∑
i=0

µiciG
(β−1,α−β−1)
i+1 (0) =

∞∑
i=2

(−1)ifi

(i+ α)|‖G(α−1,1)
i |‖2

∼
∫ ∞
2

1

x log(x)
dx = log(log(x))|∞x=2 →∞.
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Hence we conclude that for r = 1 and arbitrary f ∈ L2
ρ(β,α−β)(I) = L2

ρ(α−1,1)(I)

the problem (3.10) is not well posed.

Summary of solution to (3.10). For 0 ≤ r < 1 and f ∈ Hj−1
ρ(β,α−β),A

(I) the RLC

fractional diffusion equation is well posed for mixed Dirichlet and Neumann bound-
ary conditions. The solution ũ(x) is decomposable into three pieces. Two pieces are
explicitly determined by the values of the boundary conditions, whereas the third
piece u(x) is determined by f(x) and satisfies 1

ρ(α−β,β)(x)
u(x) ∈ Hj

ρ(α−β,β),A
(I). For

f ∈ Hj−1
ρ(α−1,1),A

(I) and r = 1 problem (3.10) is not well posed.

3.4. Neumann boundary conditions. Of interest in this section is the solution
ũ(x) of

RLCDαr ũ(x) = f(x), 0 < x < 1,

subject to RLCF ũ(0) = A, RLCF ũ(1) = B.
(3.13)

Integrating the differential equation we have∫ 1

0
RLCDαr ũ(s) ds = RLCF ũ(1)− RLCF ũ(0) = B −A =

∫ 1

0

f(s) ds, (3.14)

which gives the usual compatibility condition between the flux and the right hand
side function for a diffusion problem subject to Neumann boundary conditions.

For 0 < r < 1, assuming the compatibility condition is satisfied, from Section
3.3 we have that, for C1 given by (3.12), solutions to (3.13) are given by

ũ(x) = u(x) + C1k0(x) + C3,

for any C3 ∈ R.
From (3.11),

RLCF ũ(1)− RLCF ũ(0) = B −A

= −
∞∑
i=0

µici

(
G

(β−1,α−β−1)
i+1 (1)−G(β−1,α−β−1)

i+1 (0)
)

= −
∞∑
i=0

µi
λi

fi

|‖G(β,α−β)
i |‖2

∫ 1

0

d

ds
G

(β−1,α−β−1)
i+1 (s) ds

=

∫ 1

0

∞∑
i=0

µi
λi

fi

|‖G(β,α−β)
i |‖2

Γ(i+ 1 + α)

Γ(i+ α)
G

(β,α−β)
i (s) ds

=

∫ 1

0

f(s) ds,

confirming the compatibility condition.
For r = 0 and r = 1, analogous to the discussion for the mixed boundary

condition problem discussed in Section 3.3, for r = 0: (for which β = 1) for
f ∈ L2

ρ(1,α−1)(I) the problem (3.13) is not well posed.

For r = 1 (for which β = α − 1) for f ∈ L2
ρ(α−1,1)(I), problem (3.13) is not well

posed.
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Summary of solution to (3.13). For 0 < r < 1 and f ∈ Hj−1
ρ(β,α−β),A

(I) the

RLC fractional diffusion equation is well posed for Neumann boundary conditions,
subject to the boundary conditions satisfying the usual compatibility condition
(3.14). The solution is only determined up to an additive solution. Additionally,
the solution ũ(x) is decomposable into three pieces, an undetermined constant, a
piece explicitly determined by the values of the boundary conditions, and a third
piece u(x) determined by f(x) satisfying 1

ρ(α−β,β)(x)
u(x) ∈ Hj

ρ(α−β,β),A
(I). For r = 0

and f ∈ L2
ρ(1,α−1)(I), or r = 1 and f ∈ L2

ρ(α−1,1)(I) the problem (3.13) is not well

posed.

