NONLINEAR DEGENERATE ELLIPTIC EQUATIONS IN WEIGHTED SOBOLEV SPACES

AHARROUCH BENALI, BENNOUNA JAOUAD

Abstract. We study the existence of solutions for the nonlinear degenerated elliptic problem

\[- \text{div} a(x, u, \nabla u) = f \quad \text{in } \Omega,
\]

\[u = 0 \quad \text{on } \partial \Omega,
\]

where \(\Omega \) is a bounded open set in \(\mathbb{R}^N \), \(N \geq 2 \), \(a \) is a Carathéodory function having degenerate coercivity

\[a(x, u, \nabla u) \nabla u \geq \nu(x) b(|u|) |\nabla u|^p, \quad 1 < p < N, \]

\(\nu(\cdot) \) is the weight function, \(b \) is continuous and \(f \in L^r(\Omega) \).

1. Introduction

In this article we prove the existence of solutions for some nonlinear elliptic equations with principal part having degenerate coercivity. The model case is

\[- \text{div} \left(\frac{\nu(\cdot) |\nabla u|^{p-2} \nabla u}{(1 - |u|)^\alpha} \right) = f \quad \text{in } \Omega,
\]

\[u = 0 \quad \text{on } \partial \Omega,
\]

with \(\Omega \) a bounded open subset of \(\mathbb{R}^N \), \(N \geq 2 \), \(p > 1 \), \(\alpha \geq 0 \), \(\nu(\cdot) \) is weight function defined on \(\Omega \) and \(f \) a measurable function on whose summability we will make different assumptions. It is clear from the above example that the differential operator is defined on \(W^{1,p}_0(\Omega, \nu) \), but that it may not be coercive on the same space as \(u \) near to 1. Because of this lack of coercivity, standard existence theorems for solutions of nonlinear elliptic equations cannot be applied. We consider the nonlinear degenerate elliptic problem

\[A(u) = - \text{div}(a(x, u, \nabla u)) = f \quad \text{in } \Omega,
\]

\[u = 0 \quad \text{on } \partial \Omega,
\]

where, \(\Omega \) is a bounded open subset of \(\mathbb{R}^N \), \(N \geq 2 \), \(1 < p < N \), and \(a : \Omega \times \mathbb{R} \times \mathbb{R}^N \rightarrow \mathbb{R}^N \) is a Carathéodory function, such that the following assumption holds

\[a(x, s, \xi) \cdot \xi \geq \nu(x) b(|s|) |\xi|^p,
\]

for almost every \(x \) in \(\Omega \), for every \((s, \xi) \in \mathbb{R} \times \mathbb{R}^N \), with

\[b(|s|) = 1/(1 - |s|)^\alpha,
\]

2010 Mathematics Subject Classification. 35J70, 46E30, 35J85.
Key words and phrases. Nonlinear degenerated elliptic operators; weighted Sobolev space; monotony and rearrangement methods.
©2020 Texas State University.
under various assumptions on f. As stated before, due to assumption (1.2), the operator A may not be coercive on $W_0^{1,p}(\Omega, \nu)$, when the solutions approach the critical values ±1. To overcome this difficulties, we will reason by approximation, cutting by means of truncatures the nonlinearity $a(x,s,\xi)$ in order to get coercive differential operator on $W_0^{1,p}(\Omega, \nu)$, and give a sense to the equation when the solutions near to ±1 and to manage the set $\{x \in \Omega : |u(x)| = 1\}$. For the case $\nu(\cdot)$ being a constant, the existence of solutions to problem (1.1) is proved in [11], when f a measurable function on whose summability have make different assumptions, the analogous problems was treated by many other authors. See, for example, [3, 4, 9, 10, 8] where problems such as

$$-\text{div} \left(\frac{1}{(1 \pm |u|)^{\alpha}} |\nabla u|^{p-2} \nabla u \right) = f,$$

are considered.

This article is organized as follows: In section 2, we recall some preliminaries on Weighted Sobolev spaces and properties of rearrangement. In section 3, we first prove the propositions that we will use to prove some a priori estimates of the solutions, then we prove the existence of weak and entropy solution with respect to the summability of f.

2. Preliminaries

Assumptions. Let $b : [0, l] \to (0, \infty)$, with $l > 0$, be a continuous function such that

$$\lim_{s \to l^-} b(s) = +\infty. \quad (2.1)$$

We define

$$A(s) = \int_0^s b(t)^{\frac{1}{p-1}} dt, \quad \text{for } s \in [0, l),$$

$$A(l^-) = \lim_{s \to l^-} \int_0^s b(t)^{\frac{1}{p-1}} dt = +\infty.$$

We study Dirichlet problems of the form

$$-\text{div} \, a(x,u,\nabla u) = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega, \quad (2.2)$$

where Ω is a bounded open set in \mathbb{R}^N, $N \geq 2$, $1 < p < N$, and $a : \Omega \times (-l,l) \times \mathbb{R}^N \to \mathbb{R}^N$, is a Carathéodory function and $\nu : \Omega \to \mathbb{R}_+$ satisfies the following assumptions:

$$a(x,s,\xi) : \xi \geq b(|s|)\nu(x)|\xi|^p,$$

$$\nu \in L^r(\Omega), \quad r \geq 1, \quad \nu^{-1} \in L^t(\Omega), \quad t \geq N, \quad 1 + \frac{1}{t} < p < N(1 + \frac{1}{l}). \quad (2.3)$$

for a.e. $x \in \Omega$, for all $s \in (-l,l)$ and all $\xi \in \mathbb{R}^N$;

$$|a(x,s,\xi)| \leq \nu(x)[h(x) + b(|s|)|\xi|^{p-1}], \quad (2.4)$$

for a.e. $x \in \Omega$, for all $s \in (-l,l)$, for all $\xi \in \mathbb{R}^N$, and $h \in L^p(\Omega, \nu)$;

$$(a(x,s,\xi) - a(x,s,\xi')) \cdot (\xi - \xi') > 0, \quad (2.5)$$

for a.e. $x \in \Omega$, for all $s \in (-l,l)$ and all $\xi \in \mathbb{R}^N$, $\xi \neq \xi'$. Moreover, f is a measurable function on whose summability we will make several assumptions.

For stating existence results in the next section, we need some classes of solutions.
Definition 2.1. We say that \(u \in W^{1,p}_0(\Omega, \nu) \) is a weak solution to problem (2.2) if
\[
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla \varphi \, dx = \int_{\Omega} f \varphi \, dx, \quad \forall \varphi \in W^{1,p}_0(\Omega, \nu).
\] (2.6)

Definition 2.2. A measurable function \(u \in W^{1,p}_0(\Omega, \nu) \) is an entropy solution to problem (2.2) if
\[
|u| \leq l \quad \text{a.e. in} \ \Omega \quad (2.7)
\]
and for all \(0 < k < l \),
\[
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_k(u - \varphi) \, dx \leq \int_{\Omega} T_k(u - \varphi) \, dx, \quad (2.8)
\]
for any \(\varphi \in W^{1,p}_0(\Omega, \nu) \cap L^\infty(\Omega) \) such that \(\|\varphi\|_{L^\infty(\Omega)} < l - k \).

