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EXISTENCE OF SOLUTIONS TO FRACTIONAL HAMILTONIAN

SYSTEMS WITH LOCAL SUPERQUADRATIC CONDITIONS

ZIJUN GUO, QINGYE ZHANG

Abstract. In this article, we study the existence of solutions for the fractional

Hamiltonian system

tD
α
∞(−∞D

α
t u(t)) + L(t)u(t) = ∇W (t, u(t)),

u ∈ Hα(R,RN ),

where tDα∞ and −∞Dαt are the Liouville-Weyl fractional derivatives of order

1/2 < α < 1, L ∈ C(R,RN×N ) is a symmetric matrix-valued function, which

is unnecessarily required to be coercive, and W ∈ C1(R×RN ,R) satisfies some
kind of local superquadratic conditions, which is rather weaker than the usual

Ambrosetti-Rabinowitz condition.

1. Introduction

Fractional differential equations including both ordinary and partial ones are ap-
plied in mathematical modeling of some processes in physics, mechanics, chemistry,
economics and bioengineering; see [1, 6, 7, 14, 16, 11, 24] and the references therein.
Indeed, the associated fractional-order differential operators of these equations ad-
mit the characteristic of nonlocal behavior, which can provide a more realistic
and practical description of these processes than the usual integer-order differen-
tial operators. Therefore, the theory of fractional differential equations is an area
intensively developed during the last decades.

In recent years, fractional differential equations including both left and right
fractional derivatives are also gradually investigated. Apart from their possible
applications, the research of these equations is a relatively new and interesting field
in the theory of fractional differential equations. Some early works on this topic
can be founded in papers [2, 5, 10] and their references.

In 2012, Jiao and Zhou [8] showed the existence of solutions for the fractional
boundary value problem

tD
α
T (0D

α
t u(t)) = ∇W (t, u(t)), a.e.t ∈ [0, T ],

u(0) = u(T ) = 0,

where tD
α
T and 0D

α
t are the right and left Riemann-Liouville fractional derivatives

of order α ∈ [1/2, 1]. Inspired by this work, in [18], the author considered the
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fractional Hamiltonian system

tD
α
∞(−∞D

α
t u(t)) + L(t)u(t) = ∇W (t, u(t)),

u ∈ Hα(R,RN ),
(1.1)

where tD
α
∞ and −∞D

α
t are the Liouville-Weyl fractional derivatives of order 1/2 <

α < 1, L ∈ C(R,RN×N ) is a symmetric matrix-valued function, W ∈ C1(R ×
RN ,R), and ∇W (t, u) denotes the gradient of W (t, u) with respect to u. To be
more precise, he showed that the fractional Hamiltonian system (1.1) possesses at
least one nontrivial solution under the following assumptions:

(A1) There exists an l ∈ C(R, (0,∞)) such that l(t)→ +∞ as t→∞ and

(L(t)u, u) ≥ l(t)|u|2, ∀t ∈ R, u ∈ RN .
(A2) There exists a constant µ > 2 such that

0 < µW (t, u) ≤ (∇W (t, u), u), ∀t ∈ R, u ∈ RN\{0}.
(A3) |∇W (t, u)| = o(|u|) as u→ 0 uniformly with respect to t ∈ R.
(A4) There exists W ∈ C(RN ,R) such that

|W (t, u)|+ |∇W (t, u)| ≤ |W (u)|, ∀t ∈ R, u ∈ RN .
Subsequently, the existence and multiplicity of solutions for the fractional Hamil-

tonian system (1.1) have been extensively investigated in many papers, see [21, 13,
22, 17, 23, 25, 4, 12, 20, 3] and the references therein. However, we note that in
almost all these papers but [17, 4, 25], L is required to satisfy either the coercivity
condition (A1) or the uniform positive-definiteness condition

(A5) there exists b0 > 0 such that

(L(t)u, u) ≥ b0|u|2, ∀t ∈ R, u ∈ RN .
Besides, some of them (see [21, 13, 23, 25]) dealt with the case where W satisfies
the well-known Ambrosetti-Rabinowitz condition (A2), which is more restrictive
than the following weaker superquadratic condition

(A6) lim|u|→∞W (t, u)/|u|2 = +∞ uniformly with respect to t ∈ R.

