Electronic Journal of Differential Equations, Vol. 2020 (2020), No. 25, pp. 1–19. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

SUB-SUPER SOLUTION METHOD FOR NONLOCAL SYSTEMS INVOLVING THE p(x)-LAPLACIAN OPERATOR

GELSON C. G. DOS SANTOS, GIOVANY M. FIGUEIREDO, LEANDRO S. TAVARES

ABSTRACT. In this article we study the existence of solutions for nonlocal systems involving the p(x)-Laplacian operator. The approach is based on a new sub-super solution method.

1. INTRODUCTION

In this work we are interested in the nonlocal system

$$-\mathcal{A}(x,|v|_{L^{r_1(x)}})\Delta_{p_1(x)}u = f_1(x,u,v)|v|_{L^{q_1(x)}}^{\alpha_1(x)} + g_1(x,u,v)|v|_{L^{s_1(x)}}^{\gamma_1(x)} \quad \text{in } \Omega, -\mathcal{A}(x,|u|_{L^{r_2(x)}})\Delta_{p_2(x)}v = f_2(x,u,v)|u|_{L^{q_2(x)}}^{\alpha_2(x)} + g_2(x,u,v)|u|_{L^{s_2(x)}}^{\gamma_2(x)} \quad \text{in } \Omega,$$
$$u = v = 0 \quad \text{on } \partial\Omega,$$
$$(1.1)$$

where Ω is a bounded domain in $\mathbb{R}^N(N > 1)$ with C^2 boundary, $|\cdot|_{L^m(x)}$ is the norm of the space $L^{m(x)}(\Omega), -\Delta_{p(x)}u := -\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)$ is the p(x)-Laplacian operator, $r_i, p_i, q_i, s_i, \alpha_i, \gamma_i : \Omega \to [0, \infty), i = 1, 2$ are measurable functions and $\mathcal{A}, f_1, f_2, g_1, g_2 : \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ are continuous functions satisfying certain conditions.

In the previous decades there have been several works related to the p and p(x)Laplacian operator; see for example [1, 4, 9, 12, 25, 26, 27, 28, 29, 34, 35, 38, 39] and the references therein. Partial differential equations involving the p(x)-Laplacian arise in several areas of Science and Technology such as nonlinear elasticity, fluid mechanics, non-Newtonian fluids and image processing. Regarding the mentioned applications we point out [1, 14, 36, 41, 42].

The nonlocal term $|\cdot|_{L^{m(x)}}$ with the condition $p(x) = r(x) \equiv 2$ was considered in the well known Carrier's equation

$$\rho u_{tt} - a(x, t, |u|_{L^2}^2) \Delta u = 0$$

which models the vibrations of a elastic string under certain contidions. See [11] for more details. We also quote the applicability of such nonlocal term in Population Dynamics, see [15, 17]. Several works related to (1.1) in the *p*-Laplacian case, that is, with p(x) = p (a constant) can be found, see [10, 13, 19, 20, 23, 43] and the references provided in such manuscripts. For example Corrêa & Lopes [20] studied the system

$$-\Delta u^m = a |v|_{L^p}^\alpha \quad \text{in } \Omega,$$

sub-super solutions.

²⁰¹⁰ Mathematics Subject Classification. 35J60.

Key words and phrases. Fixed point argument; nonlocal problem; p(x)-Laplacian;

^{©2020} Texas State University.

Submitted April 9, 2019. Published March 19, 2020.

$$-\Delta v^n = b|u|_{L^q}^\beta \quad \text{in } \Omega, u = v = 0 \quad \text{on } \partial\Omega,$$

and in [13] a related system was considered using the Galerkin method.

In [19] the authors used a theorem due to Rabinowitz [40] to study the problem

$$\begin{aligned} -\Delta_{p_1} u &= |v|_{L^{q_1}}^{\alpha_1} & \text{in } \Omega, \\ -\Delta_{p_2} v &= |u|_{L^{q_2}}^{\alpha_2} & \text{in } \Omega, \\ u &= v = 0 \quad \text{on } \partial\Omega. \end{aligned}$$

The system

$$\begin{aligned} -\mathcal{A}(x,|v|_{L^{r_1(x)}})\Delta u &= f_1(x,u,v)|v|_{L^{q_1(x)}}^{\alpha_1(x)} + g_1(x,u,v)|v|_{L^{s_1(x)}}^{\gamma_1(x)} & \text{in } \Omega, \\ -\mathcal{A}(x,|u|_{L^{r_2(x)}})\Delta u &= f_2(x,u,v)|u|_{L^{q_2(x)}}^{\alpha_2(x)} + g_2(x,u,v)|u|_{L^{s_2(x)}}^{\gamma_2(x)} & \text{in } \Omega, \\ u &= v = 0 \quad \text{on } \partial\Omega, \end{aligned}$$

where $\mathcal{A}: \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ is a function satisfying some conditions, was considered in [43]. The approach in such paper consists in use an abstract result involving sub and supersolutions, whose proof is based on the Schaefer's fixed point theorem. Specifically, it was considered a sublinear system, a concave-convex problem and a system of logistic equations.

The scalar version of (1.1),

$$-\mathcal{A}(x,|u|_{L^{r(x)}})\Delta_{p(x)}u = f(x,u)|u|_{L^{q(x)}}^{\alpha(x)} + g(x,u)|u|_{L^{s(x)}}^{\gamma(x)} \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega.$$
 (1.2)

was considered in [44]. The authors obtained an abstract result involving sub and super solutions for (1.1) that generalizes [43, Theorem 1]. As an application of such result the authors generalized for the p(x)-Laplacian operator the three applications of [43, Theorem 1].

The goal of this work is to prove [43, Theorem 2] for the p(x)-Laplacian operator and use it in three applications of the mentioned paper. Thus, we provide a generalization of [43] with respect to systems with variable exponents. Next we describe the main differences and difficulties of this work when compared with [43].

(i) The homogeneity of the Laplacian operator $(-\Delta, H_0^1(\Omega))$ and the eigenfunction associated to the first eigenvalue were used in [43] for constructing a subsolution. Differently from the *p*-Laplacian $(p(x) \equiv p \text{ constant})$ the p(x)-Laplacian is not homogeneous. Besides that, it can occurs that the first eigenvalue and the first eigenfunction of the p(x)-Laplacian operator $(-\Delta_{p(x)}, W_0^{1,p(x)}(\Omega))$ do not exist. Even if the first eigenvalue and the associated eigenfunction exist the homogeneity, in general, does not allows to use the first eigenfunction to construct a subsolution. In order to avoid such difficulties we explore some arguments of [44].

(ii) Some arguments of [43] were improved and weaker conditions on $r_i, q_i, s_i, \alpha_i, \gamma_i, i = 1, 2$ are considered here.

(iii) We generalize [43, Theorem 2] and as an application it is considered some nonlocal problems that generalizes the three systems studied in [43].

(iv) As in [43, Theorem 2] and differently from several works that consider the nonlocal term $\mathcal{A}(x, |u|_{L^{r(x)}})$ satisfying $\mathcal{A}(x, t) \geq a_0 > 0$ (where a_0 is a constant), Theorem 1.1 permits us to study (1.1) in the mentioned case and in situations where $\mathcal{A}(x, 0) = 0$.

(v) The abstract result involving sub and super solutions is proved by using a different argument. It is used a theorem due to Rabinowitz that can be found in [40] and some arguments of [43] are improved.

In this work we assume that $r_i, p_i, q_i, s_i, \alpha_i, \gamma_i$ satisfy

(H1)
$$p_i \in C^1(\Omega), r_i, q_i, s_i \in L^{\infty}_+(\Omega)$$
, where

$$L^{\infty}_{+}(\Omega) = \left\{ m \in L^{\infty}(\Omega) \text{ with ess inf } m(x) \ge 1 \right\}$$

and for $i = 1, 2, \alpha_i, \gamma_i \in L^{\infty}(\Omega)$ and satisfy

$$1 < p_i^- := \inf_{\Omega} p_i(x) \le p_i^+ := \sup_{\Omega} p_i(x) < N, \quad \alpha_i(x), \gamma_i(x) \ge 0 \quad \text{a.e in } \Omega \,.$$

Some definitions are needed to present the main results. We say that the pair (u_1, u_2) is a weak solution of (1.1), if $u_i \in W_0^{1, p_i(x)}(\Omega) \cap L^{\infty}(\Omega)$ and

$$\int_{\Omega} |\nabla u_i|^{p_i(x)-2} \nabla u_i \nabla \varphi = \int_{\Omega} \Big(\frac{f_i(x, u_1, u_2) |u_j|_{L^{q_i(x)}}^{\alpha_i(x)}}{\mathcal{A}(x, |u_j|_{L^{r_i(x)}})} + \frac{g_i(x, u_1, u_2) |u_j|_{L^{s_i(x)}}^{\gamma_i(x)}}{\mathcal{A}(x, |u_j|_{L^{r_i(x)}})} \Big) \varphi,$$

for all $\varphi \in W_0^{1,p_i(x)}(\Omega)$ and $i \neq j$ with i, j = 1, 2. Given $u, v \in \mathcal{S}(\Omega)$ we write $u \leq v$ if $u(x) \leq v(x)$ a.e. in Ω . If $u \leq v$ we define

$$[u,v] := \left\{ w \in \mathcal{S}(\Omega) : u(x) \le w(x) \le v(x) \text{ a.e. in } \Omega \right\}.$$

To simplify the next definition we denote

$$\begin{split} f_1(x,t,s) &= f_1(x,t,s), \quad \widetilde{g}_1(x,t,s) = g_1(x,t,s), \\ \widetilde{f}_2(x,t,s) &= f_2(x,s,t), \quad \widetilde{g}_2(x,t,s) = g_2(x,s,t). \end{split}$$

We say that the pairs $(\underline{u}_i, \overline{u}_i), i = 1, 2$ are a sub-super solutions for (1.1) if $\underline{u}_i \in W_0^{1, p_i(x)}(\Omega) \cap L^{\infty}(\Omega), \overline{u}_i \in W^{1, p_i(x)}(\Omega) \cap L^{\infty}(\Omega)$ with $\underline{u}_i \leq \overline{u}_i, \underline{u}_i = 0 \leq \overline{u}_i$ on $\partial\Omega$ and for all $\varphi \in W_0^{1, p_i(x)}(\Omega)$ with $\varphi \geq 0$ the following inequalities hold

$$\int_{\Omega} |\nabla \underline{u}_{i}|^{p_{i}(x)-2} \nabla \underline{u}_{i} \nabla \varphi \leq \int_{\Omega} \Big(\frac{\widetilde{f}_{i}(x,\underline{u}_{i},w) |\underline{u}_{j}|_{L^{q_{i}(x)}}^{\alpha_{i}(x)}}{\mathcal{A}(x,|w|_{L^{r_{i}(x)}})} + \frac{\widetilde{g}_{i}(x,\underline{u}_{i},w) |\underline{u}_{j}|_{L^{s_{i}(x)}}^{\gamma_{i}(x)}}{\mathcal{A}(x,|w|_{L^{r_{i}(x)}})} \Big) \varphi,$$

$$\int_{\Omega} |\nabla \overline{u}_{i}|^{p_{i}(x)-2} \nabla \overline{u}_{i} \nabla \varphi \geq \int_{\Omega} \Big(\frac{\widetilde{f}_{i}(x,\overline{u}_{i},w) |\overline{u}_{j}|_{L^{q_{i}(x)}}^{\alpha_{i}(x)}}{\mathcal{A}(x,|w|_{L^{r_{i}(x)}})} + \frac{\widetilde{g}_{i}(x,\overline{u}_{i},w) |\overline{u}_{j}|_{L^{s_{i}(x)}}^{\gamma_{i}(x)}}{\mathcal{A}(x,|w|_{L^{r_{i}(x)}})} \Big) \varphi,$$

$$(1.3)$$

for all $w \in [\underline{u}_i \overline{u}_j]$ where i, j = 1, 2 with $i \neq j$. Our main result reads as follows.