Weighted Sobolev spaces. Let \(1 \leq p < N \), and \(\nu : \Omega \to \mathbb{R} \) be a weight function, i.e. a function which is measurable and positive almost everywhere in \(\Omega \). The weighted Lebesgue spaces \(L^p(\Omega, \nu) \) is defined as
\[
L^p(\Omega, \nu) = \left\{ u : \text{measurable, real-valued function}, \int_{\Omega} \nu(x)|u(x)|^p \, dx < \infty \right\}.
\]
which is a Banach space (uniformly convex and hence reflexive if \(p > 1 \)) equipped with the norm
\[
\|u\|_{L^p(\Omega, \nu)} = \left(\int_{\Omega} \nu(x)|u(x)|^p \, dx \right)^{1/p}.
\]
By \(W^{1,p}(\Omega, \nu) \) we denote the completion of the space \(C^1(\overline{\Omega}) \) with respect to the norm
\[
\|u\|_{W^{1,p}(\Omega, \nu)} = \|u\|_{L^p(\Omega, \nu)} + \|\nabla u\|_{L^p(\Omega, \nu)}.
\]
Moreover we denote by \(W^{1,p}_0(\Omega, \nu) \) the closure of \(C^1(\overline{\Omega}) \) in \(W^{1,p}(\Omega, \nu) \) which is normed by
\[
\|u\|_{W^{1,p}_0(\Omega, \nu)} = \|\nabla u\|_{L^p(\Omega, \nu)}.
\]
We denote by \(W^{-1,p'}(\Omega, 1/\nu) \) the dual space of \(W^{1,p}_0(\Omega, \nu) \); for more details see [16].

Rearrangement properties. We recall some definitions about decreasing rearrangement of functions. Let \(\Omega \) be a bounded open set of \(\mathbb{R}^N \) and \(u : \Omega \to \mathbb{R} \) a measurable function.

Definition 2.3. The distribution function of \(u \) is defined as
\[
\mu_u(t) = |\{ x \in \Omega : |u(x)| > t \}|, \quad t \geq 0.
\]
The function \(\mu_u \) is decreasing and right continuous.

Definition 2.4. The decreasing rearrangement of \(u \) is defined as
\[
u_*(s) := \sup\{ t \geq 0 : \mu_u(t) > s \}, \quad s \geq 0.
\]
The function \(\nu_* \) is the generalized inverse of \(\mu_u \). We recall that
\[
\int_{\Omega} |u|^p \, dx = p \int_0^{+\infty} t^{p-1} \mu_u(t) \, dt, \quad \text{for} \ p \geq 1. \quad (2.9)
\]
Then the \(L^p \)-norm, for \(1 \leq p < +\infty \), is invariant with respect to rearrangement, that is,
\[
\|u\|_{L^p(\Omega)} = \|u_*\|_{L^p[0,|\Omega|]}.
\]
Moreover, if \(u \in L^\infty(\Omega) \), by definition \(u_*(0) = \text{ess sup}_\Omega |u| \). For more details about rearrangements we refer the reader to [6, 13, 18]. We recall that a measurable function \(u \) satisfies
\[
\mu_u(t) = \frac{c}{t^{1/\tau}}, \quad \forall t > 0,
\]
for some constant \(c \). We observe that the above condition is equivalent to
\[
u_u(s) = \frac{c}{s^{1/\tau}}, \quad \forall s > 0,
\]
and we define
\[
\|u\|_{MP(\Omega)} = \sup_{s > 0} u_*(s)^{1/\tau}.
\]
We observe that the above condition is equivalent to
\[
L^p(\Omega) \subset MP(\Omega) \subset L^q(\Omega),
\]
for \(1 \leq q < p \). Now, we give a sense to the gradient of a function \(u \in L^1(\Omega) \) such that the truncates of \(u \) are Sobolev functions.

Lemma 2.5 ([7]). For each measurable function \(u : \Omega \to \mathbb{R} \) such that for every \(k > 0 \) the truncated function \(T_k(u) \) belong to \(W^{1,1}_{loc}(\Omega) \), there exists a unique measurable function \(v : \Omega \to \mathbb{R}^N \) such that
\[
\nabla T_k(u) = v\chi_{|u| < k} \quad \text{a.e. in } \Omega.
\]
Furthermore, \(u \in W^{1,1}_{loc}(\Omega) \) if and only if \(v \in L^1_{loc}(\Omega) \), and then \(v = \nabla u \) in the usual weak sense.

Now we recall some Sobolev-type inequalities which will be used later.

Lemma 2.6 ([16]). Let \(\nu \) be a nonnegative function on \(\Omega \) such that \(\nu \in L^r(\Omega) \), \(r \geq 1, \nu^{-1} \in L^t(\Omega), t \geq N \). And let \(p, p^* \) be two real number that satisfy \(t \geq N/p \), \(1 + \frac{1}{t} < p < N(1 + \frac{1}{t}) \), \(1/p^* = 1/p(1 + \frac{1}{t}) - \frac{1}{N} \). Then
\[
\|u\|_{p^*} \leq c_0 \|\nabla u\|_{L^p(\nu)}, \quad \forall u \in W^{1,p}_{0}(\Omega, \nu).
\]

Lemma 2.7. Suppose that \(\lambda > 0 \) and \(1 \leq \gamma < +\infty \). Let \(\psi \) a non-negative measurable function on \((0, +\infty)\). Then the
\[
\int_0^{+\infty} \left(t^{-\lambda} \int_0^t \psi(s)ds \right)^\gamma \frac{dt}{t} \leq c \int_0^{+\infty} (t^{1-\lambda} \psi(t))^{\gamma} \frac{dt}{t}, \quad (2.11)
\]
\[
\int_0^{+\infty} \left(t^{\lambda} \int_t^{+\infty} \psi(s)ds \right)^\gamma \frac{dt}{t} \leq c \int_0^{+\infty} (t^{1+\lambda} \psi(t))^{\gamma} \frac{dt}{t}. \quad (2.12)
\]

Also we shall need the following proposition of weak approximation (see [5]). Let \(u \in W^{1,p}_0(\Omega) \), and for \(s \in [0, |\Omega|] \), let \(G(s) \) be a measurable subset of \(\Omega \) such that \(|G(s)| = s \)
\[
s_1 < s_2 \Rightarrow G(s_1) \subset G(s_2)
\]
\[
G(s) = \{ x \in \Omega : |u(x)| > t \} \quad \text{if } s = \mu(t).
\]
For a given a function \(\varphi \in L^1(\Omega) \), we set
\[
\phi(s) = \frac{d}{ds} \int_{G(s)} \varphi(x) \, dx.
\]
Lemma 2.8 ([7]). If $\varphi \in L^p(\Omega)$ with $p > 1$, then there exists a sequence (φ_n) such that $\varphi^*_n(s) = \varphi^*(s)$ and $\varphi_n \rightharpoonup \varphi$ weakly in $L^p(0, |\Omega|)$.

