Jesus Ildefonso Diaz, Juan Francisco Padial, Jose Ignacio Tello, Lourdes Tello
Abstract:
We consider an initial boundary value problem of the complex Ginzburg-Landau
equation with some delayed feedback terms proposed for the control of chemical
turbulence in reaction diffusion systems.
We consider the equation in a bounded domain
(),
for t>0, with
where
,
,
but the rest of real parameters
,
,
and
do not have a prescribed sign. We prove the
existence and uniqueness of weak solutions of problem for a range of initial
data and parameters. When
and
we prove that only the initial
history of the integral on
of the unknown on
and a
standard initial condition at t=0 are required to determine univocally the
existence of a solution. We prove several qualitative properties of solutions,
such as the finite extinction time (or the zero exact controllability) and the
finite speed of propagation, when the term
is replaced by
, for some
.
We extend
to the delayed case some previous results in the literature of complex
equations without any delay.
Submitted March 31, 2020. Published April 30, 2020.
Math Subject Classifications: 35K15, 35B40, 35Q35.
Key Words: Complex Ginzburg-Landau equation; nonlocal delayed perturbation;
existence of weak solutions; uniqueness; qualitative properties.
Show me the PDF file (402 KB), TEX file for this article.
J. Ildefonso Díaz Instituto de Matemática Interdisciplinar Universidad Complutense de Madrid 28040 Madrid, Spain email: jidiaz@ucm.es | |
J. Francisco Padial Departamento de Matemática Aplicada E.T.S. de arquitectura Universidad Politécnica de Madrid 28040 Madrid, Spain email: jf.padial@upm.es | |
J. Ignacio Tello Departamento de Matemáticas Fundametales Facultad de Ciencias Universidad Nacional de Educación a Distancia 28040 Madrid, Spain email: jtello@mat.uned.es | |
Lourdes Tello Departamento de Matemática Aplicada E.T.S. de arquitectura Universidad Politécnica de Madrid 28040 Madrid, Spain email: l.tello@upm.es |
Return to the EJDE web page