Theorem 1.1. Suppose that $r_i, p_i, q_i, s_i, \alpha_i$ and γ_i satisfy (H1), that $(\underline{u}_i, \overline{u}_i)$ is a sub-super solution for (1.1) with $\underline{u}_i > 0$ a.e. in Ω , that $f_i(x, t, s), g_i(x, t, s) \ge 0$ in $\overline{\Omega} \times [0, |\overline{u}_1|_{L^{\infty}}] \times [0, |\overline{u}_2|_{L^{\infty}}]$ and that $\mathcal{A} : \overline{\Omega} \times (0, \infty) \to \mathbb{R}$ is a continuous function with $\mathcal{A}(x, t) > 0$ in $\overline{\Omega} \times [\underline{\sigma}, \overline{\sigma}]$, where $\underline{\sigma} := \min\{|\underline{w}|_{L^{r_i(x)}}, i = 1, 2\}, \overline{\sigma} := \max\{|\overline{w}|_{L^{r_i(x)}}, i = 1, 2\}, \underline{w} := \min\{\underline{u}_i, i = 1, 2\}$ and $\overline{w} := \max\{\overline{u}_i, i = 1, 2\}$. Then (1.1) has a weak positive solution (u_1, u_2) with $u_i \in [\underline{u}_i, \overline{u}_i], i = 1, 2$.

2. Preliminaries

In this section, we present some facts regarding the spaces $L^{p(x)}(\Omega)$, $W^{1,p(x)}(\Omega)$ and $W_0^{1,p(x)}(\Omega)$ that will be often used in this work. For more details see Fan-Zhang [27] and the references therein.

Let $\Omega \subset \mathbb{R}^N$ $(N \ge 1)$ be a bounded domain. Given $p \in L^{\infty}_{+}(\Omega)$, we define the generalized Lebesgue space

$$L^{p(x)}(\Omega) = \big\{ u \in \mathcal{S}(\Omega) : \int_{\Omega} |u(x)|^{p(x)} dx < \infty \big\},$$

where $\mathcal{S}(\Omega) := \{ u : \Omega \to \mathbb{R} : u \text{ is measurable} \}$. Then $L^{p(x)}(\Omega)$ is a Banach space with the norm

$$|u|_{p(x)} := \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{u(x)}{\lambda} \right|^{p(x)} dx \le 1 \right\}.$$

Given $m \in L^{\infty}(\Omega)$, we define

 $m^+ := \operatorname{ess\,sup}_{\Omega} m(x), \quad m^- := \operatorname{ess\,inf}_{\Omega} m(x).$

Proposition 2.1. Let $\rho(u) := \int_{\Omega} |u|^{p(x)} dx$. Then for $u, u_n \in L^{p(x)}(\Omega)$, and $n \in \mathbb{N}$, the following assertions hold

- (i) Let $u \neq 0$ in $L^{p(x)}(\Omega)$, then $|u|_{L^{p(x)}} = \lambda \Leftrightarrow \rho(\frac{u}{\lambda}) = 1$.
- (ii) If $|u|_{L^{p(x)}} < 1$ (= 1, > 1), then $\rho(u) < 1$ (= 1, > 1).
- (iii) If $|u|_{L^{p(x)}} > 1$, then $|u|_{L^{p(x)}}^{p^-} \le \rho(u) \le |u|_{L^{p(x)}}^{p^+}$.
- (iv) If $|u|_{L^{p(x)}} < 1$, then $|u|_{L^{p(x)}}^{p^+} \le \rho(u) \le |u|_{L^{p(x)}}^{p^-}$. (v) $|u_n|_{L^{p(x)}} \to 0 \Leftrightarrow \rho(u_n) \to 0$, and $|u_n|_{L^{p(x)}} \to \infty \Leftrightarrow \rho(u_n) \to \infty$.

Theorem 2.2. Let $p, q \in L^{\infty}_{+}(\Omega)$. Then the following statements hold

(i) If $p^- > 1$ and $\frac{1}{q(x)} + \frac{1}{p(x)} = 1$ a.e. in Ω , then

$$\left|\int_{\Omega} uvdx\right| \le \left(\frac{1}{p^{-}} + \frac{1}{q^{-}}\right)|u|_{L^{p(x)}}|v|_{L^{q(x)}}.$$

(ii) If $q(x) \leq p(x)$ a.e. in Ω and $|\Omega| < \infty$, then $L^{p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$.

We define the generalized Sobolev space as

$$W^{1,p(x)}(\Omega) := \left\{ u \in L^{p(x)}(\Omega) : \frac{\partial u}{\partial x_j} \in L^{p(x)}(\Omega), j = 1, \dots, N \right\}$$

with the norm

$$\|u\|_{*} = |u|_{L^{p(x)}} + \sum_{j=1}^{N} \left|\frac{\partial u}{\partial x_{j}}\right|_{L^{p(x)}}$$

The space $W_0^{1,p(x)}(\Omega)$ is defined as the closure of $C_0^{\infty}(\Omega)$ with respect to the norm $\|\cdot\|_{*}$.

Theorem 2.3. If $p^- > 1$, then $W^{1,p(x)}(\Omega)$ is a Banach, separable and reflexive space.

Proposition 2.4. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain and $p, q \in C(\overline{\Omega})$. Define the function $p^*(x) = \frac{Np(x)}{N-p(x)}$ if p(x) < N and $p^*(x) = \infty$ if $N \ge p(x)$. Then the following statements hold.

- (i) (Poincaré inequality) If $p^- > 1$, then there is a constant C > 0 such that
- (i) $|u|_{L^{p(x)}} \leq C|\nabla u|_{L^{p(x)}}$ for all $u \in W_0^{1,p(x)}(\Omega)$. (ii) If $p^-, q^- > 1$ and $q(x) < p^*(x)$ for all $x \in \overline{\Omega}$, then the embedding $W^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$ is continuous and compact.

From (i) of Proposition 2.4, we have that $||u|| := |\nabla u|_{L^{p(x)}}$ defines a norm in $W_0^{1,p(x)}(\Omega)$ which is equivalent to the norm $\|\cdot\|_*$.

Definition 2.5. For $u, v \in W^{1,p(x)}(\Omega)$, we say that $-\Delta_{p(x)}u \leq -\Delta_{p(x)}v$, if

$$\int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \nabla \varphi \leq \int_{\Omega} |\nabla v|^{p(x)-2} \nabla v \nabla \varphi,$$

for all $\varphi \in W_0^{1,p(x)}(\Omega)$ with $\varphi \ge 0$.

The following result appears in [29, Lemma 2.2] and [26, Proposition 2.3].

Proposition 2.6. Let $u, v \in W^{1,p(x)}(\Omega)$. If $-\Delta_{p(x)}u \leq -\Delta_{p(x)}v$ and $u \leq v$ on $\partial\Omega$, (i.e., $(u-v)^+ \in W^{1,p(x)}_0(\Omega)$) then $u \leq v$ in Ω . If $u, v \in C(\overline{\Omega})$ and $S = \{x \in \Omega : u(x) = v(x)\}$ is a compact set of Ω , then $S = \emptyset$.

Lemma 2.7 ([26, Lemma 2.1]). Let $\lambda > 0$ be the unique solution of the problem

$$-\Delta_{p(x)} z_{\lambda} = \lambda \quad in \ \Omega,$$

$$u = 0 \quad on \ \partial\Omega.$$
 (2.1)

Define $\rho_0 = \frac{p^-}{2|\Omega|^{\frac{1}{N}}C_0}$. If $\lambda \ge \rho_0$ then $|z_\lambda|_{L^{\infty}} \le C^*\lambda^{\frac{1}{p^--1}}$, and $|z_\lambda|_{L^{\infty}} \le C_*\lambda^{\frac{1}{p^+-1}}$ if $\lambda < \rho_0$. Here C^* and C_* are positive constants depending only on $p^+, p^-, N, |\Omega|$ and C_0 , where C_0 is the best constant of the embedding $W_0^{1,1}(\Omega) \hookrightarrow L^{\frac{N}{N-1}}(\Omega)$.

Regarding the function z_{λ} of the previous result, it follows from [25, Theorem 1.2] and [29, Theorem 1] that $z_{\lambda} \in C^1(\overline{\Omega})$ with $z_{\lambda} > 0$ in Ω . The proof of Theorem 1.1 is mainly based on the following result by Rabinowitz:

Theorem 2.8 ([40]). Let E be a Banach space and $\Phi : \mathbb{R}^+ \times E \to E$ a compact map such that $\Phi(0, u) = 0$ for all $u \in E$. Then the equation

$$u = \Phi(\lambda, u)$$

possesses an unbounded continuum $\mathcal{C} \subset \mathbb{R}^+ \times E$ of solutions with $(0,0) \in \mathcal{C}$.

We point out that a mapping $\Phi: E \to E$ is compact if it is continuous and for each bounded subset $U \subset E$, the set $\overline{\Phi(U)}$ is compact.

3. Proof of main results

Proof of Theorem 1.1. For i = 1, 2 consider the operators $T_i : L^{p_i(x)}(\Omega) \to L^{\infty}(\Omega)$ defined by

$$T_i z(x) = \begin{cases} \underline{u}_i(x), & \text{if } z(x) \leq \underline{u}_i(x), \\ z(x), & \text{if } \underline{u}_i(x) \leq z(x) \leq \overline{u}_i(x), \\ \overline{u}_i(x), & \text{if } z(x) \geq \overline{u}_i(x). \end{cases}$$

Since $T_i z \in [\underline{u}_i, \overline{u}_i]$ and $\underline{u}_i, \overline{u}_i \in L^{\infty}(\Omega)$ it follows that the operators T_i are well-defined.

We define $p'_i(x) = p_i(x)/(p_i(x) - 1)$ and consider the operators $H_i : [\underline{u}_1, \overline{u}_1] \times [\underline{u}_2, \overline{u}_2] \to L^{p'_i(x)}(\Omega)$ given by

$$H_{i}(u_{1}, u_{2})(x) = \frac{f_{i}(x, u_{1}(x), u_{2}(x))|u_{j}|_{L^{q_{i}(x)}}^{\alpha_{i}(x)}}{\mathcal{A}(x, |u_{j}|_{L^{r_{i}(x)}})} + \frac{g_{i}(x, u_{1}(x), u_{2}(x))|u_{j}|_{L^{s_{i}(x)}}^{\gamma_{i}(x)}}{\mathcal{A}(x, |u_{j}|_{L^{r_{i}(x)}})}$$

where $i \neq j$ with i, j = 1, 2, and $|\cdot|_{L^{m(x)}}$ denotes the norm of the space $L^{m(x)}(\Omega)$. We consider in the space $L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega)$ with the norm

$$|(u,v)|_{1,2} = |u|_{L^{p_1(x)}} + |v|_{L^{p_2(x)}}.$$

Since f_i, g_i, \mathcal{A} are continuous functions, $\mathcal{A}(x,t) > 0$ in the compact set $\overline{\Omega} \times [\underline{\sigma}, \overline{\sigma}]$, $T_i z_i \in [\underline{u}_i, \overline{u}_i]$ for all $z_i \in L^{p_i(x)}(\Omega)$, $\underline{u}_i, \overline{u}_i \in L^{\infty}(\Omega)$, and $|w|_{L^{m(x)}}^{\theta(x)} \leq |w|_{L^{m(x)}}^{\theta^-} + |w|_{L^{m(x)}}^{\theta^+}$ for all $w \in L^{m(x)}(\Omega)$ with $\theta \in L^{\infty}(\Omega)$, it follows that there are constants $K_i > 0$ such that

$$|H_i(T_1 z_1, T_2 z_2)| \le K_i \tag{3.1}$$

for all $(z_1, z_2) \in L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega)$.