3. Main result

The following Proposition gives a sufficient condition for the gradient of a function to belong to some Marcinkiewicz space. These are the generalized results of [7] in the Weighted Sobolev spaces $W_0^{1,p}(\Omega, \nu)$.

Proposition 3.1. Let $1 < p < N$, and $u \in \mathcal{T}_0^{1,p}(\Omega, \nu)$ be such that

$$\int_{|u| < k} |\nabla u|^p \nu(x) \, dx \leq Mk^\lambda$$

for every $k > 0$. Then $u \in \mathcal{M}^{p_1}(\Omega)$ where $p_1 = p^*(1 - \lambda/p)$. More precisely, there exists a c such that $\text{meas}\{|u| > k\} = \text{meas}\{x \in \Omega : |u(x)| > k\} \leq ck^{-p_1}$.

Proof. For $k > 0$, from [23], we have

$$\|T_k(u)\|_{p_1} \leq c_1 \|\nabla T_k(u)\|_{L^p(\nu)} \leq c_1 k^\lambda/p.$$

For $0 < \varepsilon \leq k$, we have $\{x \in \Omega : |u| > \varepsilon\} = \{x \in \Omega : |T_k(u)| > \varepsilon\}$. Hence

$$\text{meas}\{|u| > \varepsilon\} \leq \left(\frac{\|T_k(u)\|_{p_1}}{\varepsilon} \right)^{p_1} \leq c_1 k^\lambda p_1 p/(\varepsilon^{p-1}).$$

Setting $\varepsilon = k$, we obtain $\text{meas}\{|u| > \varepsilon\} \leq c_1 k^{-p_1}$, where $p_1 = p^*(1 - \lambda/p)$. \hfill \square

Proposition 3.2. Let $1 < p < N$, and $u \in \mathcal{T}_0^{1,p}(\Omega, \nu)$ be such that

$$\int_{|u| < k} |\nabla u|^p \nu(x) \, dx \leq Mk^\lambda$$

for every $k > 0$. Then $\nu^{1/p} \nabla u \in \mathcal{M}^{p_2}(\Omega)$ where $p_2 = pp_1/(\lambda + p_1)$. More precisely, there exists a c such that $\text{meas}\{\nu^{1/p} |\nabla u| > h\} \leq ch^{-p_2}$.

Proof. For $k, h > 0$. Set $\phi(k,\alpha) = \text{meas}\{\nu(x)|\nabla u|^p > \alpha, |u| > k\}$. From Proposition 3.1 we have

$$\phi(k,0) \leq c_1 k^{-p_1}.$$

Using that the function $\alpha \mapsto \phi(k,\alpha)$ is non-increasing, for $k, \lambda > 0$ we obtain

$$\phi(0,\alpha) \leq \frac{1}{\alpha} \int_0^\alpha \phi(0,s) \, ds$$

$$= \frac{1}{\alpha} \int_0^\alpha \phi(0,s) + \phi(k,0) - \phi(k,0) \, ds$$

$$\leq \phi(k,0) + \frac{1}{\alpha} \int_0^\alpha \phi(0,s) - \phi(k,0) \, ds$$

$$\leq \phi(k,0) + \frac{1}{\alpha} \int_0^\alpha \phi(0,s) - \phi(k,s) \, ds. \tag{3.1}$$

Since $\phi(0,s) - \phi(k,s) = \text{meas}\{\nu(x)|\nabla u|^p > s, |u| < k\}$ we have

$$\frac{1}{\alpha} \int_0^\alpha \phi(0,s) - \phi(k,s) \, ds = \frac{1}{\alpha} \int_{|u| < k} \nu(x)|\nabla u|^p \, dx \leq c k^\lambda \frac{\alpha}{\alpha},$$

which by (3.1) gives

$$\phi(0,\alpha) \leq c_1 k^{-p_1} + c_2 \frac{k^\lambda}{\alpha} \leq c_1 k^{-p_1} + c_2 \frac{k^\lambda}{\alpha}. \tag{3.2}$$
By minimizing (3.2) in \(k \) and setting \(\alpha = h^p \) we obtain
\[
\meas\{v^{1/p}|\nabla v| > k\} \leq ch^{-pp/(\lambda+p)}.
\]
\[\square\]

3.1. A priori estimate. Let \(\varepsilon \) be positive and sufficiently small. We consider the problem
\[
- \text{div} \ a_\varepsilon(x, u_\varepsilon, \nabla u_\varepsilon) = f_\varepsilon \quad \text{in } \Omega,
\]
\[
u u_\varepsilon = 0 \quad \text{on } \partial \Omega,
\]
where \(a_\varepsilon(x, s, \xi) = a(x, \mathcal{T}_\varepsilon(s), \xi) \), with \(x \in \Omega, s \in \mathbb{R} \) and \(\xi \in \mathbb{R}^N \) and \(f_\varepsilon \in L^\infty(\Omega) \). We use some classical results (see, for example [1, 2]) to assure that problem (3.3) has at least one solution \(u_\varepsilon \in W^{1,p}_0(\Omega) \cap L^\infty(\Omega) \). Then, we define \(b_\varepsilon(t) = b(T_{l_\varepsilon(t)}) \) for all \(t \in [0, +\infty) \), and
\[
A_\varepsilon(s) = \int_0^s b_\varepsilon(r)^{1/(p-1)} dr.
\]
First, we prove an integral inequality for weak solutions of problem (3.3).