Then, more papers were devoted to the case where W satisfies the weaker su-
perquadratic growth condition (A6) and various additional technical conditions,
see, [17, 3, 4, 12, 20].

In the recent paper [19], the author obtained the existence of nontrivial ho-
moclinic solutions for the following second-order Hamiltonian system without the
Ambrosetti-Rabinowitz condition (A2) on W .

ü− L(t)u+∇W (t, u) = 0. (1.2)

This second-order Hamiltonian system can be viewed as a special case of the frac-
tional Hamiltonian system (1.1) with α = 1. More precisely, in [19], W is only
required to satisfy the weaker superquadratic condition (A6) locally with respect
to t (see (W4) in [19]). Motivated by the above results, we study the existence of
solutions for the fractional Hamiltonian system (1.1) when L is not required to be
coercive, and W satisfies some kind of local superquadratic conditions similar to
that in [19]. Before presenting our hypotheses, we introduce the following notation.
For two N ×N symmetric matrices M1 and M2, we say that M1 ≥M2 if

min
u∈RN ,|u|=1

(M1 −M2)u · u ≥ 0
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and that M1 6≥M2 if M1 ≥M2 does not hold.
Now we make the following asumptions:

(A7) There exists l0 > 0 such that (L(t)u, u) ≥ l0|u|2 for all t ∈ R and all
u ∈ RN .

(A8) There exists a constant r0 > 0 such that

lim
|s|→∞

meas
(
{t ∈ (s− r0, s+ r0) : L(t) 6≥MIN}

)
= 0, ∀M > 0,

where meas denotes the Lebesgue measure in R and IN is the identity
matrix in RN .

(A9) W (t, 0) ≡ 0 and ∇W (t, u) = o(|u|) as u → 0 uniformly with respect to
t ∈ R.

(A10) There exists W ∈ C(RN ,R+) such that

|W (t, u)|+ |∇W (t, u)| ≤W (u), ∀t ∈ R, u ∈ RN .

(A11) There exists a constant K0 > 0 such that W (t, u) ≥ 0 for all (t, u) ∈ R×RN
with |u| ≥ K0.

(A12) There exist b1, b2 ∈ R (b1 < b2) such that lim|u|→∞ |W (t, u)|/|u|2 = ∞
uniformly with respect to t ∈ (b1, b2).

(A13) W̃ (t, u) ≥ 0 for all (t, u) ∈ R×RN , and there exists a nonnegative function
h ∈ C(R+,R+) with lims→+∞ h(s) =∞ such that

|W (t, u)|
|u|2

≥ 1

4β2
2

implies |W (t, u)| ≤ |u|2

h(|u|)
W̃ (t, u),

where W̃ (t, u) = (∇W (t, u), u)−2W (t, u), and β2 is the embedding constant
given by (2.8) in the next section.

Our main result reads as follows.

Theorem 1.1. Suppose that (A7)–(A13) are satisfied. Then the fractional Hamil-
tonian system (1.1) possesses a nontrivial solution.

Remark 1.2. In Theorem 1.1, W is allowed to be sign-changing and only required
to be superquadratic at infinitely with respect to u when t belongs to some finite
interval. This is in sharp contrast with the aforementioned references. To the best
of our knowledge, there is no literature concerning the existence of solutions for the
fractional Hamiltonian system (1.1) in this situation.

