SUB-SUPER SOLUTION METHOD FOR NONLOCAL SYSTEMS INVOLVING THE $p(x)$-LAPLACIAN OPERATOR

GELSON C. G. DOS SANTOS, GIOVANY M. FIGUEIREDO, LEANDRO S. TAVARES

Abstract. In this article we study the existence of solutions for nonlocal systems involving the $p(x)$-Laplacian operator. The approach is based on a new sub-super solution method.

1. Introduction

In this work we are interested in the nonlocal system

\[
\begin{align*}
-\mathcal{A}(|v|_{L^{r_1}(x)})\Delta p_1(x)u & = f_1(x, u, v)|v|^{\alpha_1(x)}_{L^{\infty}(x)} + g_1(x, u, v)|v|^{\gamma_1(x)}_{L^{\infty}(x)} \quad \text{in } \Omega, \\
-\mathcal{A}(|u|_{L^{r_2}(x)})\Delta p_2(x)v & = f_2(x, u, v)|u|^{\alpha_2(x)}_{L^{\infty}(x)} + g_2(x, u, v)|u|^{\gamma_2(x)}_{L^{\infty}(x)} \quad \text{in } \Omega, \\
\quad u = v = 0 \quad \text{on } \partial \Omega,
\end{align*}
\]

(1.1)

where Ω is a bounded domain in $\mathbb{R}^N (N > 1)$ with C^2 boundary, $|\cdot|_{L^{m(x)}}$ is the norm of the space $L^{m(x)}(\Omega)$, $-\Delta p(x)u := -\text{div}(|\nabla u|^{p(x)-2}\nabla u)$ is the $p(x)$-Laplacian operator, $r_i, p_i, q_i, s_i, \alpha_i, \gamma_i : \Omega \to [0, \infty), i = 1, 2$ are measurable functions and $\mathcal{A}, f_1, f_2, g_1, g_2 : \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ are continuous functions satisfying certain conditions.

In the previous decades there have been several works related to the p and $p(x)$-Laplacian operator; see for example [1, 4, 9, 12, 25, 26, 27, 28, 29, 34, 35, 38, 39] and the references therein. Partial differential equations involving the $p(x)$-Laplacian arise in several areas of Science and Technology such as nonlinear elasticity, fluid mechanics, non-Newtonian fluids and image processing. Regarding the mentioned applications we point out [1, 14] [26] [41] [42].

The nonlocal term $|\cdot|_{L^{m(x)}}$ with the condition $p(x) = r(x) \equiv 2$ was considered in the well known Carrier’s equation

\[\rho u_{tt} - a(x, t, |u|_{L^2}^2)\Delta u = 0 \]

which models the vibrations of a elastic string under certain conditions. See [11] for more details. We also quote the applicability of such nonlocal term in Population Dynamics, see [15] [17]. Several works related to (1.1) in the p-Laplacian case, that is, with $p(x) = p$ (a constant) can be found, see [10, 13, 19, 20, 23, 33] and the references provided in such manuscripts. For example Corrêa & Lopes [20] studied the system

\[-\Delta u^m = a|v|^{p}_{L^p} \quad \text{in } \Omega, \]

1. 2010 Mathematics Subject Classification. 35J60.
2. Key words and phrases. Fixed point argument; nonlocal problem; $p(x)$-Laplacian; sub-super solutions.
3. ©2020 Texas State University.
and in [13] a related system was considered using the Galerkin method. In [19] the authors used a theorem due to Rabinowitz [40] to study the problem

\[-\Delta v^n = b|u|^{\frac{\beta}{2}}_{L^p} \quad \text{in } \Omega, \quad u = v = 0 \quad \text{on } \partial \Omega,
\]

The system

\[-A(x, |v|_{L^{\gamma_1}(x)}) \Delta u = f_1(x, u, v)|v|^{\gamma_1(x)}_{L^{\gamma_1}(x)} + g_1(x, u, v)|v|_{L^{\gamma_2}(x)} \quad \text{in } \Omega,
\]

\[-A(x, |u|_{L^{\gamma_2}(x)}) \Delta u = f_2(x, u, v)|u|^{\gamma_2(x)}_{L^{\gamma_2}(x)} + g_2(x, u, v)|u|_{L^{\gamma_2}(x)} \quad \text{in } \Omega,
\]

\[u = v = 0 \quad \text{on } \partial \Omega,
\]

where $A : \Omega \times \mathbb{R} \to \mathbb{R}$ is a function satisfying some conditions, was considered in [43]. The approach in such paper consists in use an abstract result involving sub and supersolutions, whose proof is based on the Schaefer’s fixed point theorem. Specifically, it was considered a sublinear system, a concave-convex problem and a system of logistic equations.

The scalar version of (1.1),

\[-A(x, |u|_{L^{\gamma}(x)}) \Delta p(x) u = f(x, u)|u|^{\alpha(x)}_{L^{\gamma}(x)} + g(x, u)|u|^{\gamma(x)}_{L^{\gamma}(x)} \quad \text{in } \Omega,
\]

\[u = 0 \quad \text{on } \partial \Omega,
\]

was considered in [44]. The authors obtained an abstract result involving sub and super solutions for (1.1) that generalizes [43, Theorem 1]. As an application of such result the authors generalized for the $p(x)$-Laplacian operator the three applications of [43, Theorem 1].

The goal of this work is to prove [43, Theorem 2] for the $p(x)$-Laplacian operator and use it in three applications of the mentioned paper. Thus, we provide a generalization of [43] with respect to systems with variable exponents. Next we describe the main differences and difficulties of this work when compared with [43].

(i) The homogeneity of the Laplacian operator $(-\Delta, H^1_0(\Omega))$ and the eigenfunction associated to the first eigenvalue were used in [43] for constructing a subsolution. Differently from the p-Laplacian ($p(x) \equiv p$ constant) the $p(x)$-Laplacian is not homogeneous. Besides that, it can occurs that the first eigenvalue and the first eigenfunction of the $p(x)$-Laplacian operator $(-\Delta_{p(x)}, W^{1,p(x)}_{0}(\Omega))$ do not exist. Even if the first eigenvalue and the associated eigenfunction exist the homogeneity, in general, does not allows to use the first eigenfunction to construct a subsolution. In order to avoid such difficulties we explore some arguments of [43].

(ii) Some arguments of [43] were improved and weaker conditions on $r_1, q_i, s_i, \alpha_i, \gamma_i, i = 1, 2$ are considered here.

(iii) We generalize [43, Theorem 2] and as an application it is considered some nonlocal problems that generalizes the three systems studied in [43].

(iv) As in [43, Theorem 2] and differently from several works that consider the nonlocal term $A(x, |u|_{L^{\gamma}(x)})$ satisfying $A(x, t) \geq a_0 > 0$ (where a_0 is a constant), Theorem 1.1 permits us to study (1.1) in the mentioned case and in situations where $A(x, 0) = 0$.
(v) The abstract result involving sub and super solutions is proved by using a different argument. It is used a theorem due to Rabinowitz that can be found in [43] and some arguments of [43] are improved.

In this work we assume that \(r_i, p_i, q_i, s_i, \alpha_i, \gamma_i \) satisfy

\[
(\text{H1}) \quad p_i \in C^1(\Omega), \quad r_i, q_i, s_i \in L_+^\infty(\Omega), \quad \text{where} \\
L_+^\infty(\Omega) = \{ m \in L^\infty(\Omega) \text{ with } \text{ess inf } m(x) \geq 1 \}
\]

and for \(i = 1, 2, \alpha_i, \gamma_i \in L^\infty(\Omega) \) and satisfy

\[
1 < p_i^- := \inf \frac{1}{p_i} < p_i^+ := \sup \frac{1}{p_i} < N, \quad \alpha_i(x), \gamma_i(x) \geq 0 \quad \text{a.e. in } \Omega.
\]

Some definitions are needed to present the main results. We say that the pair \((u_1, u_2)\) is a weak solution of (1.1), if \(u_i \in W^{1,p_i}(\Omega) \cap L^\infty(\Omega) \) and

\[
\int_\Omega \nabla u_i |p_i(x) - 2 \nabla u_i \nabla \varphi = \int_\Omega \left(\frac{f_i(x, u_1, u_2)|u_j|^{\alpha_i(x)}_{L^\infty(\Omega)}}{A(x, |u_j|_{L^2(\Omega)})} + \frac{g_i(x, u_1, u_2)|u_j|^{\gamma_i(x)}}{A(x, |u_j|_{L^2(\Omega)})} \right) \varphi,
\]

for all \(\varphi \in W^{1,p_i}(\Omega) \) and \(i \neq j \) with \(i, j = 1, 2 \). Given \(u, v \in S(\Omega) \) we write \(u \leq v \) if \(u(x) \leq v(x) \) a.e. in \(\Omega \). If \(u \leq v \) we define

\[
[u, v] := \{ w \in S(\Omega) : u(x) \leq w(x) \leq v(x) \text{ a.e. in } \Omega \}.
\]

To simplify the next definition we denote

\[
\tilde{f}_i(x, t, s) = f_i(x, t, s), \quad \tilde{g}_i(x, t, s) = g_i(x, t, s),
\]

We say that the pairs \((u_i, \overline{u}_i), i = 1, 2\) are a sub-super solutions for (1.1) if \(u_i \in W^{1,p_i}(\Omega) \cap L^\infty(\Omega) \), \(\overline{u}_i \in W^{1,p_i}(\Omega) \cap L^\infty(\Omega) \) with \(u_1 \leq \overline{u}_1, u_2 = 0 \leq \overline{u}_2 \) on \(\partial \Omega \) and for all \(\varphi \in W^{1,p_i}(\Omega) \) with \(\varphi \geq 0 \) the following inequalities hold

\[
\int_\Omega |\nabla u_i|^{p_i(x)} - 2 \nabla u_i \nabla \varphi \leq \int_\Omega \left(\frac{\tilde{f}_i(x, u_1, u_2)|u_j|^{\alpha_i(x)}_{L^\infty(\Omega)}}{A(x, |u_j|_{L^2(\Omega)})} + \frac{\tilde{g}_i(x, u_1, u_2)|u_j|^{\gamma_i(x)}}{A(x, |u_j|_{L^2(\Omega)})} \right) \varphi,
\]

for all \(w \in [u_j, \overline{u}_j] \) where \(i, j = 1, 2 \) with \(i \neq j \). Our main result reads as follows.