4. Existence and regularity of the RL fractional diffusion model

In this section we investigate the existence and regularity of the steady state RL
fractional diffusion model subject to various boundary conditions. From Lemma
2.1 we have

ker(RLDαr ) = span
{

(1− x)α−β−1xβ−1, (1− x)α−β−1xβ
}

= span{(1− x)α−β−1xβ , (1− x)α−βxβ−1}
(4.1)

The singular endpoint behavior of the kernel at both endpoints is more apparent
in representation (4.1). From [8] we have, as ρ(α−β,β)(0) = ρ(α−β,β)(1) = 0,

RLDαr ρ(α−β,β)(x)G(α−β,β)
n (x) = RLCDαr ρ(α−β,β)(x)G(α−β,β)

n (x) = λnG
(β,α−β)
n (x).

For RLDαr · we have the following result.

Theorem 4.1. Under Condition (A1), for n = 0, 1, 2, . . . ,

RLDαr ρ(α−β−1,β−1)(x)G(α−β−1,β−1)
n (x) = κnG

(β+1,α−β+1)
n−2 (x), (4.2)

where

κn = c∗∗
Γ(n+ α+ 1)

Γ(n+ 1)
G

(·,·)
j (x) = 0, for j < 0.

Proof. From (2.8) we have

d2

dx2
G(β−1,α−β−1)
n (x) =

Γ(n+ α+ 1)

Γ(n+ α− 1)
G

(β+1,α−β+1)
n−2 (x). (4.3)

Combining (4.3) and Lemma 5.2 we obtain (4.2). �

Note that for n = 0 and 1, ρ(α−β−1,β−1)(x)G
(α−β−1,β−1)
n (x) ∈ ker(RLDαr ).

For f(x) ∈ L2
ρ(β,α−β)(I), u(x) ∈ L2

ρ(−(α−β),−β)(I) satisfying RLDαr u(x) = f(x) can

be expressed as given in Theorem 3.1. Using Theorem 4.1, in a similar fashion
as was done in [8], f(x) ∈ L2

ρ(β+1,α−β+1)(I), w(x) ∈ L2
ρ(−(α−β−1),−(β−1))(I) satisfying

RLDαr w(x) = f(x) can be expressed as

w(x) = ρ(α−β−1,β−1)(x)

∞∑
i=2

wiG
(α−β−1,β−1)
i (x), (4.4)

where

wi =
1

κi

1

|‖G(β+1,α−β+1)
i |‖2

∫ 1

0

ρ(β+1,α−β+1)(s)G
(β+1,α−β+1)
i (s)f(s) ds.

Note that L2
ρ(β,α−β)(I) ⊂ L2

ρ(β+1,α−β+1)(I).
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To contrast the solutions of the RLC and RC diffusion equations, in this section
we will assume that f(x) ∈ L2

ρ(β,α−β)(I).

4.1. Dirichlet boundary conditions. For f(x) ∈ L2
ρ(β,α−β)(I), we consider the

RL diffusion equation with Dirichlet boundary conditions

RLDαr ũ(x) = f(x) 0 < x < 1, subject to ũ(0) = A, ũ(1) = B. (4.5)

Using (4.1) and Theorem 3.1 the general solution of (4.5) can be expressed as

ũ(x) = C1(1− x)α−β−1xβ + C2(1− x)α−βxβ−1 + ρ(α−β,β)(x)

∞∑
j=0

cjG
(α−β,β)
j (x).

Now, we have

ũ(0) = A =⇒ A = C2 lim
x→0

xβ−1,

ũ(1) = B =⇒ B = C1 lim
x→1

(1− x)α−β−1.
(4.6)

For A,B ∈ R, in order that (4.6) defines a finite value for C1 and C2 we must have
A = B = 0 =⇒ C1 = C2 = 0. Recall that in the case of homogeneous Dirichlet
boundary conditions problems (1.1) and (1.2) coincide.