Remark 1.3. Evidently, condition (A12) is weaker than the usual superquadratic
condition (A6). Meanwhile, it is easy to check that W will satisfy our condi-
tions (A11)–(A13) with h(s) = (µ− 2)s2 if it satisfies the well-known Ambrosetti-
Rabinowitz condition (A2). Besides, our conditions (A7) and (A8) are also weaker
than the coercivity conditions (A1) as well as the conditions (L1) and (L2) in [25].
Hence, both [18, Theorem 1.1] and the existence result [25, Theorem 1.1] are covered
by Theorem 1.1. Indeed, there are many functions W which satisfy the conditions
of Theorem 1.1 but do not satisfy the corresponding conditions of the related results
in [21, 13, 22, 17, 23, 25, 4, 12, 20, 3]. For example, let

W (t, u) = (| cos t|+ cos t)|u|2 ln(1 + |u|2), ∀(t, u) ∈ R× RN .

Then it is easy to see that W satisfies the conditions of Theorem 1.1 by choosing
b1 = −π/2, b2 = π/2, W (u) = 4|u|3(1 + |u|2)−1 + 2(|u|2 + 2|u|) ln(1 + |u|2) and
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h(s) = s4/[(1 + s2) ln(1 + s2)]. However, it does not satisfy neither (A6) nor (A2)
since W (π, u) ≡ 0 for all u ∈ RN . Also let

L(t) =


[(k2 + 1)2(t− k) +m0]IN , k ≤ t < k + 1

k2+1 ,

[(k2 + 1)2 +m0]IN , k + 1
k2+1 ≤ t < k + k2

k2+1 ,

[(k2 + 1)2(k + 1− t) +m0]IN , k + k2

k2+1 ≤ t < k + 1,

where k ∈ Z, m0 ∈ R and IN is the N ×N identity matrix. Evidently, L satisfies
our conditions (A7) and (A8) but does not satisfy the corresponding conditions in
[18, Theorem 1.1] or [25, Theorem 1.1].

2. Preliminary results

In this section, we present some preliminaries of fractional calculus (cf. [16, 11]).
The Liouville-Weyl fractional integrals of order 0 < α < 1 on the whole axis R are
defined as

−∞I
α
xu(x) =

1

Γ(α)

∫ x

−∞
(x− ξ)α−1u(ξ)dξ, (2.1)

xI
α
∞u(x) =

1

Γ(α)

∫ ∞
x

(ξ − x)α−1u(ξ)dξ. (2.2)

The Liouville-Weyl fractional derivatives of order 0 < α < 1 on the whole axis R are
defined as the left-inverse operators of the corresponding Liouville-Weyl fractional
integrals

−∞D
α
xu(x) =

d

dx
(−∞I

1−α
x u(x)), (2.3)

xD
α
∞u(x) = − d

dx
(xI

1−α
∞ u(x)). (2.4)

Expression (2.3) and (2.4) can be written in an alternative form as

−∞D
α
xu(x) =

α

Γ(1− α)

∫ ∞
0

u(x)− u(x− ξ)
ξα+1

dξ, (2.5)

xD
α
∞u(x) =

α

Γ(1− α)

∫ ∞
0

u(x)− u(x+ ξ)

ξα+1
dξ. (2.6)

Next we will briefly introduce some fractional spaces (see [7, 18] for more details).
For α > 0, define the semi-norm

|u|Iα−∞ = ‖−∞Dα
xu‖L2

and the norm

‖u‖Iα−∞ =
(
‖u‖2L2 + |u|2Iα−∞

)1/2

.

Let

Iα−∞(R,RN ) = C∞0 (R,RN )
‖·‖Iα−∞ ,

where C∞0 (R,RN ) denotes the space of infinitely differentiable functions from R to
RN with vanishing property at infinity.

Also we can define the fractional Sobolev spaceHα(R,RN ) in terms of the Fourier
transform. Recall that the Fourier transform û(τ) of u(x) is defined by

û(τ) =

∫ ∞
−∞

e−ixτu(x)dx.
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For 0 < α < 1, define the semi-norm

|u|α = ‖|τ |αû‖L2

and the norm

‖u‖α =
(
‖u‖2L2 + |u|2α

)1/2
,

and let

Hα(R,RN ) = C∞0 (R,RN )
‖·‖α

.