Proposition 3.3. Let \(u_\varepsilon \) be a weak solution of (3.3). Then
\[
A_\varepsilon(u_\varepsilon^*(s)) \leq C_N \int_{s}^{\|\Omega\|} r^{-\nu'/\nu'}[D(r)]^{\nu'/p} \left(\int_0^r f_\varepsilon^*(\sigma) d\sigma \right)^{p'/p} dr, \quad s \in [0, \|\Omega\|],
\]
where \(D : [0, \|\Omega\|] \to \mathbb{R} \) is a measurable function such that
\[
\int_{|u_\varepsilon| > y} \nu^{-t}(x) dx = \int_0^{\mu(y)} (D(r))^{t} dr.
\]
Proof. Let \(\phi = T_h(u_\varepsilon - T_\theta(u_\varepsilon)) \) be a test function in (3.3). Then we have
\[
\frac{1}{h} \int_{|u_\varepsilon| \leq \theta + h} b(|u_\varepsilon|)\nu(x)|\nabla u_\varepsilon|^p dx \leq \int_{|u_\varepsilon| > \theta} |f| dx
\]
Applying Hardy-Littlewood inequality and passing to the limit on \(h \) to 0, we obtain
\[
b(\theta) \left(-\frac{d}{d\theta} \int_{|u_\varepsilon| > \theta} \nu(x)|\nabla u_\varepsilon|^p dx \right) \leq \int_0^{\mu_{u_\varepsilon}(\theta)} f_\varepsilon^*(s) ds.
\]
On the other hand by Hölder inequality, we obtain
\[
-\frac{d}{d\theta} \int_{|u_\varepsilon| > \theta} |\nabla u_\varepsilon| dx \leq \left(-\frac{d}{d\theta} \int_{|u_\varepsilon| > \theta} \nu(x)|\nabla u_\varepsilon|^p dx \right)^{1/p}
\]
\[
\times \left(-\frac{d}{d\theta} \int_{|u_\varepsilon| > \theta} \nu^{-p'/p}(x) dx \right)^{1/p'}
\]
\[
\leq \left(-\frac{d}{d\theta} \int_{|u_\varepsilon| > \theta} \nu(x)|\nabla u_\varepsilon|^p dx \right)^{1/p}
\]
\[
\times \left(-\frac{d}{d\theta} \int_{|u_\varepsilon| > \theta} \nu^{-t}(x) dx \right)^{1/r_1 p'} (-\mu_{u_\varepsilon}(\theta))^{1/r_2 p'}.
\]
where \(1/r_1 + 1/r_2 = 1 \) and \(p'/r_1/p = t \). By Lemma 2.8 since \(\nu^{-1} \in L^t(\Omega), t > 1 \) there exists \(D \in L^t([0, \|\Omega\|]) \) such that
\[
-\frac{d}{d\theta} \int_{|u_\varepsilon| > \theta} \nu^{-t}(x) dx = -\mu_{u_\varepsilon}(\theta)[D(\mu_{u_\varepsilon}(\theta))]^t.
\]
Then inequality (3.6), becomes
\[
-\frac{d}{d\theta} \int_{|u_\theta|>\theta} |\nabla u_\theta| \, dx \leq \left(-\frac{d}{d\theta} \int_{|u_\theta|>\theta} \nu(x)|\nabla u_\theta|^p \, dx \right)^{1/p} \\
\times \left((-\mu'_{u_\theta}(\theta))^{1/p'} [D(\mu_{u_\theta}(\theta))]^{1/r_1} \right).
\] (3.7)

From isoperimetric inequality and Fleming-Rishel formula (see [15]), it follows that
\[
C_N b(\theta)^{1/p}(\mu_{u_\theta}(\theta))^{1/N'} \leq \left(-\frac{d}{d\theta} \int_{|u_\theta|>\theta} \nu(x)|\nabla u_\theta|^p \, dx \right)^{1/p} \\
\times \left((-\mu'_{u_\theta}(\theta))^{1/p'} [D(\mu_{u_\theta}(\theta))]^{1/r_1} \right),
\] (3.8)
which by (3.5) gives
\[
b(\theta)^{1/(p-1)} \leq C_N(\mu_{u_\theta}(\theta))^{-p'/N'}(-\mu'_{u_\theta}(\theta))[D(\mu_{u_\theta}(\theta))]^{t/r_1} \left(\int_0^{\mu_{u_\theta}(\theta)} f_\epsilon^p(s) \, ds \right)^{1/p'}
\]
integrating between 0 and \(u_\epsilon(s)\) we obtain
\[
A(u_\epsilon(s)) \leq C_N \int_0^{u_\epsilon(s)} \left[(\mu_{u_\theta}(\theta))^{-p'/N'}(-\mu'_{u_\theta}(\theta))[D(\mu_{u_\theta}(\theta))]^{t/r_1} \right] \left(\int_0^{\mu_{u_\theta}(\theta)} f_\epsilon^p(s) \, ds \right)^{1/p'} \, d\theta,
\] (3.9)
which gives the results. \(\square\)

Remark 3.4. Since \(1 + \frac{1}{r} < p < N(1 + \frac{1}{r})\), and \(t \geq N/p\), we have \(q'p / p \geq 1\) and \(q/r_1^t \geq 1\), where \(r_1 = t(p-1)\), which allows us to apply the Proposition 2.11 and Proposition 2.12 to prove estimation (3.10) and (3.11), below.

Proposition 3.5. Let \(u_\epsilon\) be a solution of (3.3).

(a) If \(1 < r < t N/(tp - N)\), then
\[
\|(A_\epsilon(|u_\epsilon|))q\|_{L^1(\Omega)} \leq c\|f\|_{L^q(\Omega)}^{q'p / p},
\] (3.10)
where \(q = rt N(p-1)/(t(N-rp) + r N)\).

(b) If \(r = 1\), then
\[
\|A_\epsilon(|u_\epsilon|)\|_{L^{N(r-1)/(N+t(N-p))}(\Omega)} \leq c\|f\|_{L^q(\Omega)}^{p' / p},
\] (3.11)

Proof. Case 1 < \(r < t N/(tp - N)\). Let us observe that \(A_\epsilon\) being monotone, by Proposition 3.3 properties of rearrangements, (2.12) and (2.11), we obtain
\[
\|(A_\epsilon(|u_\epsilon|))q\|_{L^1(\Omega)} \leq C_N \int_0^{+\infty} \left[\int_s^{\int_{\Omega}} r^{-p'/N'} [D(r)]^{p'/p} \left(\int_0^r f_\epsilon(\sigma) \, d\sigma \right)^{p'/p'} \, dr \right]^{q / s} \, ds \leq C_N \int_0^{+\infty} \left[\int_s^{\int_{\Omega}} r^{-\frac{p' q}{N'}} \left(\int_0^r f_\epsilon(\sigma) \, d\sigma \right)^{p'/p'} \, dr \right]^{q / s} \, ds
\]
\[
\leq C_N \int_0^{+\infty} \left[\int_s^{\int_{\Omega}} r^{-\frac{p' q}{N'}} \left(\int_0^r f_\epsilon(\sigma) \, d\sigma \right)^{p'/p'} \, dr \right]^{q / s} \, ds
\]
\[
\leq C_N \int_0^{+\infty} \left[\int_s^{\int_{\Omega}} r^{-\frac{p' q}{N'}} \left(\int_0^r f_\epsilon(\sigma) \, d\sigma \right)^{p'/p'} \, dr \right]^{q / s} \, ds
\]
\[
\leq C_N \int_0^{+\infty} \left[\int_s^{\int_{\Omega}} r^{-\frac{p' q}{N'}} \left(\int_0^r f_\epsilon(\sigma) \, d\sigma \right)^{p'/p'} \, dr \right]^{q / s} \, ds
\]
\[\leq C_N \int_{0}^{+\infty} \left[s^{\frac{\alpha + t}{q'} - \frac{\nu + t}{p'}} s^{\frac{r}{p'}} f_*(s) \right] \frac{q'^{p}}{s} ds \]
\[\leq C_N \int_{0}^{+\infty} \left[s^{\frac{\alpha + t}{q'} - \frac{\nu + t}{p'}} s^{\frac{r}{p'}} f_*(s) \right] \frac{q'^{p}}{s} ds, \]

where \(\frac{q'}{p} \geq 1, \frac{\nu + t}{p'} = t, \) and \(C_N \) a constant that vary from line to line. Since \(f_\epsilon \in M^t(\Omega) \) we conclude that

\[\|(A_\epsilon(|u_\epsilon|))''\|_{L^1(\Omega)} \leq C_N \int_{0}^{+\infty} (f_*(s))^{\frac{t}{q} - \frac{\nu}{p} + \frac{\nu + t}{p'}} ds \]
\[\leq C_N \|f_*\|_{L^t([0,\Omega])}. \]

where

\[r = -\frac{t r N (p - 1)}{t (N - r p) + r N}. \]