In place of (4.5), if we consider the problem

RLDαr ũ(x) = f(x) 0 < x < 1,

subject to lim
x→0

ũ(x) = Axβ−1, lim
x→1

ũ(x) = B(1− x)α−β−1,
(4.7)

then the solution is well defined, satisfying

ũ(x) = A(1−x)α−βxβ−1+B(1−x)α−β−1xβ+ρ(α−β,β)(x)

∞∑
i=0

ciG
(α−β,β)
i (x). (4.8)

Summary of solution to (4.5). For 0 ≤ r ≤ 1 and f ∈ Hj−1
ρ(β,α−β),A

(I) in order for

the the RL fractional diffusion equation to be well posed the solution must have a
specific, prescribed singular behavior at the endpoints of the interval. In that case,
the solution ũ(x) is decomposable into three pieces, two singular pieces that are
determined by the boundary conditions and a regular piece determined by f(x).
This regular piece is the same as discussed in Theorem 3.4.

4.2. Dirichlet and Neumann boundary condition. In this section we consider
the problem

RLDαr ũ(x) = f(x), 0 < x < 1,

subject to RLF ũ(0) = A, lim
x→1

ũ(x) = B(1− x)α−β−1.
(4.9)

For 0 ≤ r < 1, it is convenient to express the solution as

ũ(x) = C1(1− x)α−β−1xβ + C3(1− x)α−β−1xβ−1

+ ρ(α−β,β)(x)

∞∑
i=0

ciG
(α−β,β)
i (x).

(4.10)

Using Lemmas 2.1 and 2.3, we have

RLF ũ(x) = −C1µ−1 + 0−
∞∑
i=0

µiciG
(β−1,α−β−1)
i (x).
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Therefore RLF ũ(0) = A implies

C1 = − 1

µ−1

(
A+

∞∑
i=0

µiciG
(β−1,α−β−1)
i (0)

)
, (4.11)

where convergence of the series is established in Lemma 5.5 for 0 ≤ r < 1.
The boundary condition at x = 1 implies

(C1 + C3) lim
x→1

(1− x)α−β−1 = B lim
x→1

(1− x)α−β−1,

which gives C3 = B − C1. The solution is then given by

ũ(x) = C1(1− x)α−β−1xβ + (B − C1)(1− x)α−β−1xβ−1

+ ρ(α−β,β)(x)

∞∑
i=0

ciG
(α−β,β)
i (x),

with C1 given by (4.11).
For r = 1 (for which β = α−1), analogous to the discussion in Section 3.3, (4.9)

is not well posed for r = 1 and arbitrary f ∈ L2
ρ(α−1,1)(I).

Summary of solution to (4.9). For 0 ≤ r < 1, f ∈ Hj−1
ρ(β,α−β),A

(I), a flux bound-

ary condition imposed at x = 0, and a prescribed boundary condition behavior of
the form (1 − x)α−β−1 at x = 1, the RL fractional diffusion equation (4.9) is well
posed. For the case r = 1, and arbitrary f ∈ L2

ρ(α−1,1)(I), (4.9) is not well posed.

4.3. Neumann Boundary Conditions. Of interest in this section is the solution
ũ(x) of

RLDαr ũ(x) = f(x), 0 < x < 1,

subject to RLCF ũ(0) = A, RLCF ũ(1) = B.
(4.12)

Again we have the usual compatibility condition between the flux and the right
hand side function∫ 1

0
RLDαr ũ(s) ds = RLF ũ(1)− RLF ũ(0) = B −A =

∫ 1

0

f(s) ds, (4.13)

which we assume is satisfied.
For 0 < r < 1, from Section 4.2 we have that the solution to (4.12) is given by

(4.10), with C1 determined by (4.11) and C3 ∈ R an arbitrary constant.
For r = 0 and r = 1, analogous to the discussion for the RLCDαr operator in

discussed in Section 3.4, for r = 0 (for which β = 1) for f ∈ L2
ρ(1,α−1)(I) the problem

(4.12) is not well posed. For r = 1: (for which β = α − 1) For f ∈ L2
ρ(α−1,1)(I) the

problem (4.12) is not well posed.

Summary of solution to (4.12). For 0 < r < 1 and f ∈ Hj−1
ρ(β,α−β),A

(I) the

RL fractional diffusion equation is well posed for Neumann boundary conditions,
subject to the boundary conditions satisfying the usual compatibility condition
(4.13). The solution is only determined up to an additive solution. Additionally,
the solution ũ(x) is decomposable into three pieces, an undetermined constant, a
piece explicitly determined by the values of the boundary conditions, and a third
piece u(x) determined by f(x) satisfying 1

ρ(α−β,β)(x)
u(x) ∈ Hj

ρ(α−β,β),A
(I). For r = 0

and f ∈ L2
ρ(1,α−1)(I), or r = 1 and f ∈ L2

ρ(α−1,1)(I) the problem (4.12) is not well

posed.