By the Lebesgue Dominated Convergence Theorem, the mappings $(z_1, z_2) \mapsto H_i(T_1z_1, T_2z_2)$ are continuous from $L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega)$ in $L^{p'_i(x)}(\Omega)$, i = 1, 2.

From [27, Theorem 4.1] the operator $\Phi : \mathbb{R}^+ \times L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega) \to L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega)$ given by

$$\Phi(\lambda, z_1, z_2) = (u_1, u_2),$$

where $(u_1, u_2) \in W_0^{1, p_1(x)}(\Omega) \times W_0^{1, p_2(x)}(\Omega)$ is the unique solution of

$$-\Delta_{p_1(x)}u_1 = \lambda H_1(T_1z_1, T_2z_2) \quad \text{in } \Omega,$$

$$-\Delta_{p_2(x)}u_2 = \lambda H_2(T_1z_1, T_2z_2) \quad \text{in } \Omega,$$

$$u = v = 0 \quad \text{on } \partial\Omega,$$
(3.2)

is well-defined.

Claim 1: Φ is compact. Let $(\lambda_n, z_n^1, z_n^2) \subset \mathbb{R}^+ \times L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega)$ be a bounded sequence and consider $(u_n^1, u_n^2) = \Phi(\lambda_n, z_n^1, z_n^2)$. The definition of Φ imply that

$$\int_{\Omega} |\nabla u_n^i|^{p_i(x)-2} \nabla u_n \nabla \varphi = \lambda_n \int_{\Omega} H_i(T_1 z_n^1, T_2 z_n^2) \varphi, \quad \forall \varphi \in W_0^{1, p_i(x)}(\Omega),$$

where i, j = 1, 2 blue with $i \neq j$.

Considering the test function $\varphi = u_n^i$, the boundness of (λ_n) and inequality (3.1), we obtain

$$\int_{\Omega} |\nabla u_n^i|^{p_i(x)} \le \overline{\lambda} K_i \int_{\Omega} |u_n^i|$$

for all $n \in \mathbb{N}$. Here $\overline{\lambda}$ is a constant that does not depend on $n \in \mathbb{N}$.

Since $p_i^- > 1$, the embedding $L^{p_i(x)}(\Omega) \hookrightarrow L^1(\Omega)$ holds. Combining such embedding with the Poincaré inequality we obtain

$$\int_{\Omega} |\nabla u_n^i|^{p_i(x)} \le CK_i ||u_n^i||,$$

for all $n \in \mathbb{N}$. Suppose that $|\nabla u_n^i|_{L^{p_i(x)}} > 1$. Thus by Proposition 2.1 we have $||u_n^i||^{p^--1} \leq CK_i$ for all $n \in \mathbb{N}$ where C is a constant that does not depend on n. Then we conclude that (u_n^i) is bounded in $W_0^{1,p_i(x)}(\Omega)$. The reflexivity of $W_0^{1,p_i(x)}(\Omega)$ and the compact embedding $W_0^{1,p_i(x)}(\Omega) \hookrightarrow L^{p_i(x)}(\Omega)$ provides the result.

Claim 2: Φ is continuous. Consider a sequence $(\lambda_n, z_n^1, z_n^2)$ in $\mathbb{R}^+ \times L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega)$ converging to (λ, z^1, z^2) in $\mathbb{R}^+ \times L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega)$. Define $(u_n^1, u_n^2) = \Phi(\lambda, z_n^1, z_n^2)$ and $(u^1, u^2) = \Phi(\lambda, z^1, z^2)$. Using the definition of Φ we obtain

$$\int_{\Omega} |\nabla u_n^i|^{p_i(x)-2} \nabla u_n^i \nabla \varphi = \lambda_n \int_{\Omega} H_i(T_1 z_n^1, T_2 z_n^2) \varphi, \tag{3.3}$$

$$\int_{\Omega} |\nabla u^{i}|^{p_{i}(x)-2} \nabla u^{i} \nabla \varphi = \lambda \int_{\Omega} H_{i}(T_{1}z^{1}, T_{2}z^{2})\varphi$$
(3.4)

for all $\varphi \in W_0^{1,p_i(x)}(\Omega)$ where i, j = 1, 2 and $i \neq j$.

Considering $\varphi = (u_n^i - u^i)$ in (3.3) and (3.4) and subtracting (3.4) from (3.3) we obtain

$$\int_{\Omega} \left\langle |\nabla u_n^i|^{p_i(x)-2} \nabla u_n^i - |\nabla u^i|^{p_i(x)-2} \nabla u^i, \nabla (u_n^i - u^i) \right\rangle$$

=
$$\int_{\Omega} \lambda_n H(T_1 z_n^1, T_2 z_n^2) (u_n^i - u^i) - \int_{\Omega} \lambda H(T_1 z^1, T_2 z^2)](u_n^i - u^i).$$

Using Hölder's inequality we have

$$\begin{aligned} & \left| \int_{\Omega} \left\langle |\nabla u_n^i|^{p_i(x)-2} \nabla u_n^i - |\nabla u|^{p_i(x)-2} \nabla u^i, \nabla (u_n^i - u) \right\rangle \right| \\ & \leq |u_n^i - u^i|_{p_i(x)}|\lambda_n H_i(T_1 z_n^1, T_2 z_n^2) - \lambda H_i(T_1 z^1, T_2 z^2)|_{p_i'(x)} \end{aligned}$$

The arguments above ensures that (u_n^i) is bounded in $W_0^{1,p_i(x)}(\Omega)$. Since $\lambda_n \to \lambda$ and $H_i(T_1z_n^1, T_2z_n^2) \to H_i(T_1z^1, T_2z^2)$ in $L^{p'_i(x)}(\Omega)$ for i = 1, 2 we have

$$\left|\int_{\Omega} \left\langle |\nabla u_n^i|^{p_i(x)-2} \nabla u_n^i - |\nabla u|^{p_i(x)-2} \nabla u^i, \nabla (u_n^i-u) \right\rangle \right| \to 0.$$

Therefore $u_n^i \to u^i$ in $L^{p_i(x)}(\Omega)$ for i = 1, 2 which proves the continuity of Φ .

Combining the fact that $\Phi(0, z_1, z_2) = (0, 0, 0)$ for all $(z_1, z_2) \in L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega)$ with the previous claims we have by Theorem 2.8 that the equation $\Phi(\lambda, u, v) = (u, v)$ possesses an unbounded continuum $\mathcal{C} \subset \mathbb{R}^+ \times L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega)$ of solutions with $(0, 0, 0) \in \mathcal{C}$.

Claim 3: C is bounded with respect to the parameter λ . Suppose that there exists $\lambda^* > 0$ such that $\lambda \leq \lambda^*$ for all $(\lambda, u^1, u^2) \in C$. For $(\lambda, u^1, u^2) \in C$ the definition of Φ imply that

$$-\Delta_{p_1(x)}u_1 = \lambda H_1(T_1u_1, T_2u_2) \quad \text{in } \Omega, -\Delta_{p_2(x)}u_2 = \lambda H_2(T_1u_1, T_2u_2) \quad \text{in } \Omega, u_1 = u_2 = 0 \quad \text{on } \partial\Omega.$$
(3.5)

/ \

Using the test function u_i in (3.5) and considering (3.1) we obtain

$$\int_{\Omega} |\nabla u_i|^{p_i(x)} \le \lambda^* C |u_i|_{L^{p(x)}}.$$

Suppose that $|\nabla u_i|_{L^{p(x)}} > 1$. Then using Proposition 2.1 and the Poincaré inequality we obtain that

$$|u_i|_{L^{p_i(x)}}^{p_i-1} \le \lambda^* C.$$

Thus \mathcal{C} is bounded in $\mathbb{R}^+ \times L^{p_1(x)}(\Omega) \times L^{p_2(x)}(\Omega)$, which is a contradiction. Considering $\lambda = 1$, by (3.5) we have

$$\int_{\Omega} |\nabla u_{i}|^{p_{i}(x)-2} \nabla u_{i} \nabla \varphi = \int_{\Omega} \left(\frac{f_{i}(x, T_{1}u_{1}, T_{2}u_{2}) |T_{j}u_{j}|^{\alpha_{i}(x)}_{L^{q_{i}(x)}}}{\mathcal{A}(x, |T_{j}u_{j}|_{L^{r_{i}(x)}})} \right) \varphi + \int_{\Omega} \left(\frac{g_{i}(x, T_{1}u_{1}, T_{2}u_{2}) |T_{j}u_{j}|^{\gamma_{i}(x)}_{L^{s_{i}(x)}}}{\mathcal{A}(x, |T_{j}u_{j}|_{L^{r_{i}(x)}})} \right) \varphi,$$
(3.6)

for all $\varphi \in W_0^{1,p_i(x)}(\Omega)$ where i, j = 1, 2 with $i \neq j$.

Now we claim that $u_i \in [\underline{u}_i, \overline{u}_i]$ for i = 1, 2. To prove the claim we define

$$L_{1}(\underline{u}_{1}-u_{1})_{+} := \int_{\{\underline{u}_{1}\geq u_{1}\}} \left\langle |\nabla \underline{u}_{1}|^{p_{1}(x)-2} \nabla \underline{u}_{1} - |\nabla u_{1}|^{p_{1}(x)-2} \nabla u_{1}, \nabla (\underline{u}_{1}-u_{1}) \right\rangle.$$

Using the facts that $T_2u_2 \in [\underline{u}_2, \overline{u}_2]$, $\underline{u}_i(x) > 0$ a.e. in Ω , i = 1, j = 2, considering $w = T_2u_2$ and $\varphi = (\underline{u}_1 - u_1)_+$ in the first inequality of (1.3) and combining with equation (3.6) we obtain

$$\begin{split} L_1(\underline{u}_1 - u_1)_+ &\leq \int_{\{\underline{u}_1 \geq u_1\}} \frac{f_1(x, \underline{u}_1, T_2 u_2)(|\underline{u}_2|_{L^{q_1(x)}}^{\alpha_1(x)} - |T_2 u_2|_{L^{q_1(x)}}^{\alpha_1(x)})}{\mathcal{A}(x, |T_2 u_2|_{L^{r_1(x)}})} (\underline{u}_1 - u_1) \\ &+ \int_{\{\underline{u}_1 \geq u_1\}} \frac{g_1(x, \underline{u}_1, T_2 u_2)(|\underline{u}_2|_{L^{s_1(x)}}^{\gamma_1(x)} - |T_2 u_2|_{L^{s_1(x)}}^{\gamma_1(x)})}{\mathcal{A}(x, |T_2 u_2|_{L^{r_1(x)}})} (\underline{u}_1 - u_1), \end{split}$$

which implies that

$$\int_{\{\underline{u}_1 \ge u_1\}} \left\langle |\nabla \underline{u}_1|^{p_1(x)-2} \nabla \underline{u}_1 - |\nabla u_1|^{p_1(x)-2} \nabla u_1, \nabla (\underline{u}_1 - u_1) \right\rangle \le 0.$$

Therefore $\underline{u}_1 \leq u_1$. The same reasoning imply the other inequalities. Since $u_i \in [\underline{u}_i, \overline{u}_i]$, we have $T_i u_i = u_i$. Therefore the pair (u_1, u_2) is a weak positive solution of (S).

4. Applications

In this section we apply Theorem 1.1 to some nonlocal problems.