Case \(r = 1 \). By Proposition 3.3 and Hölder inequality, we have

\[A_\epsilon(u_\epsilon(s)) \leq C_N \int_{0}^{[\Omega]} \left[s^{r - \frac{\nu}{p'}} |D(r)|^{p'} \right] f_*(\sigma) ds \]
\[\leq C_N \|D\|_{L^t([0,\Omega])} \left(\int_{0}^{[\Omega]} \left[s^{r - \frac{\nu}{p'}} \right]^{\frac{p}{Nt(p - 1) - N + tp}} ds \right) \]
\[\leq C_N \|D\|_{L^t([0,\Omega])} s^{1 - \frac{\nu}{Nt(p - 1) - N + tp}}, \]

which implies the result. \(\square \)

Remark 3.6. Since \(p/N < 1 + \frac{1}{t} \), (see (2.3)), we have

\[\frac{N t p}{N t (p - 1) - N + tp} > 1. \]

Proposition 3.7. Let \(u_\epsilon \) be a solution of (3.3).

(a) If \(\frac{N t p}{N t (p - 1) - N + tp} < r < \frac{t N p}{N t (p - 1) + pt - N} \), then

\[\|\nabla A_\epsilon(|u_\epsilon|)\|_{L^t(\Omega, r)} \leq c_1. \]

(b) If

\[\max \left(1, \frac{t N p}{N t (p - 1) p + pt - N} \right) < r < \frac{t N p}{N t (p - 1) + pt - N}, \]

then

\[\|\nabla A_\epsilon(|u_\epsilon|)\|_{L^t(\Omega, r, \beta)} \leq c_2, \]

where \(\beta = \frac{r N t (p - 1) p}{r N + N t p - p t r} \).

(c) If

\[1 \leq r \leq \max \left(1, \frac{t N p}{N t (p - 1) p + pt - N} \right), \]

then

\[\|u^{1/p} \nabla A_\epsilon(|u_\epsilon|)\|_{M^\beta(\Omega)} \leq c_3, \]

where \(\beta = \frac{r N t (p - 1) p}{r N + N t p - p t r} \).
Proof. Let u_ε be a solution of (3.3), by the definition of A_ε we can use as test function $v = [T_b(A_\varepsilon(|u_\varepsilon|)) - T_\theta(A_\varepsilon(|u_\varepsilon|))] \text{sign}(u_\varepsilon)$ and obtain

$$
\int_{\theta < A_\varepsilon(|u_\varepsilon|) \leq \theta + \varepsilon} \nu(x)|\nabla A_\varepsilon(|u_\varepsilon|)|^p \, dx \leq \int_{A_\varepsilon(|u_\varepsilon|) > \theta} |f_\varepsilon| \, dx, \quad (3.16)
$$

Case 1: \(\frac{Nt}{Nt(p-1)-N+p} < r < \frac{tN}{tp-N}\). Passing to the limit in (3.16), we obtain

$$
\frac{d}{d\theta} \int_{A_\varepsilon(|u_\varepsilon|) \leq \theta} \nu(x)|\nabla A_\varepsilon(|u_\varepsilon|)|^p \, dx \leq \int_0^{\mu_\varepsilon(\theta)} f_\varepsilon^*(s) \, ds, \quad (3.17)
$$

where we have denoted with $\mu_\varepsilon(\theta)$ the distribution functions of $A_\varepsilon(|u_\varepsilon|)$. Integrating (3.17) between 0 and $+\infty$ and using a Hölder inequality, we have

$$
\int_{\Omega} \nu(x)|\nabla A_\varepsilon(|u_\varepsilon|)|^p \, dx \leq \int_0^{+\infty} \frac{d}{d\theta} \int_0^{\mu_\varepsilon(\theta)} f_\varepsilon^*(s) \, ds
$$

$$
= \int_0^{\int_{\Omega} A_\varepsilon(u_\varepsilon^*(s)) f_\varepsilon^*(s) \, ds
$$

$$
\leq ||f||_{L^r(\Omega)} ||A_\varepsilon(|u_\varepsilon|)||_{L^r(\Omega)}. \quad (3.18)
$$

We observe that if r is such that \(\frac{Nt}{Nt(p-1)-N+p} \leq r < \frac{tN}{tp-N}\), by (3.10) the right-hand side of the above inequality is controlled by a constant depending on the norm of f_ε in $L^r(\Omega)$; so by (3.18) inequality (3.13) follows.

Case 2: max \(1, \frac{Nt(p-1)+pt-N}{tp-N}\) \(< r < \frac{Nt}{Nt(p-1)+pt-N}\). Applying the Hölder inequality in (3.16) and reasoning as before, we obtain

$$
\int_{\Omega} |\nabla A_\varepsilon(|u_\varepsilon|)|^2 \nu^{\beta/p}(x) \, dx
$$

$$
\leq \int_0^{+\infty} \left(\int_0^{\mu_\varepsilon(\theta)} f_\varepsilon^*(s) \, ds \right)^{\beta/p} (-\mu_\varepsilon(\theta))^{1-\frac{\beta}{p}} \, d\theta
$$

$$
\leq \left(\int_0^{+\infty} (1 + \theta)^\eta (-\mu_\varepsilon(\theta)) \, d\theta \right)^{1-\frac{\beta}{p}} \times \left(\int_0^{+\infty} (1 + \theta)^{q(1-\frac{\beta}{p})} \left(\int_0^{\mu_\varepsilon(\theta)} f_\varepsilon^*(s) \, ds \right) \, d\theta \right)^{\beta/p}. \quad (3.19)
$$

By the properties of rearrangements, we can write the first integral on the right-hand side of (3.19) as

$$
\int_0^{+\infty} (1 + \theta)^\eta (-\mu_\varepsilon(\theta)) \, d\theta = \int_0^{[\Omega]} (1 + A_\varepsilon(u_\varepsilon^*))^\eta \, ds, \quad (3.20)
$$

and by (3.10) this quantity is bounded by a constant depending on the norm of f_ε in $L^r(\Omega)$. On the other hand, integrating by parts the second integral on the right-hand side of (3.19) we have

$$
\int_0^{+\infty} (1 + \theta)^{q(1-\frac{\beta}{p})} \left(\int_0^{\mu_\varepsilon(\theta)} f_\varepsilon^*(s) \, ds \right) \, d\theta
$$

$$
\leq c \int_0^{[\Omega]} f_\varepsilon^*(s)((1 + A_\varepsilon(u_\varepsilon^*))^{q(1-\frac{\beta}{p})+1}) \, ds
$$

$$
\leq c ||f_\varepsilon||_{L^r(\Omega)} \left(\int_0^{[\Omega]} ((1 + A_\varepsilon(u_\varepsilon^*))^q) \, ds \right)^{1-\frac{\beta}{p}}. \quad (3.21)
$$
Applying again (3.10), by (3.19) it follows the estimate (3.14).