EJDE-2019/93 FRACTIONAL ORDER DIFFUSION EQUATIONS 15

Conclusions

In this article we have investigated the well posedness and regularity of the
solution to fractional diffusion equations (1.1) and (1.2). In the case of homogeneous
Dirichlet boundary conditions or Neumann boundary conditions the solutions to
(1.1) and (1.2) agree. However, for nonhomogeneous Dirichlet boundary conditions
that is not the case. Specifically, for nonhomogeneous Dirichlet boundary conditions
the solution to (1.1) is bounded on (0, 1), whereas for the problem (1.2) to be well
posed specific singular behavior at the endpoints must be specified. Regarding
the regularity of the solution, we have shown that the solution, away from the
endpoints, satisfies a shift theorem with respect to the regularity of the right hand
side function.

5. Appendix: Ancillary properties and proofs

In this section we presents some ancillary results used in establishing the exis-
tence and regularity properties given above.

Lemma 5.1. Under Condition (A1), for n = 0, 1, 2, . . . ,

I2−αr (1− x)α−β−1xβ−1xn =

n∑
k=0

an,kx
k, (5.1)

where

an,k = (−1)n+1c∗∗Γ(α− β)
(−1)kΓ(α− 1 + k)

Γ(α− β − n+ k)Γ(n+ 1− k)Γ(k + 1)
.

Proof. With u(x) = (1− x)α−β−1xβ−1xn, using Maple we obtain that

D−(2−α)u(x)

=
Γ(β + n)

Γ(2− α+ β + n)
xn+1−α+β

2F1(n+ β, β − α+ 1; 2− α+ β + n, x),

and

D−(2−α)∗u(x)

=
Γ(α− β − n− 1)

Γ(1− β − n)
xn+1−α+β

2F1(n+ β, β − α+ 1; 2− α+ β + n, x)

+ (−1)n+1Γ(α− β)

n∑
k=0

(−1)k csc(π(α− β) + kπ) sin(πα+ kπ)Γ(α− 1 + k)

Γ(α− β − n+ k)Γ(n+ 1− k)Γ(k + 1)
xk,

where 2F1(·, ·; ·, x) denotes the Gaussian three parameter hypergeometric function.
Using the identity

Γ(1− z) =
π

sin(πz)

1

Γ(z)
,

it follows that

Γ(1− β − n) =
(−1)nπ

sin(πβ)

1

Γ(β + n)
, (5.2)

Γ(2− α+ β + n) =
(−1)n+1π

sin(π(α− β))

1

Γ(α− β − n− 1)
. (5.3)



16 L. JIA, H. CHEN, V. J. ERVIN EJDE-2019/93

From the two equalities above we obtain

Γ(β + n)

Γ(2− α+ β + n)
= − sin(π(α− β))

sin(πβ)

Γ(α− β − n− 1)

Γ(1− β − n)
. (5.4)

Using (5.4), the coefficient of xn+1−α+β
2F1(·) in the linear combination (rD−(2−α)+

(1− r)D−(2−α)∗)u(x) is

r
Γ(β + n)

Γ(2− α+ β + n)
+ (1− r)Γ(α− β − n− 1)

Γ(1− β − n)

=
Γ(α− β − n− 1)

Γ(1− β − n)

(
− r sin(π(α− β))

sin(πβ)
+ 1− r

)
=

Γ(α− β − n− 1)

Γ(1− β − n)

(
− sin(πβ)

sin(π(α− β)) + sin(πβ)

sin(π(α− β))

sin(πβ)

+
sin(π(α− β))

sin(π(α− β)) + sin(πβ)

)
= 0.