We note that a function u ∈ L2(R,RN ) belongs to Iα−∞(R,RN ) if and only if

|τ |αû ∈ L2(R,RN ). Indeed,

|u|Iα−∞ = ‖|τ |αû‖L2 .

Hence, we can say that Iα−∞(R,RN ) and Hα(R,RN ) are equivalent with equivalent
norms.

Let C(R,RN ) denote the space of continuous functions from R to RN , then we
have the following lemma.

Lemma 2.1 ([18, Theorem 2.1]). If α > 1/2, then Hα(R,RN ) ⊂ C(R,RN ) and
there is a constant Cα such that

‖u‖L∞ = sup
x∈R
|u(x)| ≤ Cα‖u‖α, ∀u ∈ Hα(R,RN ). (2.7)

Remark 2.2. From Lemma 2.1, we know that Hα(R,RN ) is continuously embed-
ded into Lq(R,RN ) for all q ∈ [2,∞), since∫

R
|u(t)|qdx ≤ ‖u‖q−2

L∞ ‖u‖
2
L2 ≤ Cqα‖u‖qα, ∀u ∈ Hα(R,RN ),

where Cα is the embedding constant given in (2.7).

Now we can introduce the following fractional space, which will serve as the
variational space for the fractional Hamiltonian system (1.1). Define

Xα =
{
u ∈ Hα(R,RN ) :

∫
R
|−∞Dα

t u(t)|2 + L(t)u(t) · u(t)dt <∞
}
,

then Xα is a reflexive and separable Hilbert space equipped with the inner product

〈u, v〉Xα =

∫
R

(−∞D
α
t u(t), −∞D

α
t v(t)) + L(t)u(t)v(t)dt, ∀u, v ∈ Xα,

and the corresponding norm is

‖u‖2Xα = 〈u, u〉Xα , ∀u ∈ Xα.

Lemma 2.3 ([18, Lemma 2.3]). Suppose that (A7) is satisfied, then Xα is contin-
uously embedded into Hα(R,RN ).

Remark 2.4. From Lemma 2.1, Remark 2.2 and Lemma 2.3, we know that Xα is
continuously embedded into Lq(R,RN ) for all q ∈ [2,∞]. Hence, for all q ∈ [2,∞],
there exists βq > 0 such that

‖u‖Lq ≤ βq‖u‖Xα ∀u ∈ Xα. (2.8)

We further have the following compact embedding result.

Lemma 2.5. Suppose that (A7) and (A8) hold. Then Xα is compactly embedded
into L2(R,RN ).
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Proof. The proof for the case α = 1 was given in [9, Lemma 2.2]. Here we will use
the similar skill to give the proof for our case 1/2 < α < 1. Let {uk} ⊂ Xα be a
sequence such that uk ⇀ u in Xα. We need to prove that uk → u in L2(R,RN ).
Suppose, without loss of generality, that uk ⇀ 0 in Xα. The Sobolev embedding
theorem implies uk → 0 in L2

loc(R,RN ). Thus it suffices to show that, for any ε > 0,
there is r1 > 0 such that

∫
R\(−r1,r1)

|uk|2dt < ε. For any s ∈ R, we denote by Br0(s)

the interval in R centered at s with radius r0, i.e., Br0(s) := (s− r0, s+ r0), where
r0 is the constant given in (A8). Let {si} ⊂ R be a sequence of points such that
R = ∪∞i=1Br0(si) and each t ∈ R is contained in at most two such intervals. For any
r1 > 0 and M > 0, let

P(r1,M) = {t ∈ R \ (−r1, r1) : L(t) ≥MIn},
Q(r1,M) = {t ∈ R \ (−r1, r1) : L(t) 6≥MIn}.