4.1. A sublinear problem: In this section, we use Theorem 1.1 to study the nonlocal problem

$$-\mathcal{A}(x,|v|_{L^{r_{1}(x)}})\Delta_{p_{1}(x)}u = (u^{\beta_{1}(x)} + v^{\gamma_{1}(x)})|v|_{L^{q_{1}(x)}}^{\alpha_{1}(x)} \quad \text{in } \Omega,$$

$$-\mathcal{A}(x,|u|_{L^{r_{2}(x)}})\Delta_{p_{2}(x)}v = (u^{\beta_{2}(x)} + v^{\gamma_{2}(x)})|u|_{L^{q_{2}(x)}}^{\alpha_{2}(x)} \quad \text{in } \Omega,$$

$$u = v = 0 \quad \text{on } \partial\Omega.$$
 (4.1)

This problem with $p_1(x) \equiv p_1(x) \equiv 2$, was considered in [43]. The result in this section generalizes [43, Theorem 6].

Theorem 4.1. Suppose that $p_i, q_i, r_i, s_i, i = 1, 2$ satisfy (H1) and $\alpha_i, \beta_i \in L^{\infty}(\Omega)$, i = 1, 2. Assume also that

$$\begin{aligned} 0 < \alpha_1^+ + \gamma_1^+ < p_i^- - 1, \quad 0 < \frac{\alpha_1^+}{p_2^- - 1} + \frac{\beta_1^+}{p_1^- - 1} < 1, \\ 0 < \alpha_2^+ + \gamma_2^+ < p_i^- - 1, \quad 0 < \frac{\alpha_2^+}{p_1^- - 1} + \frac{\beta_2^+}{p_2^- - 1} < 1 \end{aligned}$$

for i = 1, 2. Let $a_0 > 0$ be a positive constant. Suppose that one of the following two sets of conditions holds

$$\mathcal{A}(x,t) \ge a_0 \quad in \ \overline{\Omega} \times [0,\infty), \tag{4.2}$$

or

$$0 < \mathcal{A}(x,t) \le a_0 \quad in \ \overline{\Omega} \times (0,\infty) \quad and$$
$$\lim_{t \to +\infty} \mathcal{A}(x,t) = a_\infty > 0 \quad uniformly \ in \ \Omega.$$
(4.3)

Then (4.1) has a positive solution.

Proof. Suppose that (4.2) holds. We will start by constructing $(\overline{u}, \overline{v})$. Let $\lambda > 0$ be a positive number, which will be chosen later and denote by $z_{\lambda} \in W_0^{1,p_1(x)}(\Omega) \cap L^{\infty}(\Omega)$ and $y_{\lambda} \in W_0^{1,p_2(x)}(\Omega) \cap L^{\infty}(\Omega)$ the unique solutions of (2.1) respectively. For $\lambda > 0$ sufficiently large it follows from Lemma 2.7 that there is a constant

K > 1 that does not depend on λ such that

$$0 < z_{\lambda}(x) \le K \lambda^{\frac{1}{p_1 - 1}} \quad \text{in } \Omega, \tag{4.4}$$

$$0 < y_{\lambda}(x) \le K \lambda^{\frac{1}{p_2^- - 1}} \quad \text{in } \Omega.$$

$$(4.5)$$

Since $\alpha_1^+ + \gamma_1^+ < p_2^- - 1$ and $\frac{\alpha_1^+}{p_2^- - 1} + \frac{\beta_1^+}{p_1^- - 1} < 1$, it is possible to choose $\lambda > 1$ such that (4.4), (4.5) and

$$\frac{1}{a_0} \left(K^{\beta_1^+} \lambda^{\frac{\beta_1^+}{p_1^- - 1} + \frac{\alpha_1^+}{p_2^- - 1}} + K^{\gamma_1^+} \lambda^{\frac{\alpha_1^+ + \gamma_1^+}{p_2^- - 1}} \right) \max\{ |K|_{L^{q_1}(x)}^{\alpha^-}, |K|_{L^{q_1}(x)}^{\alpha^+} \} \le \lambda$$
(4.6)

hold. By (4.4), (4.5) and (4.6), we obtain

$$\frac{1}{a_0}(z_{\lambda}^{\beta_1(x)} + w^{\gamma_1(x)})|y_{\lambda}|_{L^{q_1(x)}}^{\alpha_1(x)} \le \lambda, w \in [0, y_{\lambda}].$$

Thus for $w \in [0, y_{\lambda}]$ we obtain

$$-\Delta_{p_1(x)} z_{\lambda} \ge \frac{1}{\mathcal{A}(x, |w|_{L^{r_1(x)}})} (z_{\lambda}^{\beta_1(x)} + w^{\gamma_1(x)}) |y_{\lambda}|_{L^{q_1(x)}}^{\alpha_1(x)} \quad \text{in } \Omega,$$
$$z_{\lambda} = 0 \quad \text{on } \partial\Omega.$$

Considering, if necessary, a larger $\lambda > 0$, the previous reasoning imply that

$$-\Delta_{p_2(x)} y_{\lambda} \ge \frac{1}{\mathcal{A}(x, |w|_{L^{r_2(x)}})} (w^{\beta_2(x)} + y_{\lambda}^{\gamma_2(x)}) |z_{\lambda}|_{L^{q_2(x)}}^{\alpha_2(x)} \quad \text{in } \Omega,$$
$$y_{\lambda} = 0 \quad \text{on } \partial\Omega,$$

for all $w \in [0, z_{\lambda}]$.

Now we construct $(\underline{u}_i, \underline{v}_i), i = 1, 2$. Since $\partial \Omega$ is C^2 , there is a constant $\delta > 0$ such that $d \in C^2(\overline{\Omega_{3\delta}})$ and $|\nabla d(x)| \equiv 1$, where $d(x) := dist(x, \partial \Omega)$ and $\overline{\Omega_{3\delta}} := \{x \in \mathcal{O}\}$ $\overline{\Omega}; d(x) \leq 3\delta$. From [34, Page 12], we have that, for $\sigma \in (0, \delta)$ sufficiently small, the function $\phi_i = \phi_i(k, \sigma), i = 1, 2$ defined by

$$\phi_i(x) = \begin{cases} e^{kd(x)} - 1 & \text{if } d(x) < \sigma, \\ e^{k\sigma} - 1 + \int_{\sigma}^{d(x)} k e^{k\sigma} \left(\frac{2\delta - t}{2\delta - \sigma}\right)^{\frac{2}{p_i^- - 1}} dt & \text{if } \sigma \le d(x) < 2\delta, \\ e^{k\sigma} - 1 + \int_{\sigma}^{2\delta} k e^{k\sigma} \left(\frac{2\delta - t}{2\delta - \sigma}\right)^{\frac{2}{p_i^- - 1}} dt & \text{if } 2\delta \le d(x), \end{cases}$$

belongs to $C_0^1(\overline{\Omega})$, where k > 0 is an arbitrary number and that

$$-\Delta_{p_i(x)}(\mu\phi_i)$$

G. C. G. DOS SANTOS, G. M. FIGUEIREDO, L. S. TAVARES

EJDE-2020/25

$$= \begin{cases} -k(k\mu e^{kd(x)})^{p_i(x)-1} \left[(p_i(x)-1) + (d(x) + \frac{\ln k\mu}{k}) \nabla p_i(x) \nabla d(x) + \frac{\Delta d(x)}{k} \right] \\ \text{if } d(x) < \sigma, \\ \left\{ \frac{1}{2\delta - \sigma} \frac{2(p_i(x)-1)}{p_i^- - 1} - \left(\frac{2\delta - d(x)}{2\delta - \sigma}\right) \left[\ln k\mu e^{k\sigma} \left(\frac{2\delta - d(x)}{2\delta - \sigma}\right)^{\frac{2}{p_i^- - 1}} \nabla p_i(x) \nabla d(x) + \Delta d(x) \right] \right\} (k\mu e^{k\sigma})^{p_i(x)-1} \left(\frac{2\delta - d(x)}{2\delta - \sigma}\right)^{\frac{2(p_i(x)-1)}{p_i^- - 1} - 1} \\ \text{if } \sigma < d(x) < 2\delta, \\ 0 \quad \text{if } 2\delta < d(x), \end{cases}$$

for all $\mu > 0$ and i = 1, 2.

Define $\mathcal{A}_{\lambda} := \max \left\{ \mathcal{A}(x,t) : (x,t) \in \overline{\Omega} \times \left[0, \max\{|y_{\lambda}|_{L^{r_1(x)}} |z_{\lambda}|_{L^{r_2(x)}}\}\right] \right\}$. Then we have

$$a_0 \leq \mathcal{A}(x, |w|_{L^{r_1(x)}}) \leq \mathcal{A}_\lambda$$
 in Ω

for all $w \in [0, y_{\lambda}]$. Let $\sigma = \frac{1}{k} \ln 2$ and $\mu = e^{-ak}$ where

$$a = \frac{\min\{p_1^- - 1, p_2^- - 1\}}{\max\{\max_{\overline{\Omega}} |\nabla p_1| + 1, \max_{\overline{\Omega}} |\nabla p_2| + 1\}}.$$

Then $e^{k\sigma} = 2$ and $k\mu \le 1$ if k > 0 is sufficiently large.

Let $x \in \Omega$ with $d(x) < \sigma$. If k > 0 is large enough we have $|\nabla d(x)| = 1$ and then

$$\begin{aligned} \left| d(x) + \frac{\ln(k\mu)}{k} \right| \left| \nabla p_1(x) \right| \left| \nabla d(x) \right| &\leq \left(\left| d(x) \right| + \frac{\left| \ln(k\mu) \right|}{k} \right) \left| \nabla p_1(x) \right| \\ &\leq \left(\sigma - \frac{\ln(k\mu)}{k} \right) \left| \nabla p_1(x) \right| \\ &= \left(\frac{\ln 2}{k} - \frac{\ln k}{k} \right) \left| \nabla p_1(x) \right| + a \left| \nabla p_1(x) \right| \\ &< p_1^- - 1. \end{aligned}$$

$$(4.7)$$

Note also that there exists a constant A > 0, that does not depend on k, such that $|\Delta d(x)| < A$ for all $x \in \overline{\partial\Omega_{3\delta}}$. Using the last inequality and the expression of $-\Delta_{p_1(x)}(\mu\phi)$, we obtain $-\Delta_{p_1(x)}(\mu\phi_1) \leq 0$ for $x \in \Omega$ with $d(x) < \sigma$ or $d(x) > 2\delta$ for k > 0 large enough. Therefore

$$\begin{aligned} -\Delta_{p_1(x)}(\mu\phi_1) &\leq 0 \leq \frac{1}{\mathcal{A}_{\lambda}}(\mu\phi_1)^{\beta_1(x)} |\mu\phi_2|_{L^{q_1(x)}}^{\alpha_1(x)} \\ &\leq \frac{1}{\mathcal{A}_{\lambda}}((\mu\phi_1)^{\beta_1(x)} + w^{\gamma_1(x)}) |\mu\phi_2|_{L^{q_1(x)}}^{\alpha_1(x)} \end{aligned}$$

for all $w \in L^{\infty}(\Omega)$ with $w \ge \mu \phi_2$ and $d(x) < \sigma$ or $2\delta < d(x)$. Using the idea in the proof of [34, estimate (3.10)] we obtain

$$-\Delta_{p_1(x)}(\mu\phi_1) \le \tilde{C}(k\mu)^{p_1^- - 1} |\ln k\mu| = \tilde{C}(k\mu)^{p_1^- - 1} |\ln \frac{k}{e^{ak}}| \quad \text{if } \sigma < d(x) < 2\delta.$$
(4.8)