Case 3: \(1 \leq r \leq \max \left(1, \frac{tN_p}{Nt(p-1)p+pt-N} \right)\). Integrating inequality (3.17) between 0 and \(k\), we obtain

\[
\int_{A_{\epsilon}(u_{\epsilon}) \leq k} \nu(x)|\nabla A_{\epsilon}(|u_{\epsilon}|)|^p \, dx \leq \int_0^k \nu_x(t) f_x^*(s) \, ds. \tag{3.22}
\]

If \(r = 1\), from (3.22) we obtain

\[
\int_{A_{\epsilon}(u_{\epsilon}) \leq k} \nu(x)|\nabla A_{\epsilon}(|u_{\epsilon}|)|^p \, dx \leq k \|f_x\|_{L^1(\Omega)}.
\]

by (3.11) and (2.3) we obtain the assertion.

If \(1 \leq r \leq \max(1, tN_pNt(p-1)p+pt-N)\), then by (3.10) it follows that \(A_{\epsilon}(|u_{\epsilon}|) \in M^q(\Omega)\), with \(q = \frac{rNt}{Nt + N} + \frac{rNt}{Nt - pt} - pt\); so we obtain

\[
\int_{A_{\epsilon}(u_{\epsilon}) \leq k} \nu(x)|\nabla A_{\epsilon}(|u_{\epsilon}|)|^p \, dx \leq ck^{1 - \frac{q}{r}}
\]

by Proposition 3.2, we conclude the result. \(\Box\)

Replacing \(\nabla A_{\epsilon}(|u_{\epsilon}|)\) by \(\nabla u_{\epsilon}\) the above estimates also hold; furthermore it follows that

\[
\int_{\Omega} \nu(x)|\nabla u_{\epsilon}|^\gamma \, dx \leq c,
\]

with \(\gamma < \frac{Nt(p-1)}{Nt + N + Nt - pt}\), where \(c\) is a constant depending on the \(L^1(\Omega)\) norm of \(f_x\). Using (3.5), the \(T_k(u_{\epsilon})\) are uniformly bounded in \(W^{1,p}_0(\Omega, \nu)\) for any \(k > 0\). Hence, there exists a function \(u \in W^{1,\gamma}_0(\Omega, \nu)\) such that

\[
u(x)|\nabla u_{\epsilon}|^\gamma \, dx \leq c,
\]

\[
u(x)|\nabla u_{\epsilon}|^\gamma \, dx \leq c\tag{3.23}
\]

and, for any \(k > 0\),

\[
T_k(u_{\epsilon}) \rightarrow T_k(u) \quad \text{weakly in } W^{1,p}_0(\Omega, \nu). \tag{3.24}
\]

Remark 3.8. Choosing \(k > l\), we have

\[
u(x)|\nabla u_{\epsilon}|^\gamma \, dx \leq c\tag{3.25}
\]

Indeed, let us suppose \(f \in L^1(\Omega)\). Using \(T_{2l}(|u_{\epsilon}|) - T_l(|u_{\epsilon}|)\) as test function in (3.3), by (2.3) we obtain

\[
b(l - \varepsilon) \int_{\Omega} (T_{2l}(|u_{\epsilon}|) - T_l(|u_{\epsilon}|)) |u_{\epsilon}|^p \, dx \leq l\|f_x\|_{L^1(\Omega)}.
\]

Letting \(\varepsilon \rightarrow 0\), from condition (2.1), we conclude that, for almost all \(x \in \Omega, |u| \leq l\), which give the result by (3.24).

Next we prove a lemma needed for proving the existence result.

Lemma 3.9. Let \(u_{\epsilon}\) be a weak solution to problem (3.3). Suppose \(f \in L^1(\Omega)\), and let \(f_x \in L^\infty(\Omega)\) be such that \(f_x \rightarrow f \) in \(L^1(\Omega)\). Then

\[
\nabla u_{\epsilon} \rightarrow \nabla u \quad \text{a.e. in } \{|u| < l\}.
\]
Proof. We adapt the proof presented in [11]. By Remark 3.8, we have \(u_\varepsilon \to u \) in measure. We will prove that \(u_\varepsilon \to u \) in measure on \(\{|u| < m\} \). Let \(\lambda > 0 \) and \(\eta > 0 \) for \(0 < k < l \), and \(M > 0 \), we set

\[
E_1 = \{|u| < l\} \cap \{|\nabla u_\varepsilon| > M\} \cup \{|\nabla u| > M\} \cup \{|u_\varepsilon| > k\} \cup \{|u| > k\},
\]

\[
E_2 = \{|u| < l\} \cap \{|u_\varepsilon - u| > \eta\},
\]

\[
E_3 = \{|u_\varepsilon - u| \leq \eta, |\nabla u_\varepsilon| \leq M, |\nabla u| \leq M, |u_\varepsilon| \leq k, |u| \leq k, |\nabla (u_\varepsilon - u)| \geq \lambda\}
\]

\[\cap \{|u| < l\}. \]

Observe that \(\{|u| < l\} \cap \{|\nabla u_\varepsilon| \geq \lambda\} \subset E_1 \cup E_2 \cup E_3. \)

Since \(u_\varepsilon \) and \(\nabla u_\varepsilon \) are bounded in \(L^1(\Omega) \), for any \(\sigma > 0 \) we can fix \(M \) and \(k < l \) such that \(|E_1| < \sigma/3 \) independently of \(\varepsilon \). By the monotonicity Assumption (2.5), there exists a real valued function \(\gamma \) such that

\[
\text{meas}\{x \in \Omega : \gamma(x) = 0\} = 0,
\]

\[
(a(x, s, \xi) - a(x, s, \xi'))(\xi - \xi') \geq \gamma(x),
\]

for any \(s \in (-l, l), \xi, \xi' \in \mathbb{R}^N, |s| \leq k, |\xi|, |\xi'| \leq M \), and \(|\xi - \xi'| \geq \lambda \). Denoting by \(\chi_\eta \) the characteristic function of \([0, \eta] \), we obtain

\[
\int_{E_3} \gamma(x) \, dx \leq \int_{E_3} \left[a_\varepsilon(x, u_\varepsilon, \nabla u_\varepsilon) - a(x, u_\varepsilon, \nabla u_\varepsilon)\right]\nabla u_\varepsilon - u \, dx
\]

