Ahmed Alsaedi, Bashir Ahmad, Mokhtar Kirane, Aberrazak Nabti
Abstract:
We consider the higher order diffusion Schrodinger equation with a time nonlocal
nonlinearity
posed in
, supplemented with an initial
data
, where
, and
is the Laplacian operator on the
-dimensional Heisenberg group
.
Then, we prove a blow up result for its solutions. Furthermore, we give an upper
bound estimate of the life span of blow up solutions.
Submitted June 8, 2019. Published January 7, 2020.
Math Subject Classifications: 35Q55, 35B44, 26A33, 35B30.
Key Words: Schrodinger equation; Heisenberg group; life span;
Riemann-Liouville fractional integrals and derivatives.
DOI: 10.58997/ejde.2020.02
Show me the PDF file (364 KB), TEX file for this article.
Ahmed Alsaedi Nonlinear Analysis and Applied Mathematics (NAAM) Research Group Faculty of Sciences King Abdulaziz University Jeddah 21589, Saudi Arabia email: aalsaedi@hotmail.com | |
Bashir Ahmad Nonlinear Analysis and Applied Mathematics (NAAM) Research Group Faculty of Sciences King Abdulaziz University Jeddah 21589, Saudi Arabia email: bashirahmad_qau@yahoo.com | |
Mokhtar Kirane LASIE, Faculté des Sciences et Technologies Université de La Rochelle Avenue M. Crepeau, 17000 La Rochelle, France email: mkirane@univ-lr.fr | |
Abderrazak Nabti Laboratoire de Mathématiques Informatiques et Systèmes (LAMIS) Université Larbi Tebessi 12002 Tebessa, Algeria email: abderrazaknabti@gmail.com |
Return to the EJDE web page