Theorem 1.1. Suppose that \(r_i, p_i, q_i, s_i, \alpha_i \) and \(\gamma_i \) satisfy (H1), that \((u_i, \overline{u}_i)\) is a sub-super solution for (1.1) with \(u_i > 0 \) a.e. in \(\Omega \), that \(f_i(x, t, s), g_i(x, t, s) \geq 0 \) in \(\overline{\Omega} \times [0, |\overline{u}_i|_{L^\infty}] \times [0, |\overline{u}_i|_{L^\infty}] \) and that \(A : \overline{\Omega} \times (0, \infty) \to \mathbb{R} \) is a continuous function with \(A(x, t) > 0 \) in \(\overline{\Omega} \times \overline{\mathbb{R}} \) where \(\overline{\mathbb{R}} := \min \{ |\overline{u}_i|_{L^\infty}, i = 1, 2 \}, \overline{\mathbb{R}} := \max \{ |\overline{u}_i|_{L^\infty}, i = 1, 2 \}, \overline{\mathbb{R}} := \overline{\min \{ |\overline{u}_i|_{L^\infty}, i = 1, 2 \}} \text{ and } \overline{\mathbb{R}} := \min \{ |\overline{u}_i|_{L^\infty}, i = 1, 2 \}. \) Then (1.1) has a weak positive solution \((u_1, u_2)\) with \(u_i \in [u_j, \overline{u}_j], i = 1, 2 \).

2. Preliminaries

In this section, we present some facts regarding the spaces \(L^{p(x)}(\Omega), W^{1,p(x)}(\Omega) \) and \(W^{1,p(x)}_0(\Omega) \) that will be often used in this work. For more details see Fan-Zhang [27] and the references therein.
Let $\Omega \subset \mathbb{R}^N$ ($N \geq 1$) be a bounded domain. Given $p \in L^\infty_+(\Omega)$, we define the generalized Lebesgue space

$$L^{p(x)}(\Omega) = \{ u \in \mathcal{S}(\Omega) : \int_\Omega |u(x)|^{p(x)}\,dx < \infty \},$$

where $\mathcal{S}(\Omega) := \{ u : \Omega \to \mathbb{R} : u$ is measurable $\}$. Then $L^{p(x)}(\Omega)$ is a Banach space with the norm

$$|u|_{p(x)} := \inf \{ \lambda > 0 : \int_\Omega \frac{|u(x)|}{\lambda} d\mu \leq 1 \}.$$

Given $m \in L^\infty(\Omega)$, we define

$$m^+ := \text{ess sup}_\Omega m(x), \quad m^- := \text{ess inf}_\Omega m(x).$$

Proposition 2.1. Let $\rho(u) := \int_\Omega |u|^{p(x)}\,dx$. Then for $u, u_n \in L^{p(x)}(\Omega)$, and $n \in \mathbb{N}$, the following assertions hold

(i) Let $u \neq 0$ in $L^{p(x)}(\Omega)$, then $|u|_{L^{p(x)}} = \lambda \Leftrightarrow \rho(\frac{u}{\lambda}) = 1$.

(ii) If $|u|_{L^{p(x)}} < 1$ ($= 1$, > 1), then $\rho(u) < 1$ ($= 1$, > 1).

(iii) If $|u|_{L^{p(x)}} > 1$, then $|u|^p_{L^{p(x)}} \leq \rho(u) \leq |u|_{L^{p(x)}}^p$.

(iv) If $|u|_{L^{p(x)}} < 1$, then $|u|^p_{L^{p(x)}} \leq \rho(u) \leq |u|_{L^{p(x)}}^p$.

(v) $|u_n|_{L^{p(x)}} \to 0 \Leftrightarrow \rho(u_n) \to 0$, and $|u_n|_{L^{p(x)}} \to \infty \Leftrightarrow \rho(u_n) \to \infty$.

Theorem 2.2. Let $p, q \in L^\infty_+(\Omega)$. Then the following statements hold

(i) If $p^{-} > 1$ and $\frac{1}{q(x)} = \frac{1}{p(x)} = 1$ a.e. in Ω, then

$$\left| \int_\Omega u v dx \right| \leq \left(\frac{1}{p} + \frac{1}{q} \right) |u|_{L^{p(x)}} |v|_{L^{q(x)}}.$$

(ii) If $q(x) \leq p(x)$ a.e. in Ω and $|\Omega| < \infty$, then $L^{p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$.

We define the generalized Sobolev space as

$$W^{1,p(x)}(\Omega) := \{ u \in L^{p(x)}(\Omega) : \frac{\partial u}{\partial x_j} \in L^{p(x)}(\Omega), j = 1, \ldots, N \}$$

with the norm

$$\| u \|_* = |u|_{L^{p(x)}} + \sum_{j=1}^N |\frac{\partial u}{\partial x_j}|_{L^{p(x)}}.$$

The space $W^{1,p(x)}_0(\Omega)$ is defined as the closure of $C^\infty_0(\Omega)$ with respect to the norm $\| \cdot \|_*$.

Theorem 2.3. If $p^{-} > 1$, then $W^{1,p(x)}(\Omega)$ is a Banach, separable and reflexive space.

Proposition 2.4. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain and $p, q \in C(\overline{\Omega})$. Define the function $p^*(x) = \frac{Np(x)}{N-p(x)}$ if $p(x) < N$ and $p^*(x) = \infty$ if $N \geq p(x)$. Then the following statements hold.

(i) (Poincaré inequality) If $p^{-} > 1$, then there is a constant $C > 0$ such that

$$|u|_{L^{p(x)}} \leq C|\nabla u|_{L^{p(x)}}$$

for all $u \in W^{1,p(x)}_0(\Omega)$.

(ii) If $p^{-}, q^{-} > 1$ and $q(x) < p^*(x)$ for all $x \in \overline{\Omega}$, then the embedding

$W^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$

is continuous and compact.

From (i) of Proposition 2.4 we have that $\| u \| := |\nabla u|_{L^{p(x)}}$ defines a norm in $W^{1,p(x)}_0(\Omega)$ which is equivalent to the norm $\| \cdot \|_*$.
Definition 2.5. For \(u, v \in W^{1,p(x)}(\Omega) \), we say that \(-\Delta_{p(x)}u \leq -\Delta_{p(x)}v \), if
\[
\int_\Omega |\nabla u|^{p(x)-2}\nabla u \nabla \varphi \leq \int_\Omega |\nabla v|^{p(x)-2}\nabla v \nabla \varphi,
\]
for all \(\varphi \in W_{0}^{1,p(x)}(\Omega) \) with \(\varphi \geq 0 \).

The following result appears in [29] Lemma 2.2 and [26] Proposition 2.3.

Proposition 2.6. Let \(u, v \in W^{1,p(x)}(\Omega) \). If \(-\Delta_{p(x)}u \leq -\Delta_{p(x)}v \) and \(u \leq v \) on \(\partial \Omega \), (i.e., \((u-v)^+ \in W_{0}^{1,p(x)}(\Omega)\)) then \(u \leq v \) in \(\Omega \). If \(u, v \in C(\bar{\Omega}) \) and \(S = \{ x \in \Omega : u(x) = v(x) \} \) is a compact set of \(\Omega \), then \(S = \emptyset \).

Lemma 2.7 ([26] Lemma 2.1). Let \(\lambda > 0 \) be the unique solution of the problem
\[
-\Delta_{p(x)}z \lambda = \lambda \quad \text{in } \Omega,
\]
\[
u = 0 \quad \text{on } \partial \Omega.
\]
Define \(\rho_0 = \frac{\rho^-}{2|\Omega| + C_0} \). If \(\lambda \geq \rho_0 \) then \(|z_\lambda|_{L^\infty} \leq C\lambda^{\frac{1}{p^*-1}} \), and \(|z_\lambda|_{L^\infty} \leq C\lambda^{\frac{1}{p^*-1}} \)
if \(\lambda < \rho_0 \). Here \(C^* \) and \(C_* \) are positive constants depending only on \(p^+, p^-, N, |\Omega| \) and \(C_0 \), where \(C_0 \) is the best constant of the embedding \(W_0^{1,1}(\Omega) \hookrightarrow L^{\infty}(\Omega) \).

Regarding the function \(z_\lambda \) of the previous result, it follows from [25] Theorem 1.2 and [29] Theorem 1) that \(z_\lambda \in C^1(\bar{\Omega}) \) with \(z_\lambda > 0 \) in \(\Omega \). The proof of Theorem 1.1 is mainly based on the following result by Rabinowitz:

Theorem 2.8 ([30]). Let \(E \) be a Banach space and \(\Phi : \mathbb{R}^+ \times E \to E \) a compact map such that \(\Phi(0,u) = 0 \) for all \(u \in E \). Then the equation
\[
u = \Phi(\lambda, u)
\]
possesses an unbounded continuum \(C \subset \mathbb{R}^+ \times E \) of solutions with \((0,0) \in C\).

We point out that a mapping \(\Phi : E \to E \) is compact if it is continuous and for each bounded subset \(U \subset E \), the set \(\Phi(U) \) is compact.

3. Proof of Main Results

Proof of Theorem 1.1. For \(i = 1, 2 \) consider the operators \(T_i : L^{p_i}(\Omega) \to L^\infty(\Omega) \) defined by
\[
T_i z(x) = \begin{cases} u_i(x), & \text{if } z(x) \leq u_i(x), \\ z(x), & \text{if } u_i(x) \leq z(x) \leq \bar{u}_i(x), \\ \bar{u}_i(x), & \text{if } z(x) \geq \bar{u}_i(x). \end{cases}
\]
Since \(T_i z \in [u_i, \bar{u}_i] \) and \(u_i, \bar{u}_i \in L^\infty(\Omega) \) it follows that the operators \(T_i \) are well-defined.