Next, it is straightforward to show that

csc(π(α− β) + kπ) sin(πα+ kπ) =
sin(πα)

sin(π(α− β))
,

Then, as (1− r) sin(πα)/ sin(π(α− β)) = c∗∗, we obtain

I2−αr u(x) = (−1)n+1c∗∗Γ(α− β)

n∑
k=0

(−1)kΓ(α− 1 + k)

Γ(α− β − n+ k)Γ(n+ 1− k)Γ(k + 1)
xk.

�

Note that in an analogous manner as in Lemma 5.1, we have that

I2−α1−r (1− x)β−1xα−β−1xn =

n∑
k=0

bn,kx
k, (5.5)

where

bn,k = (−1)n+1c∗∗Γ(β)
(−1)kΓ(α− 1 + k)

Γ(β − n+ k)Γ(n+ 1− k)Γ(k + 1)
.

Lemma 5.2. Under Condition (A1), for n = 0, 1, 2, . . . ,

I2−αr ρ(α−β−1,β−1)(x)G(α−β−1,β−1)
n (x) = σnG

(β−1,α−β−1)
n (x), (5.6)

where σn is given by (2.20).

Proof. Using the orthogonality of
{
G

(α−β−1,β−1)
n (x)

}∞
n=0

with respect to the weight

function ρ(α−β−1,β−1)(x), we have that for any p(x) ∈ Pn−1(x),(
G(α−β−1,β−1)
n (x), p(x)

)
ρ(α−β−1,β−1)

= 0. (5.7)

Up to a constant, (5.7), defines the nth order polynomial G
(α−β−1,β−1)
n (x).

For p(x) ∈ Pn−1(x), from (5.5), there exist p̂(x) ∈ Pn−1(x) such that

I2−α1−r ρ
(β−1,α−β−1)(x)p(x) = p̂(x). (5.8)

Then (
I2−αr ρ(α−β−1,β−1)(x)G(α−β−1,β−1)

n (x), p(x)
)
ρ(β−1,α−β−1)
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=
(
I2−αr ρ(α−β−1,β−1)(x)G(α−β−1,β−1)

n (x), ρ(β−1,α−β−1)p(x)
)

=
(
ρ(α−β−1,β−1)(x)G(α−β−1,β−1)

n (x), I2−α1−r ρ
(β−1,α−β−1)p(x)

)
=
(
ρ(α−β−1,β−1)(x)G(α−β−1,β−1)

n (x), p̂(x)
)

(using (5.8))

= 0, (using (5.7)).

Hence I2−αr ρ(α−β−1,β−1)(x)G
(α−β−1,β−1)
n (x) = CG

(β−1,α−β−1)
n (x) for C ∈ R. As

the coefficients of xn in G
(α−β−1,β−1)
n (x) and G

(β−1,α−β−1)
n (x) are the same, then

from Lemma 5.1,

C = −c∗∗
Γ(n+ α− 1)

Γ(n+ 1)
= σn.

�

The bound obtained in the following lemma is used in establishing the regularity
of Du in Corollary 3.2 in Section 3.1.

Lemma 5.3. For j = 0, 1, 2, . . .

1

2
≤

|‖G(α−β,β)
j |‖2

|‖G(β−1,α−β−1)
j+1 |‖2

=
j + 1

j + α
≤ 1. (5.9)

Proof. From (2.4),

|‖G(α−β,β)
j |‖2

|‖G(β−1,α−β−1)
j+1 |‖2

=
1

2j + α+ 1

Γ(j + α− β + 1)Γ(j + β + 1)

Γ(j + 1)Γ(j + α+ 1)

2j + α+ 1

1

× Γ(j + 2)Γ(j + α+ 1)

Γ(j + β + 1)Γ(j + α− β + 1)

=
j + 1

j + α
≤ 1.

(5.10)

�

The following lemma is used in the proof of Lemma 3.3.