\[\leq \int_{\{|u_\varepsilon| \leq k, |u| \leq k\}} \left[(a_\varepsilon(x, u_\varepsilon, \nabla u_\varepsilon) - a(x, u_\varepsilon, \nabla T_k(u))) \right] \, dx
\]

\[\times \left(\nabla u_\varepsilon - T_k(u) \right) \chi_\eta(|u_\varepsilon - T_k(u)|) \, dx
\]

\[\leq \int_{\Omega} \left[(a_\varepsilon(x, u_\varepsilon, \nabla u_\varepsilon) - a(x, u_\varepsilon, \nabla T_k(u))) \right] \, dx
\]

\[\times \left(\nabla u_\varepsilon - T_k(u) \right) \chi_\eta(|u_\varepsilon - T_k(u)|) \, dx
\]

\[- \int_{\Omega} a_\varepsilon(x, u_\varepsilon, \nabla T_k(u)) \cdot (\nabla u_\varepsilon - T_k(u)) \chi_\eta(|u_\varepsilon - T_k(u)|) \, dx
\]

\[:= J_1 - J_2. \]

For the term \(J_1 \), using \(T_\eta(u_\varepsilon - T_k(u)) \), we have

\[
|J_1| = \left| \int_{\Omega} f_{x_\varepsilon} T_\eta(|u_\varepsilon - T_k(u)|) \, dx \right| \leq \eta \| f \|_{L^1(\Omega)}.
\]

Choosing \(\eta > 0 \) such that \(k + \eta < l \), there exists \(\varepsilon_0 > 0 \) such that for all \(\varepsilon < \varepsilon_0 \),

\[
a_\varepsilon(x, u_\varepsilon, \nabla T_k(u)) = a(x, u_\varepsilon, \nabla T_k(u)) \quad \text{in} \quad \{x \in \Omega : |u_\varepsilon - T_k(u)| \leq \eta\};
\]

and since \(\{x \in \Omega : |u_\varepsilon - T_k(u)| \leq \eta\} \subset \{x \in \Omega : |u_\varepsilon| \leq k + \eta\} \) we obtain

\[
J_2 = \int_{\Omega} a(x, u_\varepsilon, \nabla T_k(u)) \cdot \nabla T_\eta(u_\varepsilon - T_k(u)) \, dx
\]

\[= \int_{\Omega} a(x, T_{k+\eta}(u_\varepsilon), \nabla T_k(u)) \cdot (\nabla T_{k+\eta}(u_\varepsilon - T_k(u))) \chi_\eta(|u_\varepsilon - T_k(u)|) \, dx.\]
By (3.24), it follows that
\[T_{k+\eta}(u_\epsilon) \to T_{k+\eta}(u) \quad \text{weakly in } W^{1,p}_0(\Omega, \nu), \]
on the other hand
\[|a(x, T_{k+\eta}(u_\epsilon), \nabla T_k(u))| \leq b(|T_{k+\eta}(u_\epsilon)|) \nu(x)|\nabla T_{k+\eta}(u)|^{p-1} \]
using Vitali’s theorem we have
\[a(x, T_{k+\eta}(u_\epsilon), \nabla T_k(u)) \to a(x, T_{k+\eta}(u), \nabla T_k(u)) \quad \text{strongly in } L^p(\Omega, \nu^{-1/(p-1)}). \]

Letting \(\epsilon \) and \(\eta \) tend to 0 respectively in \(J_2 \), we obtain
\[
\lim_{\epsilon \to 0} \int_\Omega a(x, u_\epsilon, \nabla T_k(u)) \cdot \nabla \chi_\eta(|u_\epsilon - T_k(u)|) \, dx = 0.
\]
and
\[
\lim_{\eta \to 0} \int_\Omega a(x, T_{k+\eta}(u), \nabla T_k(u)) \cdot (\nabla T_{k+\eta}(u - T_k(u))) \chi_\eta(|u_\epsilon - T_k(u)|) \, dx = 0.
\]
For \(\eta \) small enough \(\eta \|f\|_{L^1(\Omega)} < \delta/2 \), by Kolmogorov theorem, we have \(|E_3| < \sigma \) independently of \(\epsilon \). Fix \(\eta \), by the fact that \(u_\epsilon \to u \) in measure, we choose \(\epsilon_1 \) such that \(|E_2| \leq \eta \) for \(\epsilon \leq \epsilon_1 \). This implies that \(\nabla u_\epsilon \to \nabla u \) in measure in \(\{|u| < l\} \), consequently
\[\nabla u_\epsilon \to \nabla u \quad \text{a.e. in } \{|u| < l\}. \]

We observe that since \(u_\epsilon \to u \) a.e. in \(\Omega \) (see (3.23)), we have
\[
\{x \in \Omega : |u(x)| = l\} = \left\{ x \in \Omega : \lim_{\epsilon \to 0} \int_0^{[u_\epsilon(x)]} b_\epsilon(t) \, dt \geq \int_0^l b(t) \, dt \right\}. \tag{3.26}
\]

Theorem 3.10. Let \(f \) be a function in \(L^s(\Omega) \), with \(r > tN/(tp - N) \). Assume that (2.1), (2.3) hold. Then there exists a weak solution \(u \in W^{1,p}_0(\Omega, \nu) \) of problem (2.2) such that \(\|u\|_{L^\infty(\Omega)} < l \).

Proof. For \(f_\epsilon = f \) with \(\epsilon > 0 \). By classical results see for example [2, 11], there exists a solution \(u_\epsilon \in W^{1,p}_0(\Omega, \nu) \) of the approximated problem (2.2). Estimate (3.4) implies
\[
A_\epsilon(\|u_\epsilon\|_{L^\infty}) \leq C(f) = C_N \int_0^{[2]} r^{-p'/N'} [D(r)]^{p'/p} \left(\int_0^{r} f_\epsilon^*(\sigma) \, d\sigma \right)^{p'/p} \, dr. \tag{3.27}
\]
Since \(A \) is bijective in \([0, l] \), we can take \(B = A^{-1}(C(f)) \) and then we choose \(\epsilon_0 > 0 \) such that \(b(s) \leq b(l - \epsilon) \) for any \(s \in [0, B] \). By definition of \(b_\epsilon \) and \(A_\epsilon \) we have, for any \(\epsilon < \epsilon_0 \),
\[A_\epsilon(s) = A(s), \quad s \in [0, B]. \]
Moreover, being \(A_\epsilon \) increasing, it follows that, for any \(\epsilon < \epsilon_0 \),
\[A_\epsilon(s) \leq C(f) \iff s \in [0, B], \]
so by (3.27) we obtain
\[\|u_\epsilon\|_{L^\infty} \leq B < l. \]
By (2.2) and Lemma 3.9, we have
\[a_\varepsilon(x, u_\varepsilon, \nabla u_\varepsilon) \rightarrow a(x, u, \nabla u) \quad \text{strongly in } L^{p'}(\Omega, \nu^{-1/(p-1)}), \]
\[f_\varepsilon \rightarrow f \quad \text{strongly in } L^\infty(\Omega). \]