We define \(p'_i(x) = p_i(x)/(p_i(x) - 1) \) and consider the operators \(H_i : [u_1, \bar{u}_1] \times [u_2, \bar{u}_2] \to L^{p'_i}(\Omega) \) given by
\[
H_i(u_1, u_2)(x) = \frac{f_i(x, u_1(x), u_2(x))|u_j|_{L^{p'_i}(\Omega)}}{A(x, |u_j|_{L^{p'_i}(\Omega)})} + \frac{g_i(x, u_1(x), u_2(x))|u_j|_{L^{p'_i}(\Omega)}}{A(x, |u_j|_{L^{p'_i}(\Omega)})},
\]
where \(i \neq j \) with \(i, j = 1, 2 \), and \(| \cdot |_{L^{m}(\Omega)} \) denotes the norm of the space \(L^{m}(\Omega) \).

We consider in the space \(L^{p_1}(\Omega) \times L^{p_2}(\Omega) \) with the norm
\[
|\langle u, v \rangle|_{1,2} = |u|_{L^{p_1}} + |v|_{L^{p_2}}.
\]
Since \(f_i, g_i, \mathcal{A} \) are continuous functions, \(\mathcal{A}(x, t) > 0 \) in the compact set \(\overline{\Omega} \times [\sigma, \bar{\sigma}] \), \(T_i z_i \in [\underline{u}_i, \Pi_i] \) for all \(z_i \in L^{p_i}(\Omega) \), \(\underline{u}_i, \Pi_i \in L^\infty(\Omega) \), and \(|u_n^{\beta(x)}| \leq |w_n^{\beta(x)}| + |u_n^{\beta(x)}| \) for all \(w \in L^{m(x)}(\Omega) \) with \(\beta \in L^\infty(\Omega) \), it follows that there are constants \(K_i > 0 \) such that

\[
|H_i(T_1 z_1, T_2 z_2)| \leq K_i
\]

(3.1)

for all \((z_1, z_2) \in L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega) \).

By the Lebesgue Dominated Convergence Theorem, the mappings \((z_1, z_2) \mapsto H_i(T_1 z_1, T_2 z_2) \) are continuous from \(L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega) \) to \(L^{p_i(x)}(\Omega) \), \(i = 1, 2 \).

From [27, Theorem 4.1] the operator \(\Phi : \mathbb{R}^+ \times L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega) \mapsto L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega) \) given by

\[
\Phi(\lambda, z_1, z_2) = (u_1, u_2),
\]

where \((u_1, u_2) \in W_0^{1,p_1}(\Omega) \times W_0^{1,p_2}(\Omega) \) is the unique solution of

\[
\begin{align*}
-\Delta_{p_1(x)} u_1 &= \lambda H_i(T_1 z_1, T_2 z_2) \quad \text{in } \Omega, \\
-\Delta_{p_2(x)} u_2 &= \lambda H_i(T_1 z_1, T_2 z_2) \quad \text{in } \Omega, \\
u &= v = 0 \quad \text{on } \partial \Omega,
\end{align*}
\]

(3.2)

is well-defined.

Claim 1: \(\Phi \) is compact. Let \((\lambda_n, z_1^n, z_2^n) \subset \mathbb{R}^+ \times L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega) \) be a bounded sequence and consider \((u_1^n, u_2^n) = \Phi(\lambda_n, z_1^n, z_2^n) \). The definition of \(\Phi \) imply that

\[
\int_{\Omega} |\nabla u_n^{1,p_i}|^{-2} \nabla u_n \nabla \varphi = \lambda_n \int_{\Omega} H_i(T_1 z_1^n, T_2 z_2^n) \varphi, \quad \forall \varphi \in W_0^{1,p_i}(\Omega),
\]

where \(i, j = 1, 2 \) blue with \(i \neq j \).

Consider the test function \(\varphi = u_n \), the boundness of \((\lambda_n) \) and inequality (3.1), we obtain

\[
\int_{\Omega} |\nabla u_n^{1,p_i}| \leq \bar{\lambda} K_i \int_{\Omega} |u_n^{1,p_i}|,
\]

for all \(n \in \mathbb{N} \). Here \(\bar{\lambda} \) is a constant that does not depend on \(n \in \mathbb{N} \).

Since \(p_i > 1 \), the embedding \(L^{p_i(x)}(\Omega) \hookrightarrow L^1(\Omega) \) holds. Combining such embedding with the Poincaré inequality we obtain

\[
\int_{\Omega} |\nabla u_n^{1,p_i}| \leq C K_i \|u_n\|,
\]

for all \(n \in \mathbb{N} \). Suppose that \(|\nabla u_n|_{L^{p_i(x)}} > 1 \). Thus by Proposition 2.1 we have \(\|u_n\|_p^{-1} \leq C K_i \) for all \(n \in \mathbb{N} \) where \(C \) is a constant that does not depend on \(n \). Then we conclude that \((u_n) \) is bounded in \(W_0^{1,p_i}(\Omega) \). The reflexivity of \(W_0^{1,p_i}(\Omega) \) and the compact embedding \(W_0^{1,p_i}(\Omega) \hookrightarrow L^{p_i(x)}(\Omega) \) provides the result.

Claim 2: \(\Phi \) is continuous. Consider a sequence \((\lambda_n, z_1^n, z_2^n) \in \mathbb{R}^+ \times L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega) \) converging to \((\lambda, z_1, z_2) \in \mathbb{R}^+ \times L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega) \). Define \((u_n, u_n) = \Phi(\lambda_n, z_1^n, z_2^n) \) and \((u_1, u_2) = \Phi(\lambda, z_1, z_2) \). Using the definition of \(\Phi \) we obtain

\[
\begin{align*}
\int_{\Omega} |\nabla u_n^{1,p_i}|^{-2} \nabla u_n \nabla \varphi &= \lambda_n \int_{\Omega} H_i(T_1 z_1^n, T_2 z_2^n) \varphi, \quad (3.3) \\
\int_{\Omega} |\nabla u^{1,p_i}|^{-2} \nabla u \nabla \varphi &= \lambda \int_{\Omega} H_i(T_1 z_1, T_2 z_2) \varphi \quad (3.4)
\end{align*}
\]
for all $\varphi \in W_0^{1,p_i}(\Omega)$ where $i, j = 1, 2$ and $i \neq j$.

Considering $\varphi = (u_i^j - u^j)$ in (3.3) and (3.4) and subtracting (3.4) from (3.3) we obtain

$$
\int_{\Omega} \langle |\nabla u_n^i|^{p_i(x)} - 2 \nabla u_n^i - |\nabla u^i|^{p_i(x)} - 2 \nabla u^i, \nabla (u_n^i - u^i) \rangle
= \int_{\Omega} \lambda_n H_i(T_1 z_n^i, T_2 z_n^2)(u_n^i - u^i) - \int_{\Omega} \lambda H_i(T_1 z_n^1, T_2 z_n^2)(u_n^i - u^i).
$$

Using Hölder’s inequality we have

$$
|\int_{\Omega} \langle |\nabla u_n^i|^{p_i(x)} - 2 \nabla u_n^i - |\nabla u^i|^{p_i(x)} - 2 \nabla u^i, \nabla (u_n^i - u^i) \rangle| \\
\leq |u_n^i - u^i|_{p_i(x)} |\lambda_n H_i(T_1 z_n^i, T_2 z_n^2) - \lambda H_i(T_1 z_n^1, T_2 z_n^2)|_{p_i(x)}.
$$

The arguments above ensures that (u^i_n) is bounded in $W_0^{1,p_i(x)}(\Omega)$. Since $\lambda_n \to \lambda$ and $H_i(T_1 z_n^i, T_2 z_n^2) \to H_i(T_1 z^i, T_2 z^2)$ in $L^{p_i}(\Omega)$ for $i = 1, 2$ we have

$$
|\int_{\Omega} \langle |\nabla u_n^i|^{p_i(x)} - 2 \nabla u_n^i - |\nabla u^i|^{p_i(x)} - 2 \nabla u^i, \nabla (u_n^i - u^i) \rangle| \to 0.
$$

Therefore $u_n^i \to u^i$ in $L^{p_i}(\Omega)$ for $i = 1, 2$ which proves the continuity of Φ.

Combining the fact that $\Phi(0, z_1, z_2) = (0, 0, 0)$ for all $(z_1, z_2) \in L^{p_1}(\Omega) \times L^{p_2}(\Omega)$ with the previous claims we have by Theorem 2.8 that the equation $\Phi(\lambda, u, v) = (u, v)$ possesses an unbounded continuum $C \subset \mathbb{R}^+ \times L^{p_1}(\Omega) \times L^{p_2}(\Omega)$ of solutions with $(0, 0, 0) \in C$.

Claim 3: C is bounded with respect to the parameter λ. Suppose that there exists $\lambda^* > 0$ such that $\lambda \leq \lambda^*$ for all $(\lambda, u^1, u^2) \in C$. For $(\lambda, u^1, u^2) \in C$ the definition of Φ imply that

$$
-\Delta_{p_i(x)} u_1 = \lambda H_i(T_1 u_1, T_2 u_2) \quad \text{in} \quad \Omega, \\
-\Delta_{p_2(x)} u_2 = \lambda H_2(T_1 u_1, T_2 u_2) \quad \text{in} \quad \Omega,
$$

$$
u_1 = u_2 = 0 \quad \text{on} \quad \partial \Omega. \tag{3.5}
$$

Using the test function u_i in (3.5) and considering (3.1) we obtain

$$
\int_{\Omega} |\nabla u_i|^{p_i(x)} \leq \lambda^* C|u_i|_{L^{p_i}(\Omega)}.
$$

Suppose that $|\nabla u_i|_{L^{p_i}(\Omega)} > 1$. Then using Proposition 2.1 and the Poincaré inequality we obtain that

$$
|u_i|^{p_i-1}_{L^{p_i}(\Omega)} \leq \lambda^* C.
$$

Thus C is bounded in $\mathbb{R}^+ \times L^{p_1}(\Omega) \times L^{p_2}(\Omega)$, which is a contradiction.