Then ∫
P(r1,M)

|uk|2dt ≤
1

M

∫
P(r1,M)

(L(t)uk, uk)dt ≤ 1

M

∫
R
(L(t)uk, uk)dt,

and this can be made arbitrarily small by choosing M large. Besides, for fixed
M > 0,∫
Q(r1,M)

|uk|2dt ≤
∞∑
i=1

∫
Q(r1,M)∩Br0 (si)

|uk|2dt

≤
∞∑
i=1

(∫
Q(r1,M)∩Br0 (si))

|uk|4dt
)1/2(

meas(Q(r1,M) ∩ Br0(si))
)1/2

≤ εr1
∞∑
i=1

(∫
Br0 (si)

|uk|4dt
)1/2

≤ εr1
∞∑
i=1

∫
Br0 (si)

|uk|4dt

≤ 2εr1

∫
R
|uk|4dt

≤ 2β4
4εr1‖uk‖4Xα ,

where εr1 = supi∈N(meas(Q(r1,M)∩Br0(si)))
1/2 and β4 is the embedding constant

given in (2.8). By (A8), εr1 → 0 as r1 →∞. Noting that {uk} is bounded in Xα,
we can make this term small by choosing r1 large. This completes the proof. �

With the help of Lemma 2.5, we can prove the following lemma.

Lemma 2.6. Suppose that (A7)–(A10) are satisfied. If uk ⇀ u in Xα, then∫
R
|∇W (t, uk)−∇W (t, u)|2dt→ 0 as k →∞.

Proof. The proof is similar to that in [18, Lemma 2.7], and we give it here for the
readers’ convenience. Assume that uk ⇀ u in Xα. Then there exists a constant
d1 > 0 such that, by Banach-Steinhaus theorem and (2.7),

sup
k∈N
‖uk‖L∞ ≤ d1, ‖u‖L∞ ≤ d1. (2.9)
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By (A9), there exists 0 < δ1 < d1 such that

|∇W (t, u)| ≤ |u|, ∀t ∈ R, |u| < δ1. (2.10)

By (A10), there is K1 > 0 such that

|∇W (t, u)| ≤ K1, ∀t ∈ R, δ1 ≤ |u| ≤ d1. (2.11)

Combining (2.10) and (2.11), we have

|∇W (t, u)| ≤ d2|u|, ∀t ∈ R, |u| ≤ d1, (2.12)

where d2 = max{K1/δ1, 1}. Since, by Lemma 2.5, uk → u in L2(R,RN ), passing
to a subsequence if necessary, we may assume that

uk → u a.e. in R and

∞∑
k=1

‖uk − u‖L2 <∞,

then

v :=

∞∑
k=1

|uk − u| ∈ L2(R,RN ).

It follows from (2.9) and (2.12) that∫
R
|∇W (t, uk)−∇W (t, u)|2dt ≤ d2

2

∫
R
(|uk|+ |u|)2dt

≤ d2
2

∫
R
(|uk − u|+ 2|u|)2dt

≤ 2d2
2

∫
R

(|uk − u|2 + 4|u|2)dt

≤ 2d2
2

∫
R

(v2 + 4|u|2)dt.

Thus, the proof will be complete by using the Lebesgue’s convergence theorem. �

We will use the following well-known mountain pass theorem to prove Theorem
1.1 in the next section.

Theorem 2.7 ([15, Theorem 2.2]). Let E be a real Banach space and functional
I ∈ C1(E,R) satisfying the Palais-Smale condition. Suppose that I(0) = 0 and

(1) There exist constants ρ, η > 0 such that inf I
∣∣
∂Bρ
≥ η,

(2) There exists an e ∈ E\Bρ such that I(e) ≤ 0.