Passing to the limit in the weak formulation of problem (3.3), we conclude that there exists a weak solution \(u \) of (2.2), which satisfies \(\|u\|_{L^\infty(\Omega)} < l \).

\[\text{Theorem 3.11.} \quad \text{Let } u \in W^{1,p}_0(\Omega, \nu) \text{ be a weak solution to the approximate problem (3.3). By passing to the limit we can show that } \lim_{\varepsilon \to 0} u_\varepsilon \to u \text{ a.e. in } \Omega. \]

\[\text{Proof.} \quad \text{Let } u_\varepsilon \in W^{1,p}_0(\Omega, \nu) \text{ be a weak solution to the approximate problem (3.3). By Remark (3.8), we have } u_\varepsilon \to u \text{ a.e. in } \Omega, \text{ since } A(l^-) = +\infty. \]

(2.2) implies that
\[A_\varepsilon(|u_\varepsilon|) \to A(|u|) \quad \text{a.e. in } \Omega. \]

By (2.3) and (3.13), we obtain
\[A_\varepsilon(|u_\varepsilon|) \to A(|u|) \quad \text{weakly in } W^{1,p}_0(\Omega, \nu), \]
\[\text{Since } A(|u|) \text{ is bounded in } L^1(\Omega) \text{ and } \text{meas}\{x \in \Omega : |u(x)| = l\} = 0, \text{ by (2.3) we have} \]
\[a_\varepsilon(x, u_\varepsilon, \nabla u_\varepsilon) \to a(x, u, \nabla u) \quad \text{a.e. } \Omega. \]

On the other hand by (2.3) and (3.13),
\[|a_\varepsilon(x, u_\varepsilon, \nabla u_\varepsilon)| \text{ is bounded in } L^{p'}(\Omega, \nu^{-1/(p-1)}); \]

passing to the limit in the weak formulation (3.3), we obtain
\[\int_{\Omega} a(x, u, \nabla u) \cdot \nabla \varphi \, dx = \int_{\Omega} f \varphi \, dx, \quad \text{for all } \varphi \in W^{1,p}_0(\Omega, \nu). \]

\[\text{Theorem 3.12.} \quad \text{Let } f \in L^r(\Omega), \text{ with } 1 \leq r < \frac{Ntp}{Nt(p-1)-Ntp}. \text{ Under hypothesis (2.1) -- (2.5), there exists a solution } u \in W^{1,p}_0(\Omega, \nu) \text{ of problem (2.2), in the sense of Definition (2.2) such that } \text{meas}\{x \in \Omega : |u(x)| = l\} = 0. \]

\[\text{Proof.} \quad \text{Let } u_\varepsilon \text{ be a weak solution of the approximate problem (3.3), by passing to the limit we can show that } |u| < l \text{ a.e. in } \Omega. \text{ Take } T_k(u_\varepsilon - \varphi), \text{ with } \varphi \in W^{1,p}_0(\Omega, \nu) \cap L^\infty(\Omega) \text{ as test function in (3.3) we obtain} \]
\[\int_{|u_\varepsilon - \varphi| \leq k} a(x, T_{l^-}(u_\varepsilon), \nabla u_\varepsilon) \cdot \nabla u_\varepsilon \, dx \]
\[- \int_{|u_\varepsilon - \varphi| \leq k} a(x, T_{l^-}(u_\varepsilon), \nabla u_\varepsilon) \cdot \nabla \varphi \, dx \]
\[= \int_{\Omega} f_\varepsilon T_k(u_\varepsilon - \varphi) \, dx. \]

Since \(\{u_\varepsilon - \varphi\} \subseteq \{|u_\varepsilon| \leq k + \|\varphi\|_{L^\infty(\Omega)} = M\}, \text{ for } 1 < k < l \text{ and } \|\varphi\|_{L^\infty(\Omega)} < l - k, \text{ we obtain } M < l \text{ and consequently } |a(x, T_M(u_\varepsilon), \nabla T_M(u_\varepsilon))| \text{ is bounded in } L^{p'}(\Omega, \nu^{-1/(p-1)}), \]
\[\lim_{\varepsilon \to 0} \int_{|u_\varepsilon - \varphi| \leq k} a(x, T_{l^-}(u_\varepsilon), \nabla u_\varepsilon) \cdot \nabla \varphi \, dx = \int_{|u-\varphi| \leq k} a(x, u, \nabla u) \cdot \nabla \varphi \, dx. \]
Moreover since f_ε strongly convergent to f in $L^1(\Omega)$, and $T_k(u_\varepsilon - \varphi)$ weakly* convergent to $T_k(u - \varphi)$ in $L^\infty(\Omega)$, we have
\begin{equation}
\lim_{\varepsilon \to 0} \int_\Omega f_\varepsilon T_k(u_\varepsilon - \varphi) \, dx = \int_\Omega f T_k(u - \varphi) \, dx. \tag{3.32}
\end{equation}

On the other hand $a(x, T_{1-\varepsilon}(u_\varepsilon), \nabla u_\varepsilon) \cdot \nabla u_\varepsilon$ being non-negative, and almost everywhere convergent to $a(x, u, \nabla u) \cdot \nabla u$, by Fatou’s lemma we conclude that
\begin{equation}
\liminf_{\varepsilon \to 0} \int_{|u_\varepsilon - \varphi| \leq k} a(x, T_{1-\varepsilon}(u_\varepsilon), \nabla u_\varepsilon) \cdot \nabla u_\varepsilon \, dx \leq \int_{|u - \varphi| \leq k} a(x, u, \nabla u) \cdot \nabla u \, dx. \tag{3.33}
\end{equation}

Combining (3.31), (3.32) and (3.33) we obtain
\[\int_\Omega a(x, u, \nabla u) \cdot \nabla T_k(u - \varphi) \, dx \leq \int_\Omega f T_k(u - \varphi) \, dx, \quad \text{for all } \varphi \in W_0^{1,p}(\Omega, \nu). \]

\[\square \]

\section*{References}

AHARROUCH BENALI
SIDI MOHAMED BEN ABDELLAH UNIVERSITY, FACULTY OF SCIENCES DHAR EL MAHRIZ, LABORATORY LAMA, DEPARTMENT OF MATHEMATICS, P.O. BOX 1796 ATLAS FEZ, MOROCCO
Email address: bnaliaharrouch@gmail.com

BENNOUNA JAOUAD
SIDI MOHAMED BEN ABDELLAH UNIVERSITY, FACULTY OF SCIENCES DHAR EL MAHRIZ, LABORATORY LAMA, DEPARTMENT OF MATHEMATICS, P.O. BOX 1796 ATLAS FEZ, MOROCCO
Email address: jbennouna@hotmail.com