Mabel Cuesta, Liamidi Leadi, Pascaline Nshimirimana
Abstract:
We study the maximum and antimaximum principles for the p-Laplacian
operator under Steklov boundary conditions with an indefinite weight
where
is a smooth bounded domain of
, N>1.
After reviewing some elementary properties of the principal eigenvalues of
the p-Laplacian under Steklov boundary conditions with an indefinite weight,
we investigate the maximum and antimaximum principles for this problem.
Also we give a characterization for the interval of the validity of the
uniform antimaximum principle.
Submitted November 18, 2019. Published March 2, 2020.
Math Subject Classifications: 35J70.
Key Words: p-Laplacian; Steklov boundary conditions: indefinite weight;
maximum and antimaximum principles.
DOI: 10.58997/ejde.2020.21
Show me the PDF file (382 KB), TEX file for this article.
Mabel Cuesta Université du Littoral ULCO, LMPA 50 rue F. Buisson 62220 Calais, France email: mabel.cuesta@univ-littoral.fr | |
Liamidi Leadi Université d'Abomey Calavi, FAST, IMSP Porto-Novo, Bénin email: leadiare@imsp-uac.org | |
Pascaline Nshimirimana Université d'Abomey Calavi, FAST, IMSP Porto-Novo, Bénin email: pascaline.nshimirimana@imsp-uac.org |
Return to the EJDE web page