Lemma 5.4. For j ∈ N, there exists C > 0 such that

(i+ 2j + α)2

λ2i+j

|‖G(α−β+j,β+j)
i |‖2

|‖G(β+j−1,α−β+j−1)
i+1 |‖2

≤ C. (5.11)
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Proof. From (2.5) and (2.4),

|‖G(α−β+j,β+j)
i |‖2

|‖G(β+j−1,α−β+j−1)
i+1 |‖2

=
|‖G(α−β−j,β−j)

i |‖2

|‖G(α−β+j−1,β+j−1)
i+1 |‖2

=
1

(2i+ α+ 2j + 1)

Γ(i+ α− β + j + 1)Γ(i+ β + j + 1)

Γ(i+ 1)Γ(i+ α+ 2j + 1)

× (2i+ α+ 2j + 1)
Γ(i+ 2)Γ(i+ α+ 2j)

Γ(i+ α− β + j + 1)Γ(i+ β + j + 1)

=
(i+ 1)

(i+ α+ 2j)
.

(5.12)

Using Stirling’s formula,

1

|λi+j |
= C

Γ(i+ j + 1)

Γ(i+ j + α+ 1)
∼ (i+ j + 1)−α ∼ i−α. (5.13)

Combining (5.12) and (5.13) we obtain

(i+ 2j + α)2

λ2i+j

|‖G(α−β+j,β+j)
i |‖2

|‖G(β+j−1,α−β+j−1)
i+1 |‖2

∼ i−2α(i+ 2j + α)2
(i+ 1)

(i+ α+ 2j)

∼ i−2(α−1) → 0, as i→∞,

from which (5.11) follows. �

The following result is used in the discussion of a Neumann boundary condition
in Section 3.3.

Lemma 5.5. For f ∈ L2
ρ(β,α−β)(I) and µi and ci given by (2.22) and (3.6), respec-

tively,

∞∑
i=0

µiciG
(β−1,α−β−1)
i+1 (0) <∞. (5.14)

Proof. Note that for f ∈ L2
ρ(β,α−β)(I),

∞ > ‖f‖2L2

ρ(β,α−β)
=

∫ 1

0

ρ(β,α−β)(x)f(x)2 dx =

∞∑
i=0

f2i

|‖G(β,α−β)
i |‖2

. (5.15)

From (2.22) and (3.6) we have

µici = − Γ(i+ α)

Γ(i+ 1 + α)

fi

|‖G(β,α−β)
i |‖2

. (5.16)
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Combining (2.6), (5.15) and (5.16),∣∣ ∞∑
i=0

µiciG
(β−1,α−β−1)
i+1 (0)

∣∣
≤
∞∑
i=0

∣∣µiciG(β−1,α−β−1)
i+1 (0)

∣∣
=

∞∑
i=0

∣∣∣ −Γ(i+ α)

Γ(i+ 1 + α)

fi

|‖G(β,α−β)
i |‖2

(−1)i+1 Γ(i+ 1 + α− β)

Γ(i+ 2)Γ(α− β)

∣∣∣
≤
( ∞∑
i=0

f2i

|‖G(β,α−β)
i |‖2

)1/2
×
( ∞∑
i=0

( Γ(i+ α)

Γ(i+ 1 + α)

1

|‖G(β,α−β)
i |‖2

Γ(i+ 1 + α− β)

Γ(i+ 2)Γ(α− β)

)2)1/2
.

(5.17)

From (5.15), the first term on the right hand side of is bounded. Let us denote by
S the second term on the right hand side of (5.17). Using (2.4), we have

S2 =
1

(Γ(α− β))2

∞∑
i=0

1

(i+ α)2
(2i+ α+ 1)

Γ(i+ β + 1)

Γ(i+ 1)Γ(i+ α+ 1)

Γ(i+ α− β + 1)

×
(

Γ(i+ 1 + α− β)

Γ(i+ 2)

)2

.

Using Stirling’s formula (2.12),

Γ(i+ 1)

Γ(i+ β + 1)
∼ (i+ 1)−β ,

Γ(i+ α+ 1)

Γ(i+ α− β + 1)
∼ (i+ α− β + 1)β ,

Γ(i+ 1 + α− β)

Γ(i+ 2)
∼ (i+ 2)α−β−1.

Therefore,

S2 ∼ 1

(Γ(α− β))
2

∞∑
i=0

i−1+2(α−β−1) <∞, (as α− β − 1 < 0)

from which the stated result then follows. �
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