Considering $\lambda = 1$, by (3.5) we have

$$
\int_{\Omega} |\nabla u_i|^{p_i(x)} - 2 \nabla u_i \nabla \varphi = \int_{\Omega} \left(f_i(x, T_1 u_1, T_2 u_2)|T_j u_j|^{\alpha_i(x)}_{L^{p_i}(\Omega)} \right) \nabla \varphi + \int_{\Omega} \left(g_i(x, T_1 u_1, T_2 u_2)|T_j u_j|^{\gamma_i(x)}_{L^{p_i}(\Omega)} \right) \varphi, \tag{3.6}
$$

for all $\varphi \in W_0^{1,p_i(x)}(\Omega)$ where $i, j = 1, 2$ with $i \neq j$.

Now we claim that \(u_i \in [\underline{u}_i, \bar{u}_i] \) for \(i = 1, 2 \). To prove the claim we define
\[
L_1(u_1 - u_1)_+ := \int_{\{u_1 \geq u_1\}} \langle |\nabla u_1|^{p_1(x)-2}\nabla u_1 - |\nabla u_1|^{p_1(x)-2}\nabla u_1, \nabla (u_1 - u_1) \rangle.
\]
Using the facts that \(\int_{u_1}^{u_2} \underline{u} \in \underline{u}_i, \bar{u}_i \) > 0 a.e. in \(\Omega \), \(i = 1, j = 2 \), considering \(w = \int_{u_1}^{u_2} \phi \) and \(\varphi = (u_1 - u_1)_+ \) in the first inequality of \([1,3]\) and combining with equation \([4.6]\) we obtain
\[
L_1(u_1 - u_1)_+ \leq \int_{\{u_1 \geq u_1\}} \frac{f_1(x, u_1, T_{2u_2})\langle |u_2|^{\alpha_1(x)_{u_1}} - |T_{2u_2}|^{\alpha_1(x)} \rangle}{A(x, |T_{2u_2}|^{\alpha_1(x)})} (u_1 - u_1) + \int_{\{u_1 \geq u_1\}} \frac{g_1(x, u_1, T_{2u_2})\langle |u_2|^{\gamma_1(x)} - |T_{2u_2}|^{\gamma_1(x)} \rangle}{A(x, |T_{2u_2}|^{\alpha_1(x)})} (u_1 - u_1),
\]
which implies that
\[
\int_{\{u_1 \geq u_1\}} \langle |\nabla u_1|^{p_1(x)-2}\nabla u_1 - |\nabla u_1|^{p_1(x)-2}\nabla u_1, \nabla (u_1 - u_1) \rangle \leq 0.
\]
Therefore \(\underline{u}_1 \leq u_1 \). The same reasoning imply the other inequalities. Since \(u_i \in [\underline{u}_i, \bar{u}_i] \), we have \(T_i u_i = u_i \). Therefore the pair \((u_1, u_2)\) is a weak positive solution of \((S)\). \(\square \)

4. Applications

In this section we apply Theorem \([1,1]\) to some nonlocal problems.

4.1. A sublinear problem: In this section, we use Theorem \([1,1]\) to study the nonlocal problem
\[
-\mathcal{A}(x, |v|^{\alpha_1(x)}, \nabla v) \Delta_{p_1(x)} u = (u^{\beta_1(x)} + v^{\gamma_1(x)}) |u|^{\alpha_1(x)} \text{ in } \Omega, \\
-\mathcal{A}(x, |u|^{\alpha_2(x)}, \nabla u) \Delta_{p_2(x)} v = (u^{\beta_2(x)} + v^{\gamma_2(x)}) |u|^{\alpha_2(x)} \text{ in } \Omega, \tag{4.1}
\]
\[
u = v = 0 \quad \text{on } \partial \Omega.
\]
This problem with \(p_1(x) \equiv p_1(x) = 2 \), was considered in [93]. The result in this section generalizes [93, Theorem 6].

Theorem 4.1. Suppose that \(p_i, q_i, r_i, s_i, i = 1, 2 \) satisfy \((H1)\) and \(\alpha_i, \beta_i \in L^\infty(\Omega) \), \(i = 1, 2 \). Assume also that
\[
0 < \alpha_i^+ + \gamma_i^+ < p_i^- - 1, \quad 0 < \frac{\alpha_i^+}{p_2 - 1} + \frac{\beta_i^+}{p_1 - 1} < 1,
\]
\[
0 < \alpha_i^+ + \gamma_i^+ < p_i^- - 1, \quad 0 < \frac{\alpha_i^+}{p_1 - 1} + \frac{\beta_i^+}{p_2 - 1} < 1
\]
for \(i = 1, 2 \). Let \(a_0 > 0 \) be a positive constant. Suppose that one of the following two sets of conditions holds
\[
\mathcal{A}(x, t) \geq a_0 \quad \text{in } \bar{\Omega} \times [0, \infty), \tag{4.2}
\]
or
\[
0 < \mathcal{A}(x, t) \leq a_0 \quad \text{in } \bar{\Omega} \times (0, \infty) \quad \text{and} \quad \lim_{t \to +\infty} \mathcal{A}(x, t) = a_\infty > 0 \quad \text{uniformly in } \Omega. \tag{4.3}
\]

Then \([4.1]\) has a positive solution.
Proof. Suppose that (4.2) holds. We will start by constructing \((\tilde{w}, \tilde{v})\). Let \(\lambda > 0\) be a positive number, which will be chosen later and denote by \(z_\lambda \in W^{1,p_1(x)}_0(\Omega) \cap L^\infty(\Omega)\) and \(y_\lambda \in W^{1,p_2(x)}_0(\Omega) \cap L^\infty(\Omega)\) the unique solutions of (2.1) respectively.

For \(\lambda > 0\) sufficiently large it follows from Lemma 2.7 that there is a constant \(K > 1\) that does not depend on \(\lambda\) such that

\[
0 < z_\lambda(x) \leq K\lambda^{\frac{1}{p_1-1}} \quad \text{in } \Omega, \tag{4.4}
\]

\[
0 < y_\lambda(x) \leq K\lambda^{\frac{1}{p_2-1}} \quad \text{in } \Omega. \tag{4.5}
\]

Since \(\alpha_1^+ + \gamma_1^+ < p_2 - 1\) and \(\frac{\alpha_1^+}{p_2-1} + \frac{\beta_1^+}{p_1-1} < 1\), it is possible to choose \(\lambda > 1\) such that (4.4), (4.5) and

\[
\frac{1}{a_0} (K^{\beta_1} \lambda^{\frac{\alpha_1^+}{p_2-1} + \frac{\alpha_1^+}{p_1-1} + K^{\gamma_1} \lambda^{\frac{\alpha_1^+}{p_2-1}}}) \max\{|K|^\alpha_1^-_{L^1(w)}; |K|^\alpha_1^+_{L^1(w)}\} \leq \lambda \tag{4.6}
\]

hold. By (4.4), (4.5), and (4.6), we obtain

\[
\frac{1}{a_0} (z_\lambda^\beta(x) + w^\gamma_1(x))|y_\lambda|^\alpha_1(x) \leq \lambda, \quad w \in [0, y_\lambda].
\]

Thus for \(w \in [0, z_\lambda]\) we obtain

\[
-\Delta_{p_1(x)} z_\lambda \geq \frac{1}{\mathcal{A}(x, |w|_{L^\gamma_1(x)})} (z_\lambda^\beta(x) + w^\gamma_1(x))|y_\lambda|^\alpha_1(x) \quad \text{in } \Omega,
\]

\[
z_\lambda = 0 \quad \text{on } \partial \Omega.
\]

Considering, if necessary, a larger \(\lambda > 0\), the previous reasoning imply that

\[
-\Delta_{p_2(x)} y_\lambda \geq \frac{1}{\mathcal{A}(x, |w|_{L^\gamma_2(x)})} (w^\delta_2(x) + y^\gamma_2(x))|z_\lambda|^\alpha_2(x) \quad \text{in } \Omega,
\]

\[
y_\lambda = 0 \quad \text{on } \partial \Omega,
\]

for all \(w \in [0, z_\lambda]\).

Now we construct \((\tilde{w}_i, \tilde{v}_i), i = 1, 2\). Since \(\partial \Omega\) is \(C^2\), there is a constant \(\delta > 0\) such that \(d \in C^2(\overline{\Omega}_3)\) and \(|\nabla d(x)| \equiv 1\), where \(d(x) := \text{dist}(x, \partial \Omega)\) and \(\overline{\Omega}_3 := \{x \in \overline{\Omega}; d(x) \leq 3\delta\}\). From [34, Page 12], we have that, for \(\sigma \in (0, \delta)\) sufficiently small, the function \(\phi_i = \phi_i(k, \sigma), i = 1, 2\) defined by

\[
\phi_i(x) = \begin{cases} e^{kd(x)} - 1 & \text{if } d(x) < \sigma, \\ e^{k\sigma} - 1 + \int_0^{d(x)} k e^{k\sigma} \left(\frac{2d - t}{2\sigma - t} \right)^{\frac{2}{p_1-1}} dt & \text{if } \sigma \leq d(x) < 2\delta, \\ e^{k\sigma} - 1 + \int_0^{2\delta} k e^{k\sigma} \left(\frac{2d - t}{2\sigma - t} \right)^{\frac{2}{p_1-1}} dt & \text{if } 2\delta \leq d(x), \end{cases}
\]

belongs to \(C^1_0(\overline{\Omega})\), where \(k > 0\) is an arbitrary number and that

\[
-\Delta_{p_i(x)} (\mu \phi_i)
\]
for all \(\mu > 0 \) and \(i = 1, 2 \).