Then, I possesses a critical value c ≥ η. Moreover c can be characterized as

c = inf
g∈Γ

max
u∈g([0,1])

I(u), (2.13)

where Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

Remark 2.8. We recall that any sequence {uk} ⊂ E satisfying

sup
k∈N
|I(uk)| < +∞, ‖I ′(uk)‖E∗(1 + ‖uk‖E)→ 0 as k → +∞

is called a Cerami sequence. If any Cerami sequence {uk} has a convergent sub-
sequence, we say that I satisfies the Cerami condition. It is worth to point out
that Theorem 2.7 still holds true under the Cerami condition, since a similar de-
formation lemma can be proved with the usual Palais-Smale condition replaced by



8 Z. GUO, Q. ZHANG EJDE-2020/29

the Cerami condition. In the next section, we will use the version of Theorem 2.7
under the Cerami condition to give the proof of our main result.

3. Proof of the main result

To prove Theorem 1.1 via variational methods, we first define the variational
functional I on Xα associated with the fractional Hamiltonian system (1.1) by

I(u) =

∫
R

[1

2
|−∞Dα

t u(t)|2 +
1

2
(L(t)u(t), u(t))−W (t, u(t))

]
dt

=
1

2
‖u‖2Xα −

∫
R
W (t, u(t))dt.

(3.1)

Under the conditions of Theorem 1.1, it is standard to show that I ∈ C1(Xα,R)
with the Frechét derivative I ′ given by

I ′(u)v

=

∫
R

[
(−∞D

α
t u(t),−∞D

α
t v(t)) + (L(t)u(t), v(t))− (∇W (t, u(t)), v(t))

]
dt

(3.2)

for all u, v ∈ Xα. Particularly,

I ′(u)u = ‖u‖2Xα −
∫
R
(∇W (t, u(t)), u(t))dt, ∀u ∈ Xα. (3.3)

Here, we say that u ∈ Xα is a solution of the fractional Hamiltonian system (1.1)
if ∫

R
[(−∞D

α
t u(t),−∞D

α
t v(t)) + (L(t)u(t), v(t))− (∇W (t, u(t)), v(t))] dt = 0

for every v ∈ C∞0 (R,RN ). Evidently, any critical point of I is a solution of the
fractional Hamiltonian system (1.1).

Before applying Theorem 2.7 to prove our main result, we need to establish the
following lemmas.

Lemma 3.1. Suppose that (A7)–(A9) are satisfied. Then there exist positive con-
stants ρ, η such that inf‖u‖Xα=ρ I(u) ≥ η.

Proof. Note that (A9) implies that there exists δ2 > 0 such that

|W (t, u)| ≤ 1

4β2
2

|u|2, ∀t ∈ R, |u| ≤ δ2, (3.4)

where β2 is the embedding constant given in (2.8). Taking ρ = δ2/β∞ with β∞
being given in (2.8). For any u ∈ Xα with ‖u‖Xα = ρ, by (2.8), we have

‖u‖L∞ ≤ β∞‖u‖Xα = δ2. (3.5)

Then it follows from (2.8), (3.1), (3.4) and (3.5) that

I(u) =
1

2
‖u‖2Xα −

∫
R
W (t, u)dt

≥ 1

2
‖u‖2Xα −

1

4β2
2

‖u‖2L2

≥ 1

4
‖u‖2Xα =

ρ2

4

for all u ∈ Xα with ‖u‖Xα = ρ. We complete the proof by taking η = ρ2/4. �



EJDE-2020/29 FRACTIONAL HAMILTONIAN SYSTEMS 9

Lemma 3.2. Suppose that (A7)–(A12) are satisfied. Then there exists e ∈ Xα

such that ‖e‖Xα > ρ and I(e) < 0, where ρ is given in Lemma 3.1.

Proof. Choose ϕ0 ∈ C∞0 (R,RN ) such that |ϕ0(t)| ≤ 1 for all t ∈ R, and

|ϕ0(t)| =

{
0, t ∈ (−∞, b1] ∪ [b2,∞),

1, t ∈ [(3b1 + b2)/4, (b1 + 3b2)/4].