From the proof of [44, Theorem 2] and the fact that $\alpha_1^+ + \gamma_1^+ < p_1^- - 1$ we obtain

$$\lim_{k \to +\infty} \frac{\tilde{C}k^{p_1^- - 1}}{e^{ak(p_1^- - 1 - (\alpha_1^+ + \gamma_1^+))}} \Big| \ln \frac{k}{e^{ak}} \Big| = 0.$$
(4.9)

Note that $\phi_1(x) \ge 1$ if $\sigma \le d(x) < 2\delta$ because $\phi_1(x) \ge e^{k\sigma} - 1$ and $e^{k\sigma} = 2$ for all k > 0. Thus, there is a constant $C_0 > 0$ that does not depend on k such that

 $|\phi_2|_{L^{q_1(x)}(\Omega)}^{\alpha_1(x)} \ge C_0$ if $\sigma < d(x) < 2\delta$. By (4.9), we can choose k > 0 large enough such that

$$\frac{\tilde{C}k^{p_1^- - 1}}{e^{ak[(p_1^- - 1) - (\alpha_1^+ + \beta_1^+)]}} \Big| \ln \frac{k}{e^{ak}} \Big| \le \frac{C_0}{\mathcal{A}_{\lambda}}.$$
(4.10)

Therefore from (4.8) and (4.10) we have

$$-\Delta_{p_1(x)}(\mu\phi_1) \le \frac{1}{\mathcal{A}_{\lambda}}((\mu\phi_1)^{\beta_1(x)} + w^{\gamma_1(x)})|\mu\phi_2|_{L^{q_1(x)}}^{\alpha_1(x)}$$

for all $w \in L^{\infty}(\Omega)$ with $w \ge \mu \phi_2$ and $\sigma < d(x) < 2\delta$ for k > 0 large enough. Thus it is possible to conclude that

$$-\Delta_{p_1(x)}(\mu\phi_1) \le \frac{1}{\mathcal{A}_{\lambda}}((\mu\phi_1)^{\beta_1(x)} + w^{\gamma_1(x)})|\mu\phi_2|_{L^{q_1(x)}}^{\alpha_1(x)} \quad \text{in } \Omega.$$

Fix k > 0 satisfying the above property and $-\Delta_{p_1(x)}(\mu\phi_1) \leq 1$. For $\lambda > 1$ we have $-\Delta_{p_1(x)}(\mu\phi_1) \leq -\Delta_{p_1(x)}z_{\lambda}$. Therefore $\mu\phi_1 \leq z_{\lambda}$. Since $\alpha_2^+ + \gamma_2^+ < p_2^- - 1$, a similar reasoning imply that there is $\mu > 0$ small enough such that

$$-\Delta_{p_2(x)}(\mu\phi_2) \le \frac{1}{\mathcal{A}(x,|w|_{L^{r_2}(x)})} (w^{\beta_2} + (\mu\phi_2)^{\gamma_2}) |\mu\phi_1|_{L^{q_2(x)}(\Omega)}^{\alpha_2(x)} \quad \text{in } \Omega$$

for all $w \in L^{\infty}(\Omega)$ with $w \ge \mu \phi_1$ and that $\mu_2 \phi \le y_{\lambda}$. The first part of the result is proved.

Now suppose that $0 < \mathcal{A}(x,t) \leq a_0$ in $\overline{\Omega} \times (0,\infty)$. Let $\delta, \sigma, \mu, a, \lambda, z_\lambda, y_\lambda$ and ϕ_i for i = 1, 2 as before. From the previous arguments there exist k > 0 large enough and $\mu > 0$ small such that

$$-\Delta_{p_1(x)}(\mu\phi_1) \le 1, \quad -\Delta_{p_1(x)}(\mu\phi) \le \frac{1}{a_0}((\mu\phi_1)^{\beta_1(x)} + w^{\gamma_1(x)})|\mu\phi_2|_{L^{q_1(x)}}^{\alpha_1(x)} \quad (4.11)$$

in Ω for all $w \in [\mu \phi_2, y_\lambda]$, and

$$-\Delta_{p_2(x)}(\mu\phi_2) \le 1, \quad -\Delta_{p_2(x)}(\mu\phi_2) \le \frac{1}{a_0}(w^{\beta_2(x)} + (\mu\phi_2)^{\gamma_2(x)})|\mu\phi_1|_{L^{q_2(x)}}^{\alpha_2(x)} \quad (4.12)$$

in Ω for all $w \in [\mu \phi_1, z_{\lambda}]$.

Since $\lim_{t\to\infty} \mathcal{A}(x,t) = a_{\infty} > 0$ uniformly in Ω there is a large constant $a_1 > 0$ such that $\mathcal{A}(x,t) \geq \frac{a_{\infty}}{2}$ on $\overline{\Omega} \times (a_1,\infty)$. Let

$$m_k := \min \left\{ \mathcal{A}(x,t) : (x,t) \in \overline{\Omega} \times \left[\min\{ |\mu\phi_1|_{L^{r_1(x)}}, |\mu\phi_2|_{L^{r_2(x)}} \}, a_1 \right] \right\} > 0$$

and $\mathcal{A}_k := \min\left\{m_k, \frac{a_\infty}{2}\right\}$. Then we have

$$\mathcal{A}(x,t) \ge \mathcal{A}_k \quad \text{in } \overline{\Omega} \times [\min\{|\mu\phi_1|_{L^{r_1(x)}}, |\mu\phi_2|_{L^{r_2(x)}}\}, \infty).$$

Fix k > 0 satisfying (4.11) and (4.12). Consider $\lambda > 1$ such that (4.4), (4.5) and

$$\frac{1}{\mathcal{A}_{k}} \left(K^{\beta_{1}^{+}} \lambda^{\frac{\beta_{1}^{+}}{p_{1}^{--1}} + \frac{\alpha_{1}^{+}}{p_{2}^{--1}}} + K^{\gamma_{1}^{+}} \lambda^{\frac{\alpha_{1}^{+} + \gamma_{1}^{+}}{p_{2}^{--1}}} \right) \max\{ |K|_{L^{q_{1}(x)}}^{\alpha_{1}^{-}}, |K|_{L^{q_{1}(x)}}^{\alpha_{1}^{+}} \} \leq \lambda,$$

$$\frac{1}{\mathcal{A}_{k}} \left(K^{\beta_{2}^{+}} \lambda^{\frac{\beta_{2}^{+} + \alpha_{2}^{+}}{p_{1}^{--1}}} + K^{\gamma_{2}^{+}} \lambda^{\frac{\gamma_{2}^{+}}{p_{2}^{--1}} + \frac{\alpha_{2}^{+}}{p_{1}^{--1}}} \right) \max\{ |K|_{L^{q_{2}(x)}}^{\alpha_{2}^{-}}, |K|_{L^{q_{2}(x)}}^{\alpha_{1}^{-}} \} \leq \lambda,$$

where K > 1 is a constant that does not depend on k or λ (see Lemma 2.7). Therefore,

$$-\Delta_{p_1(x)} z_{\lambda} \leq \frac{1}{\mathcal{A}(x, |w|_{L^{r_1(x)}})} (z_{\lambda}^{\beta_1(x)} + w^{\gamma_1(x)}) |y_{\lambda}|_{L^{q_1(x)}}^{\alpha_1(x)} \quad \text{in } \Omega, \quad w \in [\mu \phi_2, y_{\lambda}].$$

Arguing as before and considering a suitable choice for λ and k we obtain

$$-\Delta_{p_2(x)}y_{\lambda} \leq \frac{1}{\mathcal{A}(x, |w|_{L^{r_2(x)}})} (w^{\beta_2(x)} + y_{\lambda}^{\beta_2(x)}) |z_{\lambda}|_{L^{q_2(x)}}^{\alpha_2(x)} \quad \text{in } \Omega, \quad w \in [\mu\phi_1, z_{\lambda}].$$

The comparison principle implies that $\mu\phi_1 \leq z_\lambda$ and $\mu\phi_2 \leq y_\lambda$ if μ is small. The proof is complete.

4.2. A concave-convex problem. In this section we consider the following nonlocal problem with concave-convex nonlinearities

$$-\mathcal{A}(x,|v|_{L^{r_{1}(x)}})\Delta_{p_{1}(x)}u = \lambda|u|^{\beta_{1}(x)-1}u|v|_{L^{q_{1}(x)}}^{\alpha_{1}(x)} + \theta|v|^{\eta_{1}(x)-1}v|v|_{L^{s_{1}(x)}}^{\gamma_{1}(x)} \quad \text{in } \Omega,$$

$$-\mathcal{A}(x,|u|_{L^{r_{2}(x)}})\Delta_{p_{2}(x)}v = \lambda|v|^{\beta_{2}(x)-1}v|u|_{L^{q_{2}(x)}}^{\alpha_{2}(x)} + \theta|u|^{\eta_{2}(x)-1}u|u|_{L^{s_{2}(x)}}^{\gamma_{2}(x)} \quad \text{in } \Omega,$$

$$u = v = 0 \quad \text{on } \partial\Omega.$$

$$(4.13)$$

The scalar and local version of (4.13) with $p(x) \equiv 2$ and constant exponents was considered in the famous paper by Ambrosetti-Brezis-Cerami [5] in which a subsupersolution argument is used. In [43], problem (4.13) was studied with $p(x) \equiv 2$. The following result generalizes [43, Theorem 7].

Theorem 4.2. Suppose that $r_i, p_i, q_i, s_i, \alpha_i, \eta_i$ satisfy (H1) for i = 1, 2 and that $\beta_i \in L^{\infty}(\Omega), i = 1, 2$ are nonnegative functions with $0 < \alpha_i^- + \beta_i^- \le \alpha_i^+ + \beta_i^+ < p_i^- - 1, i = 1, 2$. Let $a_0, b_0 > 0$ be positive numbers. Then the following assertions hold

(1) If $p_2^+ - 1 < \eta_1^- + \gamma_1^-$, $p_1^+ - 1 < \eta_2^- + \gamma_2^-$ and $\mathcal{A}(x,t) \ge a_0$ in $\overline{\Omega} \times [0, b_0]$, then for each $\theta > 0$ there exists $\lambda_0 > 0$ such that for each $\lambda \in (0, \lambda_0)$, problem (4.13) has a positive solution $u_{\lambda,\theta}$.

(2)
$$p_2^+ - 1 < \eta_1^- + \gamma_1^-, p_1^+ - 1 < \eta_2^- + \gamma_2^-$$
 and

$$\frac{\beta_1^+}{p_1^--1} + \frac{\alpha_1^+}{p_2^--1} < 1, \quad \frac{\beta_2^+}{p_2^--1} + \frac{\alpha_2^+}{p_1^--1} < 1.$$

Suppose that $0 < \mathcal{A}(x,t) \leq a_0$ in $\overline{\Omega} \times (0,\infty)$ and $\lim_{t\to\infty} \mathcal{A}(x,t) = b_0$ uniformly in $\overline{\Omega}$. Then given a $\lambda > 0$, there exists $\theta_0 > 0$ such that for each $\theta \in (0,\theta_0)$, problem (4.13) has a positive solution $u_{\lambda,\theta}$.

Proof. Suppose that (1) occurs. Consider $z_{\lambda} \in W_0^{1,p_1(x)}(\Omega) \cap L^{\infty}(\Omega)$ and $y_{\lambda} \in W_0^{1,p_2(x)}(\Omega) \cap L^{\infty}(\Omega)$ the unique solutions of (2.1) respectively, where $\lambda \in (0,1)$ will be chosen later.