Define \(\mathcal{A}_\lambda := \max \{ \mathcal{A}(x, t) : (x, t) \in \overline{\Omega} \times \left[0, \max\{ |y_\lambda|_{L^1(\Omega)} \} \right] \} \). Then we have

\[
a_0 \leq \mathcal{A}(x, |w|_{L^1(\Omega)}) \leq \mathcal{A}_\lambda \quad \text{in } \Omega
\]

for all \(w \in [0, y_\lambda] \). Let \(\sigma = \frac{1}{k} \ln 2 \) and \(\mu = e^{-ak} \) where

\[
a = \frac{\min\{p_1 - 1, p_2 - 1\}}{\max\{\max_{\overline{\Omega}} |\nabla p_1| + 1, \max_{\overline{\Omega}} |\nabla p_2| + 1\}}.
\]

Then \(e^{k\sigma} = 2 \) and \(k\mu \leq 1 \) if \(k > 0 \) is sufficiently large.

Let \(x \in \Omega \) with \(d(x) < \sigma \). If \(k > 0 \) is large enough we have \(|\nabla d(x)| = 1 \) and then

\[
|d(x) + \frac{\ln(k\mu)}{k}| |\nabla p_1(x)||\nabla d(x)| \leq \left(|d(x)| + \frac{|\ln(k\mu)|}{k} \right) |\nabla p_1(x)|
\]

\[
\leq \left(\sigma - \frac{|\ln(k\mu)|}{k} \right) |\nabla p_1(x)|
\]

\[
eq \left(\frac{\ln 2}{k} - \frac{|\ln(k\mu)|}{k} \right) |\nabla p_1(x)| + a|\nabla p_1(x)|
\]

\[
< p_1^{-1} - 1.
\]

Note also that there exists a constant \(A > 0 \), that does not depend on \(k \), such that \(|\Delta d(x)| < A \) for all \(x \in \partial \Omega_{\delta} \). Using the last inequality and the expression of \(-\Delta d(x)(\mu \phi_1) \), we obtain \(-\Delta d(x)(\mu \phi_1) \leq 0 \) for \(x \in \Omega \) with \(d(x) < \sigma \) or \(d(x) > 2\delta \) for \(k > 0 \) large enough. Therefore

\[
-\Delta p_1(x)(\mu \phi_1) \leq 0 \leq \frac{1}{\mathcal{A}_\lambda} (\mu \phi_1)^{\alpha_1(x)} |\mu \phi_2|_{L^1(\Omega)}^{\alpha_1(x)}
\]

\[
\leq \frac{1}{\mathcal{A}_\lambda} ((\mu \phi_1)^{\alpha_1(x)} + |w|^{\gamma_1(x)}) |\mu \phi_2|_{L^1(\Omega)}^{\alpha_1(x)}
\]

for all \(w \in L^\infty(\Omega) \) with \(w \geq \mu \phi_2 \) and \(d(x) < \sigma \) or \(2\delta < d(x) \). Using the idea in the proof of [44] estimate (3.10) we obtain

\[
-\Delta p_1(x)(\mu \phi_1) \leq \tilde{C}(k\mu)^{p_1^{-1}} |\ln(k\mu)|
\]

\[
= \frac{\tilde{C}(k\mu)^{p_1^{-1}} |\ln(k\mu)|}{e^{ak}} \quad \text{if } \sigma < d(x) < 2\delta.
\]

From the proof of [44] Theorem 2] and the fact that \(\alpha_1^+ + \gamma_1^+ < p_1^- - 1 \) we obtain

\[
\lim_{k \to +\infty} \frac{\tilde{C}(k\mu)^{p_1^{-1}} |\ln(k\mu)|}{e^{ak}} = 0.
\]

Note that \(\alpha_1(x) \geq 1 \) if \(\sigma < d(x) < 2\delta \) because \(\alpha_1(x) \geq e^{k\sigma} - 1 \) and \(e^{k\sigma} = 2 \) for all \(k > 0 \). Thus, there is a constant \(C_0 > 0 \) that does not depend on \(k \) such that
for all \(\omega \). By \((4.9) \), we can choose \(k > 0 \) large enough such that
\[
\frac{\mathcal{C}k^{p^*_1-1}}{\epsilon^{ak[(p^*_1-1)-(\alpha^*_1+\beta^*_1)]}} |\ln \frac{k}{\epsilon^{ak}}| \leq \frac{C_0}{\mathcal{A}_\lambda}, \tag{4.10}
\]
Therefore from \((4.8) \) and \((4.10) \) we have
\[
-\Delta_{p_1(x)}(\mu \phi_1) \leq \frac{1}{\mathcal{A}_\lambda}((\mu \phi_1)^{\beta_1(x)} + w^{\gamma_1(x)})|\mu \phi_2|^{\alpha_1(x)}_{L^1(x)} \leq \frac{1}{\mathcal{A}_\lambda}|\mu \phi_2|^{\alpha_1(x)}_{L^1(x)},
\]
for all \(w \in L^\infty(\Omega) \) with \(w \geq \mu \phi_2 \) and \(\sigma < d(x) < 2\delta \) for \(k > 0 \) large enough. Thus it is possible to conclude that
\[
-\Delta_{p_1(x)}(\mu \phi_1) \leq \frac{1}{\mathcal{A}_\lambda}((\mu \phi_1)^{\beta_1(x)} + w^{\gamma_1(x)})|\mu \phi_2|^{\alpha_1(x)}_{L^1(x)} \leq \frac{1}{\mathcal{A}_\lambda}|\mu \phi_2|^{\alpha_1(x)}_{L^1(x)} \text{ in } \Omega.
\]
Fix \(k > 0 \) satisfying the above property and \(-\Delta_{p_1(x)}(\mu \phi_1) \leq 1 \). For \(\lambda > 1 \) we have \(-\Delta_{p_1(x)}(\mu \phi_1) \leq -\Delta_{p_1(x)}\cdot \leq \lambda \). Therefore \(\mu \phi_1 \leq \lambda \). Since \(\alpha^*_2 + \gamma^*_2 < p^*_2 - 1 \), a similar reasoning imply that there is \(\mu > 0 \) small enough such that
\[
-\Delta_{p_2(x)}(\mu \phi_2) \leq \frac{1}{\mathcal{A}(\Omega)}(w^{\beta_2} + (\mu \phi_2)^{\gamma_2})|\mu \phi_1|^{\alpha_2(x)}_{L^1(x)} \leq \frac{1}{\mathcal{A}(\Omega)}|\mu \phi_1|^{\alpha_2(x)}_{L^1(x)} \text{ in } \Omega \tag{4.11}
\]
for all \(w \in L^\infty(\Omega) \) with \(w \geq \mu \phi_1 \) and that \(\mu \phi_2 \leq y_\lambda \). The first part of the result is proved.

Now suppose that \(0 < \mathcal{A}(x, t) \leq a_0 \) in \(\Omega \times (0, \infty) \). Let \(\delta, \sigma, \mu, a, \lambda, z_\lambda, y_\lambda \) and \(\phi_i \) for \(i = 1, 2 \) as before. From the previous arguments there exist \(k > 0 \) large enough and \(\mu > 0 \) small such that
\[
-\Delta_{p_1(x)}(\mu \phi_1) \leq 1, \quad -\Delta_{p_1(x)}(\mu \phi_1) \leq \frac{1}{a_0}((\mu \phi_1)^{\beta_1(x)} + w^{\gamma_1(x)})|\mu \phi_2|^{\alpha_1(x)}_{L^1(x)} \leq \frac{1}{a_0}|\mu \phi_2|^{\alpha_1(x)}_{L^1(x)} \text{ in } \Omega \tag{4.11}
\]
in \(\Omega \) for all \(w \in [\mu \phi_2, y_\lambda] \), and
\[
-\Delta_{p_2(x)}(\mu \phi_2) \leq 1, \quad -\Delta_{p_2(x)}(\mu \phi_2) \leq \frac{1}{a_0}(w^{\beta_2} + (\mu \phi_2)^{\gamma_2})|\mu \phi_1|^{\alpha_2(x)}_{L^2(x)} \leq \frac{1}{a_0}|\mu \phi_1|^{\alpha_2(x)}_{L^2(x)} \text{ in } \Omega \tag{4.12}
\]
in \(\Omega \) for all \(w \in [\mu \phi_1, y_\lambda] \).

Since \(\lim_{t \to \infty} \mathcal{A}(x, t) = a_\infty > 0 \) uniformly in \(\Omega \) there is a large constant \(a_1 > 0 \) such that \(\mathcal{A}(x, t) \geq \frac{a_\infty}{2} \) on \(\Omega \times (a_1, \infty) \). Let
\[
m_k := \min \left\{ \mathcal{A}(x, t) : (x, t) \in \Omega \times [\min\{|\mu \phi_1|_{L^1(x)}, |\mu \phi_2|_{L^2(x)}\}, a_1]\right\} > 0
\]
and \(\mathcal{A}_k := \min \left\{ m_k, \frac{a_\infty}{2}\right\} \). Then we have
\[
\mathcal{A}(x, t) \geq \mathcal{A}_k \text{ in } \Omega \times [\min\{|\mu \phi_1|_{L^1(x)}, |\mu \phi_2|_{L^2(x)}\}, \infty).
\]
Fix \(k > 0 \) satisfying \((4.11) \) and \((4.12) \). Consider \(\lambda > 1 \) such that \((4.4), (4.5) \) and
\[
\frac{1}{\mathcal{A}_k} \left(K^{\beta_1^*} \frac{\alpha^*_1}{p^*_1 - 1} + \frac{\alpha^*_1}{p^*_2 - 1} + K^{\gamma_1^*} \frac{\alpha^*_1 + \gamma^*_1}{p^*_2 - 1} \right) \max\{|K|^{\alpha^*_1_{L^1(x)}}, |K|^{\alpha^*_1_{L^2(x)}}\} \leq \lambda,
\]
\[
\frac{1}{\mathcal{A}_k} \left(K^{\beta_2^*} \frac{\alpha^*_2}{p^*_1 - 1} + K^{\gamma_2^*} \frac{\alpha^*_2 + \gamma^*_2}{p^*_2 - 1} \right) \max\{|K|^{\alpha^*_2_{L^1(x)}}, |K|^{\alpha^*_2_{L^2(x)}}\} \leq \lambda,
\]
where \(K > 1 \) is a constant that does not depend on \(k \) or \(\lambda \) (see Lemma 2.7). Therefore,
\[
-\Delta_{p_1(x)} z_\lambda \leq \frac{1}{\mathcal{A}(x, |w|_{L^1(x)})}(z_\lambda^{\beta_1(x)} + w^{\gamma_1(x)})|y_\lambda|^{\alpha_1(x)}_{L^1(x)} \text{ in } \Omega, \quad w \in [\mu \phi_2, y_\lambda].
\]
Arguing as before and considering a suitable choice for \(\lambda \) and \(k \) we obtain

\[
-\Delta_{p_2}(x)y_\lambda \leq \frac{1}{A(x,|w|_{L^{r_1(x)}}^r)} (w^{\beta_2(x)} + \beta_\lambda^2(x)) |z_\lambda|_{L^{r_2(x)}}^2 \quad \text{in } \Omega, \quad w \in [\mu \phi_1, z_\lambda].
\]