For any λ > 0, let

Iλ = {t : |λϕ0(t)| ≤ K0} ∩ [b1, b2], Jλ = {t : |λϕ0(t)| > K0} ∩ [b1, b2],

where K0 is the constant of (A11). Noting that |λϕ0(t)| > K0 for all t ∈ [(3b1 +
b2)/4, (b1 + 3b2)/4] whenever λ > K0, we have meas(Iλ) ≤ b2 − b1 and [(3b1 +
b2)/4, (b1 + 3b2)/4] ⊂ Jλ for λ > K0. Hence, combining this with (3.1), (A9),
(A11) and (A12), we have

I(λϕ0) =
λ2

2
‖ϕ0‖2Xα −

∫
R
W (t, λϕ0)dt

=
λ2

2
‖ϕ0‖2Xα −

∫
Iλ
W (t, λϕ0)dt−

∫
Jλ
W (t, λϕ0)dt

≤ λ2

2
‖ϕ0‖2Xα +K2(b2 − b1)−

∫ (b1+3b2)/4

(3b1+b2)/4

W (t, λϕ0)dt

= λ2
[1

2
‖ϕ0‖2Xα +

K2(b2 − b1)

λ2
−
∫ (b1+3b2)/4

(3b1+b2)/4

W (t, λϕ0)

λ2|ϕ0|2
dt
]

= −∞, as λ→ +∞,
where K2 = max{|W (t, u)| : t ∈ [b1, b2], |u| ≤ K0}. Thus, we can finish the proof
by taking e = λ0ϕ0 with λ0 > max{K0, ρ/‖ϕ0‖Xα} large enough. �

Lemma 3.3. Suppose that (A7)–(A13) are satisfied. Then I satisfies the Cerami
condition.

Proof. We follow partially the idea of the proof in [19, Lemma 2.4]. Let {uk} ⊂ Xα

be a Cerami sequence, i.e., I(uk) is bounded and ‖I ′(uk)‖(Xα)∗(1 + ‖uk‖Xα) → 0
as k → +∞. Then there exists a constant D0 > 0 such that

|I(uk)| ≤ D0, for every k ∈ N, (I ′(uk), uk)→ 0. (3.6)

We firstly prove that {uk} is bounded in Xα. Argue indirectly. Suppose that there
exists {uk} ⊂ Xα satisfying (3.6) but ‖uk‖Xα →∞ as k →∞. For each k ∈ N, let
wk = uk/‖uk‖Xα , then

‖wk‖Xα = 1, ∀k ∈ N. (3.7)

Combining (3.1), (3.3) and (3.6), one has

3D0 ≥ 2I(uk)− (I ′(uk), uk) =

∫
R
W̃ (t, uk)dt (3.8)

for k large enough and it follows from (3.1) and (3.6) that∣∣1
2
−
∫
R

W (t, uk)

‖uk‖2Xα
dt
∣∣ ≤ D0

‖uk‖2Xα
→ 0 as k →∞,

which implies that

lim
k→∞

∫
R

W (t, uk)

‖uk‖2Xα
dt =

1

2
. (3.9)
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By (A9), there exists δ2 > 0 such that

|W (t, u)| ≤ 1

32β2
2

|u|2, ∀t ∈ R, |u| < δ2, (3.10)

where β2 is the embedding constant given in (2.8). Since lims→+∞ h(s) = ∞, for
the embedding constant β∞ given in (2.8), there exists a constant R > 0 such that

h(s) ≥ 32D0β
2
∞, ∀s ≥ R. (3.11)

Let

Λk = {t ∈ R : |uk| ≥ R}, Ωk = {t ∈ R : |uk| < δ2},

Θk = {t ∈ R : δ2 ≤ |uk| < R}, Υk =
{
t ∈ R :

|W (t, uk)|
|uk|2

≤ 1

4β2
2

}
,

Υc
k =

{
t ∈ R : |uk| = 0 or

|W (t, uk)|
|uk|2

>
1

4β2
2

}
.