Lemma 2.7 imply that for $\lambda > 0$ small enough there exists a constant K > 1 that does not depend on λ such that

$$0 < z_{\lambda}(x) \le K \lambda^{\frac{1}{p_1^+ - 1}} \quad \text{in } \Omega, \tag{4.14}$$

$$0 < y_{\lambda}(x) \le K \lambda^{\frac{1}{p_2^+ - 1}} \quad \text{in } \Omega.$$

$$(4.15)$$

To construct \overline{u}_i we will prove, for each $\theta > 0$, that there exists $\lambda_0 > 0$ such that

$$\frac{1}{a_0} \Big(\lambda |z_\lambda|^{\beta_1(x)-1} z_\lambda |y_\lambda|_{L^{q_1(x)}}^{\alpha_1(x)} + \theta |w|^{\eta_1(x)-1} w |y_\lambda|_{L^{s_1(x)}}^{\gamma_1(x)} \Big) \le \lambda, \quad \forall w \in [0, y_\lambda], \quad (4.16)$$

$$\frac{1}{a_0} \Big(\lambda |y_\lambda|^{\beta_2(x)-1} y_\lambda |z_\lambda|^{\alpha_2(x)}_{L^{q_2(x)}} + \theta |w|^{\eta_2(x)-1} w |z_\lambda|^{\gamma_2(x)}_{L^{s_2(x)}} \Big) \le \lambda, \quad \forall w \in [0, z_\lambda].$$
(4.17)

12

 $\mathrm{EJDE}\text{-}2020/25$

Let

$$\overline{K} := \max_{i=1,2} \left\{ K^{\beta_i^+} |K|^{\alpha_i^+}_{L^{q_i(x)}}, K^{\beta_i^+} |K|^{\alpha_i^-}_{L^{q_i(x)}}, K^{\eta_i^+} |K|^{\gamma_i^+}_{L^{s_i(x)}}, K^{\eta_i^+} |K|^{\gamma_i^-}_{L^{s_i(x)}} \right\}.$$
(4.18)

Since $0 < \alpha_1^- + \beta_1^-$ and $p_2^+ - 1 < \eta_1^- + \gamma_1^-$, there exists $\lambda_0 > 0$ such that

$$\frac{1}{a_0} \left(\lambda^{\frac{p_1^+ - 1 + \beta_1^-}{p_1^+ - 1} + \frac{\alpha_1^-}{p_2^+ - 1}} \overline{K} + \theta \lambda^{\frac{\eta_1^- + \gamma_1^-}{p_2^+ - 1}} \overline{K} \right) \le \lambda,$$
(4.19)

for all $\lambda \in (0, \lambda_0)$.

If necessary, we consider small $\lambda_0 > 0$ such that $|y_{\lambda}|_{L^{r_1(x)}} \leq |K|_{L^{r_1(x)}} \lambda^{\frac{1}{p_2^+ - 1}} \leq b_0$ for all $\lambda \in (0, \lambda_0)$. Therefore $\mathcal{A}(x, |w|_{L^{r_1(x)}}) \geq a_0, w \in [0, y_{\lambda}]$. It follows from (4.14), (4.15) and (4.19) that (4.16) holds. Then we can conclude that

$$-\Delta_{p_1(x)} z_{\lambda} \ge \frac{1}{\mathcal{A}(x, |w|_{L^{r_1(x)}})} \Big(\lambda z_{\lambda}{}^{\beta_1(x)} |y_{\lambda}|_{L^{q_1(x)}}^{\alpha_1(x)} + \theta w^{\eta_1(x)} |y_{\lambda}|_{L^{s_1(x)}}^{\gamma_1(x)}\Big), \quad (4.20)$$

for all $w \in [0, y_{\lambda}]$. Assume also that λ_0 satisfies

$$\frac{1}{a_0} \left(\lambda^{\frac{p_2^+ - 1 + \beta_2^-}{p_2^+ - 1} + \frac{\alpha_2^-}{p_1^+ - 1}} \overline{K} + \theta \lambda^{\frac{\eta_2^- + \gamma_2^-}{p_1^+ - 1}} \overline{K} \right) \le \lambda$$
(4.21)

and $|z_{\lambda}|_{L^{r_2(x)}} \leq |K|_{L^{r_2(x)}} \lambda^{\frac{1}{p_1^+ - 1}} \leq b_0$ for all $\lambda \in (0, \lambda_0)$. Therefore $\mathcal{A}(x, |w|_{L^{r_2(x)}}) \geq a_0, w \in [0, z_{\lambda}]$. Thus from (4.14), (4.15) and (4.21) we have that (4.17) holds. Then we can conclude that

$$-\Delta_{p_2(x)}y_{\lambda} \ge \frac{1}{\mathcal{A}(x,|w|_{L^{r_2(x)}})} \left(\lambda z_{\lambda}^{\beta_2(x)}|z_{\lambda}|_{L^{q_2(x)}}^{\alpha_2(x)} + \theta w^{\eta_2(x)}|z_{\lambda}|_{L^{s_2(x)}}^{\gamma_2(x)}\right)$$
(4.22)

for all $w \in [0, z_{\lambda}]$.

To construct \underline{u}_i consider $\phi_i, \delta, \sigma, \mu$ as in the proof of Theorem 4.1. Using the inequalities $\alpha_i^+ + \beta_i^+ < p_i^- - 1, i = 1, 2$ and repeating the arguments of Theorem 4.1, we have that exists a number $\mu > 0$ such that

$$\mu\phi_1 \le z_{\lambda}, \quad \mu\phi_2 \le y_{\lambda}, \quad -\Delta_{p_1(x)}(\mu\phi_1) \le \lambda,$$
$$-\Delta_{p_1(x)}(\mu\phi_1) \le \frac{1}{\mathcal{A}(x, |w|_{L^{r_1(x)}})} \Big(\lambda(\mu\phi_1)^{\beta_1(x)} |\mu\phi_1|^{\alpha_1(x)}_{L^{q_1(x)}} + \theta w^{\eta_1(x)} |\mu\phi_2|^{\gamma_1(x)}_{L^{s_1(x)}}\Big),$$

for all $w \in [\mu \phi_2, y_\lambda]$ and

$$-\Delta_{p_2(x)}(\mu\phi_2) \le \lambda,$$

$$-\Delta_{p_2(x)}(\mu\phi_2) \le \frac{1}{\mathcal{A}(x,|w|_{L^{r_2(x)}})} \Big(\lambda(\mu\phi_2)^{\beta_2(x)}|\mu\phi_1|_{L^{q_2(x)}}^{\alpha_2(x)} + \theta w^{\eta_2(x)}|\mu\phi_1|_{L^{s_2(x)}}^{\gamma_2(x)}\Big),$$

for all $w \in [\mu \phi_2, z_{\lambda}]$. Then by Theorem 1.1 we have the desired result.

Now we consider the condition (2). Let ϕ_i, δ and $\sigma_i, i = 1, 2$ as in the first part of the result and let $\lambda > 0$ fixed. Since $\alpha_i^+ + \beta_i^+ < p_i^- - 1$, i = 1, 2 there exists $\mu > 0$ depending only on λ such that

$$-\Delta_{p_i(x)}(\mu\phi_i) \le 1, \quad -\Delta_{p_i(x)}(\mu\phi) \le \frac{1}{a_0}\lambda(\mu\phi_i)^{\beta_i(x)}|\mu\phi_j|^{\alpha_i(x)},$$

for $w \in L^{\infty}(\Omega)$ with $w \ge \mu \phi_j$, $i \ne j$ and i, j = 1, 2.

Let M > 0 that will be chosen later and assume $z_M \in W_0^{1,p_1(x)}(\Omega) \cap L^{\infty}(\Omega)$ is a solution of

$$-\Delta_{p_1(x)} z_M = M \quad \text{in } \Omega,$$

$$z_M = 0$$
 on $\partial \Omega$,

and $y_M \in W_0^{1,p_2(x)}(\Omega) \cap L^{\infty}(\Omega)$ is a solutions of

$$-\Delta_{p_2(x)} y_M = M \quad \text{in } \Omega,$$

$$y_M = 0 \quad \text{on } \partial\Omega.$$

For M large enough from Lemma 2.7, there exists a constant K > 1 that does not depend on M such that

$$0 < z_M(x) \le KM^{\frac{1}{p_1^- - 1}}$$
 in Ω , (4.23)

$$0 < y_M(x) \le KM^{\overline{p_2} - 1}$$
 in Ω . (4.24)

To construct \overline{u}_i we will show that exist $\theta_0 > 0$ depending on λ with the following property: if we assume $\theta \in (0, \theta_0)$ then there is a constant M depending only on λ and θ satisfying

$$M \ge \frac{1}{\mathcal{A}(x, |w|_{L^{r_1(x)}})} \Big(\lambda z_M^{\beta_1(x)} |y_M|_{L^{q_1(x)}}^{\alpha_1(x)} + \theta w^{\eta_1(x)} |y_M|_{L^{s_1(x)}}^{\gamma_1(x)} \Big), \tag{4.25}$$

for $w \in [\mu \phi_2, y_M]$, and

$$M \ge \frac{1}{\mathcal{A}(x, |w|_{L^{r_2(x)}})} \Big(\lambda y_M^{\beta_2(x)} |z_M|_{L^{q_2(x)}}^{\alpha_2(x)} + \theta w^{\eta_2(x)} |z_M|_{L^{s_2(x)}}^{\gamma_2(x)} \Big), \tag{4.26}$$

for $w \in [\mu \phi_1, z_M]$.

Since \mathcal{A} is continuous and $\lim_{t\to+\infty} \mathcal{A}(x,t) = b_0 > 0$ uniformly in Ω , there exists $a_1 > 0$ large enough such that $\mathcal{A}(x,t) \geq \frac{b_0}{2}$ in $\overline{\Omega} \times (a_1, +\infty)$. Define

$$m_{\lambda} := \{ \mathcal{A}(x,t) : (x,t) \in \overline{\Omega} \times [\min\{|\mu\phi_1|_{L^{r_1(x)}}, |\mu\phi_2|_{L^{r_2(x)}}\}, a_1] \}$$

and $\mathcal{A}_{\lambda} := \min\{m_{\lambda}, \frac{b_0}{2}\}$. Then $\mathcal{A}(x, t) \geq \mathcal{A}_{\lambda}$ in $\overline{\Omega} \times [\min\{|\mu\phi_1|_{L^{r_1(x)}}, |\mu\phi_2|_{L^{r_2(x)}}\}, \infty)$. Thus $\mathcal{A}_{\lambda} \leq \mathcal{A}(x, |w|_{L^{r_1(x)}}) \leq a_0$ for all $w \in L^{\infty}(\Omega)$ with $\mu\phi_1 \leq w$ or $\mu\phi_2 \leq w$. Note that from (4.23) and (4.24) the inequalities (4.25) and (4.26) hold if we have simultaneously the inequalities

$$\frac{1}{\mathcal{A}_{\lambda}} \left(\lambda \overline{K} M^{\frac{\beta_1^+}{p_1^- - 1} + \frac{\alpha_1^+}{p_2^- - 1}} + \theta \overline{K} M^{\frac{\eta_1^+ + \gamma_1^+}{p_2^- - 1}} \right) \le M,$$
$$\frac{1}{\mathcal{A}_{\lambda}} \left(\lambda \overline{K} M^{\frac{\beta_2^+}{p_2^- - 1} + \frac{\alpha_2^+}{p_1^- - 1}} + \theta \overline{K} M^{\frac{\eta_2^+ + \gamma_2^+}{p_1^- - 1}} \right) \le M,$$

where \overline{K} is given by (4.18). To obtain such inequalities we will study the inequality

$$\frac{1}{\mathcal{A}_{\lambda}} \left(\lambda \overline{K} M^{\rho-1} + \theta \overline{K} M^{\tau-1} \right) \le 1$$
(4.27)

where

$$\begin{split} \rho &:= \max \big\{ \frac{\beta_1^+}{p_1^- - 1} + \frac{\alpha_1^+}{p_2^- - 1}, \frac{\beta_2^+}{p_2^- - 1} + \frac{\alpha_2^+}{p_1^- - 1} \big\},\\ \tau &:= \max \big\{ \frac{\eta_1^+ + \gamma_1^+}{p_2^- - 1}, \frac{\eta_2^+ + \gamma_2^+}{p_1^- - 1} \big\}. \end{split}$$