The comparison principle implies that \(\mu \phi_1 \leq z_\lambda \) and \(\mu \phi_2 \leq y_\lambda \) if \(\mu \) is small. The proof is complete. \(\square \)

4.2. A concave-convex problem. In this section we consider the following non-local problem with concave-convex nonlinearities

\[
\begin{align*}
-\mathcal{A}(x,|v|_{L^{r_1(x)}}^r)u &= \lambda |v|^{\beta_1(x)-1}u|v|^{\alpha_1(x)}_{L^{r_1(x)}} + \theta |v|^{\eta(x)-1}u|v|^{\gamma_1(x)}_{L^{r_1(x)}} \quad \text{in } \Omega, \\
-\mathcal{A}(x,|u|_{L^{r_2(x)}}^r)v &= \lambda |v|^{\beta_2(x)-1}u|v|^{\alpha_2(x)}_{L^{r_2(x)}} + \theta |v|^{\eta(x)-1}u|v|^{\gamma_2(x)}_{L^{r_2(x)}} \quad \text{in } \Omega,
\end{align*}
\]

\(u = v = 0 \) on \(\partial \Omega. \) \hspace{1cm} (4.13)

The scalar and local version of (4.13) with \(p(x) \equiv 2 \) and constant exponents was considered in the famous paper by Ambrosetti-Brezis-Cerami \[43\] in which a supersolution argument is used. In \[43\], problem (4.13) was studied with \(p(x) \equiv 2. \) The following result generalizes \[43\, Theorem 7].

Theorem 4.2. Suppose that \(r_i, p_i, q_i, s_i, \alpha_i, \eta_i \) satisfy (H1) for \(i = 1, 2 \) and that \(\beta_i \in L^\infty(\Omega), i = 1, 2 \) are nonnegative functions with \(0 < \alpha_i^- + \beta_i^+ \leq \alpha_i^+ + \beta_i^- < p_i^- - 1, i = 1, 2. \) Let \(a_0, b_0 > 0 \) be positive numbers. Then the following assertions hold.

1. If \(p_2^- - 1 < \eta_2^- + \gamma_2^- \), \(p_1^- - 1 < \eta_2^- + \gamma_2^- \) and \(\mathcal{A}(x, s) \geq a_0 \) in \(\overline{\Omega} \times [0, b_0], \) then for each \(\theta > 0 \) there exists \(\lambda_0 > 0 \) such that for each \(\lambda \in (0, \lambda_0), \) problem (4.13) has a positive solution \(u_{\lambda, \theta}. \)

2. \(p_2^- - 1 < \eta_2^- + \gamma_2^- \) and

\[
\frac{\beta_1^+}{p_1^- - 1} + \frac{\alpha_1^+}{p_2^- - 1} < 1, \quad \frac{\beta_2^+}{p_2^- - 1} + \frac{\alpha_2^+}{p_1^- - 1} < 1.
\]

Suppose that \(0 < \mathcal{A}(x, s) \leq a_0 \) in \(\overline{\Omega} \times (0, \infty) \) and \(\lim_{s \to \infty} \mathcal{A}(x, s) = b_0 \) uniformly in \(\overline{\Omega}. \) Then given a \(\lambda > 0, \) there exists \(\theta_0 > 0 \) such that for each \(\theta \in (0, \theta_0), \) problem (4.13) has a positive solution \(u_{\lambda, \theta}. \)

Proof. Suppose that (1) occurs. Consider \(z_\lambda \in W^{1,p_1(x)}_0(\Omega) \cap L^\infty(\Omega) \) and \(y_\lambda \in W^{1,p_2(x)}_0(\Omega) \cap L^\infty(\Omega) \) the unique solutions of (2.1) respectively, where \(\lambda \in (0, 1) \) will be chosen later.

Lemma 2.7 imply that for \(\lambda > 0 \) small enough there exists a constant \(K > 1 \) that does not depend on \(\lambda \) such that

\[
0 < z_\lambda(x) \leq K \lambda^{\frac{1}{r_1^- - 1}} \quad \text{in } \Omega, \quad \mu > 0 \lambda \leq K \lambda^{\frac{1}{r_1^- - 1}} \quad \text{in } \Omega.
\]

To construct \(\pi_i \) we will prove, for each \(\theta > 0, \) that there exists \(\lambda_0 > 0 \) such that

\[
\frac{1}{a_0} \left(\lambda |z_\lambda|^{\beta_1(x)-1}z_\lambda|y_\lambda|^{\alpha_1(x)}_{L^{r_1(x)}} + \theta |w|^{\eta(x)-1}w|y_\lambda|^{\gamma_1(x)}_{L^{r_1(x)}} \right) \leq \lambda, \quad \forall w \in [0, y_\lambda], \quad (4.16)
\]

\[
\frac{1}{a_0} \left(\lambda |y_\lambda|^{\beta_2(x)-1}y_\lambda|z_\lambda|^{\alpha_2(x)}_{L^{r_2(x)}} + \theta |w|^{\eta(x)-1}w|z_\lambda|^{\gamma_2(x)}_{L^{r_2(x)}} \right) \leq \lambda, \quad \forall w \in [0, z_\lambda]. \quad (4.17)
\]
Let
\[K := \max_{i=1,2} \{ K^{\alpha_i^+} | K |_{L^1(x)}, K^{\alpha_i^-} | K |_{L^1(x)}, K^{\alpha_i^+} | K |_{L^1(x)}, K^{\alpha_i^-} | K |_{L^1(x)} \}. \tag{4.18} \]
Since \(0 < \alpha_1^+ + \beta_i^+ \) and \(p_i^+ - 1 < 1 \), there exists \(\lambda_0 > 0 \) such that
\[\frac{1}{a_0} \left(\lambda^{\frac{1}{p_i^+ - 1} + \frac{\alpha_i^-}{p_i^- - 1}} + \frac{\alpha_i^+}{p_i^- - 1} K + \theta \lambda^{\frac{1}{p_i^- - 1}} K \right) \leq \lambda, \tag{4.19} \]
for all \(\lambda \in (0, \lambda_0) \).

If necessary, we consider small \(\lambda_0 > 0 \) such that \(|y_\lambda| |x|_{L^1(x)} \leq |K| |x|_{L^1(x)} \lambda^{\frac{1}{p_i^- - 1}} \leq b_0 \) for all \(\lambda \in (0, \lambda_0) \). Therefore \(A(x, |w| |x|_{L^1(x)}) \geq a_0, w \in [0, y_\lambda] \). It follows from (4.14), (4.15) and (4.19) that (4.16) holds. Then we can conclude that
\[-\Delta_{p_i(x)} z_\lambda \geq \frac{1}{A(x, |w| |x|_{L^1(x)})} \left(\lambda \beta_i(x) |y_\lambda| + \theta w |x|_{L^1(x)} \right), \tag{4.20} \]
for all \(w \in [0, y_\lambda] \). Assume also that \(\lambda_0 \) satisfies
\[\frac{1}{a_0} \left(\lambda^{\frac{1}{p_i^+ - 1} + \frac{\alpha_i^-}{p_i^- - 1}} + \frac{\alpha_i^+}{p_i^- - 1} K + \theta \lambda^{\frac{1}{p_i^- - 1}} K \right) \leq \lambda \tag{4.21} \]
and \(|z_\lambda|_{L^1(x)} \leq |K| |x|_{L^1(x)} \lambda^{\frac{1}{p_i^- - 1}} \leq b_0 \) for all \(\lambda \in (0, \lambda_0) \). Therefore \(A(x, |w| |x|_{L^1(x)}) \geq a_0, w \in [0, z_\lambda] \). Thus from (4.14), (4.15) and (4.21) we have that (4.17) holds. Then we can conclude that
\[-\Delta_{p_2(x)} y_\lambda \geq \frac{1}{A(x, |w| |x|_{L^1(x)})} \left(\lambda \beta_2(x) |z_\lambda| + \theta w |x|_{L^1(x)} \right), \tag{4.22} \]
for all \(w \in [0, z_\lambda] \).

To construct \(u_i \) consider \(\phi_i, \delta, \sigma, \mu \) as in the proof of Theorem 4.1. Using the inequalities \(\alpha_i^+ + \beta_i^+ < p_i^+ - 1, i = 1, 2 \) and repeating the arguments of Theorem 4.1 we have that exists a number \(\mu > 0 \) such that
\[\mu \phi_1 \leq z_\lambda, \quad \mu \phi_2 \leq y_\lambda, \quad -\Delta_{p_1(x)} (\mu \phi_1) \leq \lambda, \]
\[-\Delta_{p_1(x)} (\mu \phi_1) \leq \frac{1}{A(x, |w| |x|_{L^1(x)})} \left(\lambda \beta_1(x) |\mu \phi_1| + \theta w |x|_{L^1(x)} \right), \]
for all \(w \in [\mu \phi_2, y_\lambda] \) and
\[-\Delta_{p_2(x)} (\mu \phi_2) \leq \lambda, \]
\[-\Delta_{p_2(x)} (\mu \phi_2) \leq \frac{1}{A(x, |w| |x|_{L^1(x)})} \left(\lambda \beta_2(x) |\mu \phi_2| + \theta w |x|_{L^1(x)} \right), \]
for all \(w \in [\mu \phi_2, z_\lambda] \). Then by Theorem 1.1 we have the desired result.