(3.12)

Then we infer from (A9), (2.8), (3.7), (3.10) and (3.12) that∫
Υk

|W (t, uk)|
‖uk‖2Xα

dt =

∫
Υk

|W (t, uk)|
|uk|2

|wk|2dt

≤ 1

4β2
2

∫
Υk

|wk|2dt

≤ 1

4β2
2

∫
R
|wk|2dt

≤ β2
2‖wk‖2Xα

4β2
2

=
1

4

(3.13)

and ∫
Υck∩Ωk

|W (t, uk)|
‖uk‖2Xα

dt ≤ 1

32β2
2

∫
Υck∩Ωk

|uk|2

‖uk‖2Xα
dt

≤ 1

32β2
2‖uk‖2Xα

∫
R
|uk|2dt

≤ β2
2‖uk‖2Xα

32β2
2‖uk‖2Xα

≤ 1

32
.

(3.14)

Combining (A9), (A13), (2.8), (3.7), (3.8), (3.11) and (3.12), we have∫
Υck∩(Λk∪Θk)

|W (t, uk)|
‖uk‖2Xα

dt

=

∫
Υck∩Λk

|W (t, uk)|
|uk|2

|wk|2dt+

∫
Υck∩Θk

|W (t, uk)|
‖uk‖2Xα

dt

≤ ‖wk‖2L∞
∫

Υck∩Λk

W̃ (t, uk)

h(|uk|)
dt+

∫
Υck∩Θk

|uk|2W̃ (t, uk)

h(|uk|)‖uk‖2Xα
dt

≤ β2
∞‖wk‖2Xα
32D0β2

∞

∫
R
W̃ (t, uk)dt+

Rk
‖uk‖2Xα

∫
R
W̃ (t, uk)dt

≤ 3D0

32D0
+

3D0Rk
‖uk‖2Xα

≤ 3

32
+

1

32
=

1

8

(3.15)
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for k lager enough, where Rk := maxt∈Υck∩Θk |uk|2/h(|uk|), and we use the fact that

limk→∞ 3D0Rk/‖uk‖2Xα = 0 since Rk ≤ maxδ2≤s≤R s
2/h(s) < +∞. Combining

(3.13)–(3.15), we have∫
R

|W (t, uk)|
‖uk‖2Xα

dt

=

∫
Υk

|W (t, uk)|
‖uk‖2Xα

dt+

∫
Υck∩Ωk

|W (t, uk)|
‖uk‖2Xα

dt+

∫
Υck∩(Λk∪Θk)

|W (t, uk)|
‖uk‖2Xα

dt

≤ 1

4
+

1

32
+

1

8
=

13

32

for k lager enough, which is in contradiction to (3.9). Thus {uk} is bounded in Xα.
Since Xα is a Hilbert space, passing to a subsequence if necessary, we may assume
that there is u ∈ Xα such that

uk ⇀ u in Xα, (3.16)

which together with (3.6) yields

(I ′(uk)− I ′(u))(uk − u)→ 0. (3.17)

Moreover, by Lemma 2.6 and the Hölder inequality,∫
R

(∇W (t, uk)−∇W (t, u), uk − u) dt→ 0. (3.18)

By (3.2),

‖uk − u‖2Xα = (I ′(uk)− I ′(u))(uk − u) +

∫
R

(∇W (t, uk)−∇W (t, u), uk − u) dt.

Combining this with (3.17) and (3.18), we have ‖uk − u‖2Xα → 0 as k → +∞. The
proof is complete. �

Now we are in a position to give the proof of our main result.

Proof of Theorem 1.1. Let E = Xα and I be the functional defined on E by (3.1),
then Lemmas 3.1 and 3.2 show that I satisfies the conditions (1) and (2) in Theorem
2.7. Besides, it follows from Lemma 3.3 that I satisfies the Cerami condition.
Therefore, by Theorem 2.7 and Remark 2.8, I possesses a critical value c ≥ η >
0. Thus, there exists a critical point u ∈ Xα\{0} of I with I(u) = c, which
is a nontrivial solution of the fractional Hamiltonian system (1.1). The proof of
Theorem 1.1 is complete. �
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