Define

$$\Psi_{\lambda,\theta}(M) := \frac{\lambda \overline{K}}{\mathcal{A}_{\lambda}} M^{\rho-1} + \frac{\theta \overline{K}}{\mathcal{A}_{\lambda}} M^{\tau-1}, \quad M > 0.$$

Since $0 < \rho < 1$ and $\tau > 1$ we have $\lim_{M\to 0^+} \Psi_{\lambda,\theta}(M) = \lim_{M\to +\infty} \Psi_{\lambda,\theta}(M) = +\infty$. Note that $\Psi_{\lambda,\theta}'(M) = 0$ if, and only if

$$M = M_{\lambda,\theta} := \left(\frac{\lambda}{\theta}\right)^{\frac{1}{\tau-\rho}} c, \quad c := \left(\frac{1-\rho}{\tau-1}\right)^{\frac{1}{\tau-\rho}}.$$
(4.28)

From the above properties of $\Psi_{\lambda,\mu}$ we have that the global minimum of $\Psi_{\lambda,\theta}$ is attained at $M_{\lambda,\theta}$. The inequality (4.27) is equivalent to finding $M_{\lambda,\theta} > 0$ such that $\Psi_{\lambda,\theta}(M_{\lambda,\theta}) \leq 1$. By (4.28), we have that $\Psi_{\lambda,\theta}(M_{\lambda,\theta}) \leq 1$, if and only if

$$\frac{\lambda \overline{K}}{\mathcal{A}_{\lambda}} \left(\frac{\lambda}{\theta}\right)^{\frac{\rho-1}{\tau-\rho}} c^{\rho-1} + \theta^{1-\left(\frac{\tau-1}{\tau-\rho}\right)} \frac{\overline{K}}{\mathcal{A}_{\lambda}} \lambda^{\frac{\tau-1}{\tau-\rho}} c^{\tau-1} \le 1.$$
(4.29)

Thus from (4.28) and (4.29), we have that given $\lambda > 0$ there exists $\theta_0 > 0$ such that for each $\theta \in (0, \theta_0)$ there exists $M_{\lambda, \theta}$ satisfying

$$M_{\lambda,\theta} \ge 1$$
 and $\frac{1}{\mathcal{A}_{\lambda}} \left(\lambda \overline{K} M_{\lambda,\theta}^{\rho-1} + \theta \overline{K} M_{\lambda,\theta}^{\tau-1} \right) \le 1.$

Therefore,

$$-\Delta_{p_1(x)} z_M \ge \frac{1}{\mathcal{A}_{\lambda}} \Big(\lambda z_M^{\beta_1(x)} |y_M|_{L^{q_1(x)}}^{\alpha_1(x)} + \theta w^{\eta_1(x)} |y_M|_{L^{s_1(x)}}^{\gamma_1(x)} \Big) \quad \text{in } \Omega,$$

for all $w \in [\mu \phi_2, y_M]$, and

$$-\Delta_{p_2(x)} y_M \ge \frac{1}{\mathcal{A}_{\lambda}} \Big(\lambda y_M^{\beta_2(x)} |z_M|_{L^{q_2(x)}}^{\alpha_2(x)} + \mu w^{\eta_2(x)} |z_M|_{L^{s_w(x)}}^{\gamma_w(x)} \Big) \quad \text{in } \Omega,$$

for all $w \in [\mu \phi_1, z_M]$.

Since $M_{\lambda,\theta} \to +\infty$ as $\theta \to 0^+$ and the map $\theta \longmapsto M_{\lambda,\theta}$ is decreasing we have

$$-\Delta_{p_1(x)}(\mu\phi_1) \le 1 \le M_{\lambda,\theta_0} \le M_{\lambda,\theta}, \quad \theta \in (0,\theta_0)$$

for θ_0 small enough. Similarly, we have $-\Delta_{p_2(x)}(\mu\phi_2) \leq M_{\lambda,\theta_0} \leq M_{\lambda,\theta}$ for all $\theta \in (0,\theta_0)$, for θ_0 small. The weak maximum principle imply that $\mu\phi_1 \leq z_M$ and $\mu\phi_2 \leq y_M$. The proof is complete.

4.3. A generalization of the logistic equation. In the previous sections, we considered at least one of the conditions $\mathcal{A}(x,t) \geq a_0 > 0$ or $0 < \mathcal{A}(x,t) \leq a_{\infty}, t > 0$. In this section we study a generalization of the classic logistic equation where the function $\mathcal{A}(x,t)$ satisfies

$$\mathcal{A}(x,0) \geq 0, \quad \lim_{t \to 0^+} \mathcal{A}(x,t) = \infty, \quad \text{and} \quad \lim_{t \to +\infty} \mathcal{A}(x,t) = \pm \infty.$$

We consider the problem

$$-\mathcal{A}(x, |v|_{L^{r_1(x)}})\Delta_{p_1(x)}u = \lambda f_1(u)|v|_{L^{q_1(x)}}^{\alpha_1(x)} \quad \text{in } \Omega, -\mathcal{A}(x, |u|_{L^{r_2(x)}})\Delta_{p_2(x)}v = \lambda f_2(v)|u|_{L^{q_2(x)}}^{\alpha_2(x)} \quad \text{in } \Omega, u = v = 0 \quad \text{on } \partial\Omega.$$
(4.30)

We suppose that there are numbers $\theta_i > 0$, i = 1, 2 such that the functions $f_i : [0, \infty) \to \mathbb{R}$ satisfy the following conditions:

- (H2) $f_i \in C^0([0, \theta_i], \mathbb{R}), i = 1, 2;$
- (H3) $f_i(0) = f_i(\theta_i) = 0, f_i(t) > 0$ in $(0, \theta_i)$ for i = 1, 2.

Problem (4.30) is a generalization of the problemes studied in [16, 18, 43]. The next result generalizes [43, Theorem 8].

Theorem 4.3. Suppose that r_i, p_i, q_i, α_i satisfy (H1). Also that $f_i, i = 1, 2$ satisfies (H2), (H3) and that $\mathcal{A}(x,t) > 0$ in $\overline{\Omega} \times (0, \max\{|\theta_1|_{L^{r_2(x)}}, |\theta_2|_{L^{r_1(x)}}\}]$. Then there exists $\lambda_0 > 0$ such that (4.30) has a positive solution for $\lambda \geq \lambda_0$.

Proof. Consider the functions $\tilde{f}_i(t) = f_i(t)$ for $t \in [0, \theta_i]$, and $\tilde{f}_i(t) = 0$ for $t \in \mathbb{R} \setminus [0, \theta_i]$, i = 1, 2. The functional

$$\begin{aligned} J_{\lambda}(u,v) \\ &= \int_{\Omega} \frac{1}{p_1(x)} |\nabla u|^{p_1(x)} dx - \lambda \int_{\Omega} \widetilde{F}_1(u) dx + \int_{\Omega} \frac{1}{p_2(x)} |\nabla v|^{p_2(x)} dx - \lambda \int_{\Omega} \widetilde{F}_2(v) dx \\ &:= J_{1,\lambda}(u) + J_{2,\lambda}(v), \end{aligned}$$

where $\widetilde{F}_i(t) = \int_0^t \widetilde{f}_i(s) ds$ is of class $C^1(W_0^{1,p_1(x)} \times W_0^{1,p_2(x)}(\Omega), \mathbb{R})$ and $W_0^{1,p_1(x)}(\Omega) \times W_0^{1,p_2(x)}(\Omega)$ is a Banach space endowed with the norm

$$|(u,v)| := \max\{|\nabla u|_{p_1(x)}, |\nabla v|_{p_2(x)}\}.$$

Since $|\tilde{f}_i(t)| \leq C$, $t \in \mathbb{R}$ for some constant which does not depends on i = 1, 2 we have that J is coercive. Thus J has a minimum $(z_\lambda, w_\lambda) \in W_0^{1,p_1(x)}(\Omega) \times W_0^{1,p_2(x)}(\Omega)$ with

$$-\Delta_{p_1(x)} z_{\lambda} = \lambda f_1(z_{\lambda}) \quad \text{in } \Omega,$$

$$z_{\lambda} = 0 \quad \text{on } \partial\Omega,$$

(4.31)

and

$$-\Delta_{p_2(x)} w_{\lambda} = \lambda \tilde{f}_2(w_{\lambda}) \quad \text{in } \Omega,$$

$$w_{\lambda} = 0 \quad \text{on } \partial\Omega.$$
 (4.32)

Note that the unique solutions of (4.31) and (4.32) are given by the minimizers of functionals $J_{1,\lambda}$ and $J_{2,\lambda}$ respectively.

Consider a function $\varphi_0 \in W_0^{1,p_i(x)}(\Omega)$, i = 1, 2 with $\tilde{F}_i(\varphi_0) > 0$, i = 1, 2. Define $(z_0, w_0) := (z_{\tilde{\lambda}_0}, w_{\tilde{\lambda}_0})$, where $\tilde{\lambda}_0$ satisfies

$$\int_{\Omega} \frac{1}{p_i(x)} |\nabla \varphi_0|^{p_i(x)} dx < \widetilde{\lambda}_0 \int_{\Omega} \widetilde{F}_i(\varphi_0) dx, \quad i = 1, 2.$$

We have $J_{1,\tilde{\lambda}_0}(z_0) \leq J_{1,\tilde{\lambda}_0}(\varphi_0) < 0$ and that $J_{2,\tilde{\lambda}_0}(z_0) < 0$. Therefore $z_0 \neq 0$ and $w_0 \neq 0$. Since $-\Delta_{p_1(x)}z_0$ and $-\Delta_{p_2(x)}w_0$ are nonnegative, we have $z_0, w_0 > 0$ in Ω . Note that by [28, Theorem 4.1] and [25, Theorem 1.2], we obtain that $z_0, w_0 \in C^{1,\alpha}(\overline{\Omega})$ for some $\alpha \in (0, 1]$.

Using the test function $\varphi = (z_0 - \theta_1)^+ \in W_0^{1,p_1(x)}(\Omega)$ in (4.31) we obtain

$$\int_{\Omega} |\nabla z_0|^{p_1(x)-2} \nabla z_0 \nabla (z_0 - \theta_1)^+ dx = \tilde{\lambda}_0 \int_{\{z_0 > \theta\}} \widetilde{f}_1(z_0) (z_0 - \theta_1) dx = 0.$$

Therefore,

$$\int_{\{z_0>\theta\}} \left\langle |\nabla z_0|^{p(x)-2} \nabla z_0 - |\nabla \theta_1|^{p_1(x)-2} \nabla \theta_1, \nabla (z_0-\theta_1) \right\rangle dx = 0,$$

which imply $(z_0 - \theta_1)_+ = 0$ in Ω . Thus $0 < z_0 \le \theta_1$. A similar reasoning provides $0 < w_0 \le \theta_2$.