Now we consider the condition (2). Let \(\phi_i, \delta \) and \(\sigma_i, i = 1, 2 \) as in the first part of the result and let \(\lambda > 0 \) fixed. Since \(\alpha_i^+ + \beta_i^+ < p_i^+ - 1, i = 1, 2 \) there exists \(\mu > 0 \) depending only on \(\lambda \) such that
\[-\Delta_{p_1(x)} (\mu \phi_1) \leq 1, \quad -\Delta_{p_1(x)} (\mu \phi_2) \leq \frac{1}{a_0} \lambda (\mu \phi_i) |\mu \phi_j| |\phi_i|, \]
for \(w \in L^\infty(\Omega) \) with \(w \geq \mu \phi_j, i \neq j \) and \(i, j = 1, 2 \).

Let \(M > 0 \) that will be chosen later and assume \(z_M \in W_0^{1,p_1(\Omega)}(\Omega) \cap L^\infty(\Omega) \) is a solution of
\[-\Delta_{p_1(x)} z_M = M \text{ in } \Omega, \]
\[z_M = 0 \quad \text{on } \partial \Omega, \]
and \(y_M \in W_0^{1,p_2(x)}(\Omega) \cap L^\infty(\Omega) \) is a solution of
\[
-\Delta_{p_2(x)} y_M = M \quad \text{in } \Omega, \\
y_M = 0 \quad \text{on } \partial \Omega.
\]

For \(M \) large enough from Lemma 2.7 there exists a constant \(K > 1 \) that does not depend on \(M \) such that
\[
0 < z_M(x) \leq K M^{\frac{1}{\rho_1} - 1} \quad \text{in } \Omega, \tag{4.23}
\]
\[
0 < y_M(x) \leq K M^{\frac{1}{\rho_2} - 1} \quad \text{in } \Omega. \tag{4.24}
\]

To construct \(\pi_\varepsilon \) we will show that exist \(\theta_0 > 0 \) depending on \(\lambda \) with the following property: if we assume \(\theta \in (0, \theta_0) \) then there is a constant \(M \) depending only on \(\lambda \) and \(\theta \) satisfying
\[
M \geq \frac{1}{\mathcal{A}(x, |w|_{L^\infty(\varepsilon)})} \left(\lambda z_M^{\beta_1(x)} |y_M|_{L^{\rho_1}(\varepsilon)}^{\alpha_1(x)} + \theta w^{\eta_1(x)} |y_M|_{L^{\rho_1}(\varepsilon)}^{\gamma_1(x)} \right), \tag{4.25}
\]
for \(w \in [\mu \phi_2, y_M] \), and
\[
M \geq \frac{1}{\mathcal{A}(x, |w|_{L^{\rho_2}(\varepsilon)})} \left(\lambda y_M^{\beta_2(x)} |z_M|_{L^{\rho_2}(\varepsilon)}^{\alpha_2(x)} + \theta w^{\eta_2(x)} |z_M|_{L^{\rho_2}(\varepsilon)}^{\gamma_2(x)} \right), \tag{4.26}
\]
for \(w \in [\mu \phi_2, z_M] \).

Since \(\mathcal{A} \) is continuous and \(\lim_{t \to +\infty} \mathcal{A}(x, t) = b_0 > 0 \) uniformly in \(\Omega \), there exists \(a_1 > 0 \) large enough such that \(\mathcal{A}(x, t) \geq \frac{b_0}{2} \) in \(\overline{\Omega} \times (a_1, +\infty) \). Define
\[
m_\lambda := \{ \mathcal{A}(x, t) : (x, t) \in \overline{\Omega} \times [\min\{ |\mu \phi_1|_{L^{\rho_1}(\varepsilon)}, |\mu \phi_2|_{L^{\rho_2}(\varepsilon)} \}, a_1] \}
\]
and \(A_\lambda := \min\{ m_\lambda, \frac{b_0}{2} \} \). Then \(\mathcal{A}(x, t) \geq A_\lambda \) in \(\overline{\Omega} \times [\min\{ |\mu \phi_1|_{L^{\rho_1}(\varepsilon)}, |\mu \phi_2|_{L^{\rho_2}(\varepsilon)} \}, \infty) \). Thus \(A_\lambda \leq \mathcal{A}(x, |w|_{L^{\rho_2}(\varepsilon)}) \leq a_0 \) for all \(w \in L^{\infty}(\Omega) \) with \(|\mu \phi_1| \leq w \) or \(|\mu \phi_2| \leq w \). Note that from (4.23) and (4.24) the inequalities (4.25) and (4.26) hold if we have simultaneously the inequalities
\[
\frac{1}{A_\lambda} \left(\Lambda K M^{\rho_1} + \theta K M^{\rho_2} \right) \leq M,
\]
\[
\frac{1}{A_\lambda} \left(\Lambda K M^{\rho_2} + \theta K M^{\rho_1} \right) \leq M,
\]
where \(\Lambda \) is given by (4.18). To obtain such inequalities we will study the inequality
\[
\frac{1}{A_\lambda} \left(\Lambda K M^{\rho_1} + \theta K M^{\rho_2} \right) \leq 1 \tag{4.27}
\]
where
\[
\rho := \max \left\{ \frac{\beta_1^+}{p_1 - 1} + \frac{\alpha_1^+}{p_1 - 1}, \frac{\beta_2^+}{p_2 - 1} + \frac{\alpha_2^+}{p_1 - 1} \right\},
\]
\[
\tau := \max \left\{ \eta_1^+, \eta_2^+, \eta_1^+, \eta_2^+ \right\}.
\]

Define
\[
\Psi_{\lambda, \theta}(M) := \frac{\Lambda K}{A_\lambda} M^{\rho_1} + \frac{\theta K}{A_\lambda} M^{\rho_2}, \quad M > 0.
\]
Since $0 < \rho < 1$ and $\tau > 1$ we have $\lim_{M \to 0^+} \Psi_{\lambda, \theta}(M) = \lim_{M \to +\infty} \Psi_{\lambda, \theta}(M) = +\infty$. Note that $\Psi_{\lambda, \theta}'(M) = 0$ if, and only if

$$M = M_{\lambda, \theta} := \left(\frac{\lambda}{\hat{\theta}}\right) \frac{1}{\tau - \rho} c, \quad c := \left(\frac{1 - \rho}{\tau - 1}\right) \frac{1}{\tau - \rho}.$$ \hspace{1cm} (4.28)

From the above properties of $\Psi_{\lambda, \mu}$ we have that the global minimum of $\Psi_{\lambda, \theta}$ is attained at $M_{\lambda, \theta}$. The inequality (4.27) is equivalent to finding $M_{\lambda, \theta} > 0$ such that $\Psi_{\lambda, \theta}(M_{\lambda, \theta}) \leq 1$. By (4.28), we have that $\Psi_{\lambda, \theta}(M_{\lambda, \theta}) \leq 1$, if and only if

$$\frac{\lambda \bar{K}}{\lambda} \left(\frac{\lambda}{\hat{\theta}}\right)^{\frac{\rho - 1}{\tau - \rho}} c^{\rho - 1} + \theta^{1 - (\frac{\rho - 1}{\tau - \rho})} \frac{K}{\lambda} \left(\frac{\lambda}{\hat{\theta}}\right)^{\frac{\rho - 1}{\tau - \rho}} c^{\rho - 1} \leq 1.$$ \hspace{1cm} (4.29)

Thus from (4.28) and (4.29), we have that given $\lambda > 0$ there exists $\theta_0 > 0$ such that for each $\theta \in (0, \theta_0)$ there exists $M_{\lambda, \theta}$ satisfying

$$M_{\lambda, \theta} \geq 1 \quad \text{and} \quad \frac{1}{A_\lambda} \left(\frac{\lambda \bar{K}}{\lambda} \left(\frac{\lambda}{\hat{\theta}}\right)^{\frac{\rho - 1}{\tau - \rho}} c^{\rho - 1} + \theta^{1 - (\frac{\rho - 1}{\tau - \rho})} \frac{K}{\lambda} \left(\frac{\lambda}{\hat{\theta}}\right)^{\frac{\rho - 1}{\tau - \rho}} c^{\rho - 1}\right) \leq 1.$$

Therefore,

$$-\Delta_{p_1(x)} z_M \geq \frac{1}{A_\lambda} \left(\lambda z_M \beta_1(x) |y_M|^{\alpha_1(x)} + \theta w \gamma_1(x) |y_M|^{\gamma_1(x)}\right) \in \Omega,$$

for all $w \in [\mu \phi_2, y_M]$, and

$$-\Delta_{p_2(x)} y_M \geq \frac{1}{A_\lambda} \left(\lambda y_M \beta_2(x) |z_M|^{\alpha_2(x)} + \mu w \gamma_2(x) |z_M|^{\gamma_2(x)}\right) \in \Omega,$$

for all $w \in [\mu \phi_1, z_M]$. Since $M_{\lambda, \theta} \to +\infty$ as $\theta \to 0^+$ and the map $\theta \mapsto M_{\lambda, \theta}$ is decreasing we have

$$-\Delta_{p_1(x)} (\mu \phi_1) \leq 1 \leq M_{\lambda, \theta_0} \leq M_{\lambda, \theta}, \quad \theta \in (0, \theta_0)$$

for θ_0 small enough. Similarly, we have $-\Delta_{p_2(x)} (\mu \phi_2) \leq M_{\lambda, \theta_0} \leq M_{\lambda, \theta}$ for all $\theta \in (0, \theta_0)$, for θ_0 small. The weak maximum principle imply that $\mu \phi_1 \leq z_M$ and $\mu \phi_2 \leq y_M$. The proof is complete. \hfill \square

4.3. A generalization of the logistic equation.

In the previous sections, we considered at least one of the conditions $A(x, t) \geq a_0 > 0$ or $0 < A(x, t) \leq a_\infty$, $t > 0$. In this section we study a generalization of the classic logistic equation where the function $A(x, t)$ satisfies

$$A(x, 0) \geq 0, \quad \lim_{t \to 0^+} A(x, t) = \infty, \quad \text{and} \quad \lim_{t \to +\infty} A(x, t) = \pm \infty.$$

We consider the problem

$$-A(x, |v|_{L^{q_1}(x)}) \Delta_{p_1(x)} u = \lambda f_1(u)|v|_{L^{q_1}(x)}^{\alpha_1(x)} \quad \text{in} \ \Omega,$$

$$-A(x, |u|_{L^{q_2}(x)}) \Delta_{p_2(x)} v = \lambda f_2(v)u|v|_{L^{q_2}(x)}^{\alpha_2(x)} \quad \text{in} \ \Omega,$$

$$u = v = 0 \quad \text{on} \ \partial \Omega.$$ \hspace{1cm} (4.30)

We suppose that there are numbers $\theta_i > 0$, $i = 1, 2$ such that the functions $f_i : \ [0, \infty) \to \mathbb{R}$ satisfy the following conditions:

(H2) $f_i \in C^0([0, \theta_i], \mathbb{R})$, $i = 1, 2$;

(H3) $f_i(0) = f_i(\theta_i) = 0$, $f_i(t) > 0$ in $(0, \theta_i)$ for $i = 1, 2$.