Note that there is a constant C > 0 such that $|z_0|_{L^{q_1(x)}}^{\alpha_1(x)}, |w_0|_{L^{q_2(x)}}^{\alpha_2(x)} \ge C$. We define

$$\mathcal{A}_{0} = \max \left\{ \mathcal{A}(x,t) : (x,t) \in \overline{\Omega} \times [\min\{|z_{0}|_{L^{r_{2}(x)}}, |w_{0}|_{L^{r_{1}(x)}}\}, \right.$$

and $\mu_0 = \frac{A_0}{C}$. Then, we have

$$\begin{aligned} -\Delta_{p_1(x)} z_0 &= \lambda_0 f_1(z_0) \\ &= \frac{1}{\mathcal{A}_0} \widetilde{\lambda}_0 \mu_0 f_1(z_0) |w_0|_{L^{q_1(x)}}^{\alpha_1(x)} \frac{\mathcal{A}_0}{\mu_0 |z_0|_{L^{q_1(x)}}^{\alpha_1(x)}} \\ &\leq \frac{1}{\mathcal{A}_0} \widetilde{\lambda}_0 \mu_0 f_1(z_0) |w_0|_{L^{q_1(x)}}^{\alpha_1(x)}. \end{aligned}$$

Thus for each $\lambda \geq \lambda_0 := \widetilde{\lambda}_0 \mu_0$ and $w \in [w_0, \theta_2]$, we obtain

$$-\Delta_{p_1(x)} z_0 \le \frac{1}{\mathcal{A}(x, |w|_{L^{r_1(x)}})} \lambda f_1(z_0) |w_0|_{L^{q_1(x)}}^{\alpha_1(x)}.$$

If necessary, we can consider a larger $\lambda_0 > 0$ such that

$$-\Delta_{p_2(x)}w_0 \le \frac{1}{\mathcal{A}(x, |w|_{L^{r_2(x)}})} \lambda f_2(w_0) |z_0|_{L^{q_2(x)}}^{\alpha_2(x)},$$

for all $\lambda \geq \lambda_0$ and $w \in [z_0, \theta_1]$.

Since $f_i(\theta_i) = 0$, i = 1, 2, we have that (z_0, θ_1) and (w_0, θ_2) are sub-super solutions pairs for (4.30). The proof is complete.

We remark that is possible to use the functions ϕ_i from the proof of Theorem 4.1 for problem (4.30). However, more restrictions on the functions $p_i, f_i, i = 1, 2$ are needed.

Acknowledgements. G. M. Figueiredo thanks for the support by Coordenação de Aperfeiçamento de Nível Superior (CAPES), by the Conselho Nacional de Desenvolvimento Científico (CNPq), and by the Fundação de Apoio a Pesquisa do Distrito Federal (FAPDF).

References

- E. Acerbi, G. Mingione; Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213–259.
- [2] W. Allegretto, Y. X. Huang; A Picone's identity for the p-Laplacian an applications, Nonlinear Anal., 32 (7) (1998) 819–830. doi: 10.1016/s0362-54X(97)00530-0.
- [3] C. O. Alves, A. Moussaoui; Existence and regularity of solutions for a class of singular (p(x), q(x))-Laplacian systems, 2016, https://doi.org/10.1080/17476933.2017.1298589
- [4] C. O. Alves, A. Moussaoui, L. S. Tavares; An elliptic system with logarithmic nonlinearity. 2017, (to appear).
- [5] A. Ambrosetti, H. Brezis, G. Cerami; Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), no. 2, 519–543.
- [6] A. Anane, O. Chakrone, N. Moradi; Regularity of the solutions to a nonlinear boundary problem with indefinite weight, Bol. Soc. Parana. Mat., (3) 29 (1) (2011) 17–23. doi: 10.5269/bspm.v29i1.11402.
- [7] A. Anane, O. Chakrone, N. Moradi; Maximum and anti-maximum principle for the p-Laplacian with a nonlinear boundary condition, Proceedings of the 2005 Oujda International Conference on Nonlinear Analysis, Electron. J. Differ. Equ., Conf. 14 (2006), pp. 95–107.
- [8] M. Arias, J. Campos, J. P. Gossez; On the antimaximum principle and the Fučik spectrum for the Neumann p-Laplacian, Differential Integral Equations, 13 (1-3) (2000), 217–226.
- S. Baraket, S., G Molica Bisci; Multiplicity results for elliptic Kirchhoff-type problems, Adv. Nonlinear Anal., 6(2017), no. 1, 85–93.
- [10] A. Cabadam F. J. S. A. Corrêa; Existence of Solutions of a Nonlocal Elliptic System via Galerkin Method, Abstr. and Appl. Anal., 2012, Art. ID 137379, 16 pp.

- [11] G. F. Carrier; On the Nonlinear Vibration Problem of the Elastic String, Q. Appl. Math. 3 (1945), 157–165.
- [12] M. Cencelj, D. Repovs, Z. Virk; Multiple perturbations of a singular eigenvalue problem, Nonlinear Anal., 119 (2015), 37–45.
- [13] Y. Chen, H. Gao; Existence of positive solutions for nonlocal and nonvariational elliptic system, Bull. Austral. Math. Soc., 72 (2005), no. 2, 271–281.
- [14] Y. Chen, S. Levine, M. Rao; Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383–1406.
- [15] M. Chipot, N. H. Chang; On some model diffusion problems with a nonlocal lower order term, Chin. Ann. Math. Ser. B, 24 (2003), no. 2, 147–166.
- [16] M. Chipot, F. J. S. A. Corrêa; Boundary layer solutions to functional, Bull. Braz. Math. Soc., New Series 40 (2009), 381–393.
- [17] M. Chipot, B. Lovat; Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30 (1997), no. 7, 4619–4627.
- [18] M. Chipot, P. Roy; Existence results for some functional elliptic equations, Differential and Integral Equations, Vol. 27, n.3/4 (2014), 289–300.
- [19] F. J. S. A. Corrêa, G. M. Figueiredo, F. P. M. Lopes; On the Existence of Positive Solutions for a Nonlocal Elliptic Problem Involving the p-Laplacian and the Generalized Lebesgue Space L^{p(x)}(Ω), Differential and Integral Equations, 21 (2008), no. 3-4, 305–324.
- [20] F. J. S. A. Corrêa, F. P. M. Lopes; Positive solutions for a class of nonlocal elliptic systems, Comm. Appl. Nonlinear Anal., 14 (2007), no. 2, 67–77.
- [21] M. Cuesta, L. Leadi; Weighted eigenvalue problems for quasilinear elliptic operators with mixed Robin-Dirichlet boundary conditions, J. Math. Anal. Appl., 422 (1) (2015) 1–26. doi: 10.1016/j.jmaa.2014.08.015.
- [22] M. Cuesta, L. A. Leadi, P. Nshimirimana; Bifurcation from the first eigenvalue of the p-Laplacian with nonlinear boundary condition, Electron. J. Differential Equations, 2019 (2019) No. 32, 1–29.
- [23] W. Deng, Y. Lie, C. Xie; Blow-up and global existence for a nonlocal degenerate parabolic system, J. Math. Anal. Appl., 277 (2003), no. 1, 199–217.
- [24] P. Drábek; Solvability and bifurcations of nonlinear equations, Vol. 264 of Pitman Research Notes in Mathematics Series, Logman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992.
- [25] X. L. Fan; Global C^{1,α} regularity for variable exponent elliptic equations in divergence form,
 J. Differential Equations, 235 (2007), no. 2, 397–417.
- [26] X. L. Fan; On the sub-super solution method for p(x)-Laplacian equations, J. Math. Anal. Appl., 330 (2007), no. 1, 665–682.
- [27] X. L. Fan, Q. H. Zhang; Existence of solution for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), no. 8, 1843–1852.
- [28] X. L. Fan, D. Zhao; A class of De Giorgi type and Holder continuity, Nonlinear Anal., 36 (1999), no. 3, Ser. A: Theory Methods, 295–318.
- [29] X. L. Fan, Y. Z. Zhao, Q. H. Zhang; A strong maximum principle for p(x)-Laplace equations, Chinese J. Contemp. Math., 24 (2003), no. 3, 277–282.
- [30] J. Fernández Bonder, J. D. Rossi; A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding, Publ. Mat., 46 (1) (2002), 221–235.
- [31] T. Godoy, J. P. Gossez, S. Paczka; On the antimaximum principle for the p-Laplacian with indefinite weight, Nonlinear Anal., 51 (3) (2002), 449–467. doi: 10.1016/s0362-546X(01)00839-2.
- [32] T. Godoy, J. P. Gossez, S. Paczka; Antimaximum principle for elliptic problems with weight, Electron. J. Differential Equations, 1999 (1999) No. 22, 1–15.
- [33] L. Leadi, A. Marcos; A weighted eigencurve for Steklov problems with a potential, NoDEA Nonlinear Differential Equations Appl. 20 (3) (2013) 687–713. doi: 10.1007/s00030-012-0175-0.
- [34] J. Liu, Q. Zhang, C. Zhao; Existence of positive solutions for p(x)-Laplacian equations with a singular nonlinear term, Electron. J. Differ. Equ. 2014 (2014), no. 155, 21 pp.
- [35] M. Mihailescu, V. Radulescu, D. Repovs; On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting, J. Math. Pures Appl., (2010) (9) 93, no. 2, 132–148.

- [36] G. Molica Bisci, V. Radulescu, R. Servadei; Variational methods for nonlocal fractional problems, Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016.
- [37] M. A. del Pino, R. F. Manásevich, A. E. Murúa; Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE, Nonlinear Anal., 18 (1) (1992), 79–92. doi: 10.1016/0362-546X(92)90048-J.
- [38] P. Pucci, M. Xiang, B. Zhang; Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv. Nonlinear Anal., 5 (2016), no. 1, 27–55.
- [39] P. Pucci, Q. Zhang; Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), no. 5, 1529–1566.
- [40] P. H. Rabinowitz; Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487–513.
- [41] V. Radulescu, D. Repovs; Partial differential equations with variable exponents. Variational methods and qualitative analysis, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015.
- [42] M. Růžička; Electrorheological Fluids: Modelling and Mathematical Theory, Springer-Verlag, Berlin, 2000.
- [43] G. C. G. dos Santos, G. M. Figueiredo; Positive Solutions for a class of nonlocal problems involving Lebesgue generalized spaces: Scalar and system cases, J. Elliptic Parabol. Equ., 2 (2016), no. 1-2, 235–266
- [44] G. C. G. dos Santos, G. M. Figueiredo, L. S. Tavares; A sub-supersolution method for a class of nonlocal problems involving the p(x)-Laplacian operator and applications. Acta Appl. Math. 153 (2018), 171–187.
- [45] J. Serrin; Local behavior of solutions of quasi-linear equations, Acta Math., 111 (1964) 247-302. doi: 10.1007/BF02391014.
- [46] Y.-Q. Song, Y.-M. Chu, B.-Y. Liu, M.-K. Wang; A note on generalized trigonometric and hyperbolic functions, J. Math. Inequal., 8 (3) (2014) 630–642. doi:10.7153/jmi-08-46.
- [47] J. L. Vázquez; A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (3) (1984) 191–202. doi: 10.1007/BF01449041.

Gelson C. G. dos Santos

UNIVERSIDADE FEDERAL DO PARÁ, FACULDADE DE MATEMÁTICA, CEP: 66075-110, BELÉM - PA, BRAZIL

Email address: gelsonsantos@ufpa.br

GIOVANY M. FIGUEIREDO

UNIVERSIDADE DE BRASÍLIA, DEPARTAMENTO DE MATEMÁTICA, CEP: 70910-900, BRASÍLIA - DF, BRAZIL

Email address: giovany@unb.br

Leandro S. Tavares

UNIVERSIDADE FEDERAL DO CARIRI, CENTRO DE CIÊNCIAS E TECNOLOGIA, CEP: 63048-080, JUAZEIRO DO NORTE - CE, BRAZIL

Email address: leandro.tavares@ufca.edu.br