Problem (4.30) is a generalization of the problemes studied in [16, 18, 43]. The next result generalizes [43, Theorem 8].
Theorem 4.3. Suppose that r_i, p_i, q_i, α_i satisfy (H1). Also that $f_i, i = 1, 2$ satisfies (H2), (H3) and that $A(x, t) > 0$ in $\overline{\Omega} \times (0, \max\{|\theta_1|_{L^{r_2}(\Omega)}^1, |\theta_2|_{L^{r_1}(\Omega)}^1\}]$. Then there exists $\lambda_0 > 0$ such that \(\ref{4.30}\) has a positive solution for $\lambda \geq \lambda_0$.

Proof. Consider the functions $\tilde{f}_i(t) = f_i(t)$ for $t \in [0, \theta_i]$, and $\tilde{f}_i(t) = 0$ for $t \in \mathbb{R} \setminus [0, \theta_i]$, $i = 1, 2$. The functional

$$J_\lambda(u, v) = \int_\Omega \frac{1}{p_1(x)}|\nabla u|^{p_1(x)}dx - \lambda \int_\Omega \tilde{F}_1(u)dx + \int_\Omega \frac{1}{p_2(x)}|\nabla v|^{p_2(x)}dx - \lambda \int_\Omega \tilde{F}_2(v)dx,$$

where $\tilde{F}_i(t) = \int_0^t \tilde{f}_i(s)ds$ is of class $C^1(W_0^{1, p_1(x)} \times W_0^{1, p_2(x)}(\Omega), \mathbb{R})$ and $W_0^{1, p_1(x)}(\Omega) \times W_0^{1, p_2(x)}(\Omega)$ is a Banach space endowed with the norm

$$|(u, v)| := \max\{||\nabla u|_{p_1(x)}, |\nabla v|_{p_2(x)}\}.$$

Since $|\tilde{f}_i(t)| \leq C$, $t \in \mathbb{R}$ for some constant which does not depends on $i = 1, 2$ we have that J is coercive. Thus J has a minimum $(z_\lambda, w_\lambda) \in W_0^{1, p_1(x)}(\Omega) \times W_0^{1, p_2(x)}(\Omega)$ with

$$-\Delta_{p_1(x)} z_\lambda = \lambda \tilde{f}_1(z_\lambda) \quad \text{in } \Omega, \quad z_\lambda = 0 \quad \text{on } \partial \Omega,$$

and

$$-\Delta_{p_2(x)} w_\lambda = \lambda \tilde{f}_2(w_\lambda) \quad \text{in } \Omega, \quad w_\lambda = 0 \quad \text{on } \partial \Omega.$$ \hspace{1cm} (4.31)

(4.32)

Note that the unique solutions of \(\ref{4.31}\) and \(\ref{4.32}\) are given by the minimizers of functionals $J_{1, \lambda}$ and $J_{2, \lambda}$ respectively.

Consider a function $\varphi_0 \in W_0^{1, p_1(x)}(\Omega), i = 1, 2$ with $\tilde{F}_i(\varphi_0) > 0$, $i = 1, 2$. Define $(z_0, w_0) := (z_{\bar{\lambda}_0}, w_{\bar{\lambda}_0})$, where $\tilde{\lambda}_0$ satisfies

$$\int_\Omega \frac{1}{p_1(x)}|\nabla \varphi_0|^{p_1(x)}dx < \tilde{\lambda}_0 \int_\Omega \tilde{F}_i(\varphi_0)dx, \quad i = 1, 2.$$

We have $J_{1, \tilde{\lambda}_0}(z_0) \leq J_{1, \tilde{\lambda}_0}(\varphi_0) < 0$ and that $J_{2, \tilde{\lambda}_0}(z_0) < 0$. Therefore $z_0 \neq 0$ and $w_0 \neq 0$. Since $-\Delta_{p_1(x)} z_0$ and $-\Delta_{p_2(x)} w_0$ are nonnegative, we have $z_0, w_0 > 0$ in Ω. Note that by \cite{28} Theorem 4.1 and \cite{25} Theorem 1.2, we obtain that $z_0, w_0 \in C^{1,\alpha}(\overline{\Omega})$ for some $\alpha \in (0, 1]$.

Using the test function $\varphi = (z_0 - \theta_1)^+ \in W_0^{1, p_1(x)}(\Omega)$ in \(\ref{4.31}\) we obtain

$$\int_{\{z_0 > \theta_1\}} |\nabla z_0|^{p_1(x)} - 2\nabla z_0 \nabla (z_0 - \theta_1)^+ dx = \tilde{\lambda}_0 \int_{\{z_0 > \theta_1\}} \tilde{f}_1(z_0)(z_0 - \theta_1)dx = 0.$$

Therefore,

$$\int_{\{z_0 > \theta_1\}} \langle |\nabla z_0|^{p_1(x)} - 2\nabla z_0 - |\nabla \theta_1|^{p_1(x)} - 2\nabla \theta_1, \nabla (z_0 - \theta_1)\rangle dx = 0,$$

which imply $(z_0 - \theta_1)^+ = 0$ in Ω. Thus $0 < z_0 \leq \theta_1$. A similar reasoning provides $0 < w_0 \leq \theta_2$.

Note that there is a constant $C > 0$ such that $|z_0|_{L^{r_2}(\Omega)}^{\alpha_1(\varepsilon)}$, $|w_0|_{L^{r_2}(\Omega)}^{\alpha_2(\varepsilon)} \geq C$. We define

$$A_0 = \max \{A(x, t) : (x, t) \in \overline{\Omega} \times [\min\{|z_0|_{L^{r_2}(\Omega)}^1, |w_0|_{L^{r_2}(\Omega)}^1\}],$$
max\{\|\theta_1\|_{L^{r_2}(x)}, \|\theta_2\|_{L^{r_1}(x)}\}\}
and \mu_0 = \frac{A_0}{C_0}. Then, we have
\begin{align*}
-\Delta p_1(x)z_0 &= \tilde{\lambda}_0 f_1(z_0) \\
&= \frac{1}{A_0} \tilde{\lambda}_0 \mu_0 f_1(z_0)\|w_0\|_{L^{r_1}(x)}^{\alpha_1(x)} \frac{A_0}{\mu_0} \|z_0\|_{L^{r_1}(x)}^{\alpha_2(x)} \\
&\leq \frac{1}{A_0} \tilde{\lambda}_0 \mu_0 f_1(z_0)\|w_0\|_{L^{r_1}(x)}^{\alpha_1(x)}.
\end{align*}
Thus for each \(\lambda \geq \lambda_0 : = \tilde{\lambda}_0 \mu_0\) and \(w \in [w_0, \theta_2]\), we obtain
\begin{align*}
-\Delta p_1(x)z_0 \leq \frac{1}{A(x,|w|_{L^{r_1}(x)})} \lambda f_1(z_0)\|w_0\|_{L^{r_1}(x)}^{\alpha_1(x)}.
\end{align*}
If necessary, we can consider a larger \(\lambda_0 > 0\) such that
\begin{align*}
-\Delta p_2(x)w_0 \leq \frac{1}{A(x,|w|_{L^{r_2}(x)})} \lambda f_2(w_0)\|z_0\|_{L^{r_2}(x)}^{\alpha_2(x)},
\end{align*}
for all \(\lambda \geq \lambda_0\) and \(w \in [z_0, \theta_1]\).
Since \(f_i(\theta_i) = 0\), \(i = 1, 2\), we have that \((z_0, \theta_1)\) and \((w_0, \theta_2)\) are sub-super solutions pairs for \((4.30)\). The proof is complete. \(\square\)

We remark that is possible to use the functions \(\phi_i\) from the proof of Theorem 4.1 for problem \((4.30)\). However, more restrictions on the functions \(p_i, f_i, i = 1, 2\) are needed.

Acknowledgements. G. M. Figueiredo thanks for the support by Coordenação de Aperfeiçoamento de Nível Superior (CAPES), by the Conselho Nacional de Desenvolvimento Científico (CNPq), and by the Fundação de Apoio a Pesquisa do Distrito Federal (FAPDF).

References

\((p(x), q(x))-\)Laplacian systems, 2016, https://doi.org/10.1080/17476933.2017.1298589

Gelson C. G. dos Santos
Universidade Federal do Pará, Faculdade de Matemática, CEP: 66075-110, Belém - PA, Brazil.
Email address: gelsonsantos@ufpa.br

Giovany M. Figueiredo
Universidade de Brasília, Departamento de Matemática, CEP: 70910-900, Brasília - DF, Brazil.
Email address: giovany@unb.br

Leandro S. Tavares
Universidade Federal do Cariri, Centro de Ciências e Tecnologia, CEP: 63048-080, Jucareiro do Norte – CE, Brazil.
Email address: leandros.tavares@ufca.edu.br