LINEAR TYPE GLOBAL CENTERS OF CUBIC HAMILTONIAN SYSTEMS SYMMETRIC WITH RESPECT TO THE x-AXIS

LUIS BARREIRA, JAUME LLIBRE, CLAUDIA VALLS

Abstract. A polynomial differential system of degree 2 has no global centers (that is, centers defined in all the plane except the fixed point). In this paper we characterize the global centers of cubic Hamiltonian systems symmetric with respect to the x-axis, and such that the center has purely imaginary eigenvalues.

1. Introduction and statement of the results

The notion of center goes back to Poincaré and Dulac, see [4, 10]. They defined a center for a vector field on the real plane as a singular point having a neighborhood filled of periodic orbits with the exception of the singular point. The problem of distinguishing when a monodromic singular point is a focus or a center, known as the focus-center problem started precisely with Poincaré and Dulac and is still active nowadays with many questions still unsolved.

If an analytic system has a center, then it is known that after an affine change of variables and a rescaling of the time variable, it can be written in one of the following three forms:

$$\dot{x} = -y + P(x, y), \quad \dot{y} = x + Q(x, y),$$

called linear type center, which has a pair of purely imaginary eigenvalues;

$$\dot{x} = y + P(x, y), \quad \dot{y} = Q(x, y)$$

called nilpotent center; and

$$\dot{x} = P(x, y), \quad \dot{y} = Q(x, y)$$

called degenerated center, where $P(x, y)$ and $Q(x, y)$ are real analytic functions without constant and linear terms defined in a neighborhood of the origin.

We recall that a global center for a vector field on the plane is a singular point p having \mathbb{R}^2 filled of periodic orbits with the exception of the singular point. The easiest global center is the linear center $\dot{x} = -y, \dot{y} = x$. It is known (see [11, 1]) that quadratic polynomial differential systems have no global centers. The global degenerated (or homogeneus) centers were characterized in [?] while the global quasihomogeneous centers were studied in [5]. However the characterization of the global centers in the cases that the center is either nilpotent or a linear-type center
has been done for very particular cases. In the case in which the system is of the
form linear plus cubic homogeneous terms with a linear-type center at the origin
was done in [8] and with a nilpotent center at the origin was done in [9]. The
case in which the system is a real cubic one (in the sense that it contains also
quadratic terms) has never been done because the difficulties grow brutally with
the appearance of new coefficients. That is the reason for which in this paper we
will focus in the case in which the system is Hamiltonian and it is symmetric with
respect to the x-axis. This is the first paper in which such classification is done for
these systems. We will focus in the case in which there are quadratic terms, since
the case of linear+cubic was done before in [6] and we state it here as Theorem 1.1.

Theorem 1.1. Any Hamiltonian vector field having at the origin of coordinates
a singular point with purely imaginary eigenvalues of the form linear plus cubic
homogeneous terms has a global center at the origin if and only if, after a linear
change of variables and a rescaling of its independent variables, can be written as
one of the following systems:

(i) $\dot{x} = -dx - \frac{d^2+\omega^2}{c}y - 3\alpha xy^2 y - ay^3$, $\dot{y} = cx + dy + \alpha x^3 + 3\alpha x y^2$;
(ii) $\dot{x} = -dx - \frac{d^2+\omega^2}{c}y$, $\dot{y} = cx + dy + \alpha x^3$;
(iii) $\dot{x} = -dx - \frac{d^2+\omega^2}{c}y - 3\alpha x^2 y$, $\dot{y} = cx + dy + 3\alpha xy^2$;
(iv) $\dot{x} = -dx - \frac{d^2+\omega^2}{c}y - 3\alpha x^2 y - ay^3$, $\dot{y} = cx + dy + 3\alpha x^2$;

with $\alpha = \pm 1$, $c, d \in \mathbb{R}$, $c \neq 0$, $\omega > 0$, $\mu > -1/3$ and $ca > 0$.

We also focus in the case in which there is a linear-type center at the origin
since the case in which there is a nilpotent center at the origin was done in [7] (see
Theorems 1, 2 and the global phase portraits in Figure 1 of that paper) and we
state it here in the next theorem.

Theorem 1.2. Any Hamiltonian planar polynomial vector field of degree three with
all infinite singular points being non-degenerated hyperbolic sectors, after a linear
change of variables and a rescaling of its independent variables, can be written as
one of the following systems

(i) $x' = y$, $y' = -x^3$,
(ii) $x' = y + x^3$, $y' = -x^3$,
(iii) $x' = y + x^2 y + ay^3$, $y' = -x^3 - xy^2$ with $a \geq 0$,
(iv) $x' = y - x^2 y + ay^3$, $y' = -x^3 + xy^2$ with $a \geq 1$,
(v) $x' = y + 2xy + ax^2 y + by^3$, $y' = -x^3 - y^2 - axy^2$ with $b > 0$ and either
 \[a \geq 1,\ \text{or} \ a < 1 \text{ with } 4(a - 1)^2(a^3 - a^2 - ab - 8b) - 27b^2 > 0.\]

We will now introduce the main results of the paper. For this, we recall that a
polynomial differential system can be extended in a unique analytic way to infinity
using the Poincaré compactification, for more details see [2, Chapter 5]. We also
introduce some notation.

\[a_1 = \frac{-\tilde{a}_1}{A_0}, \quad a_0 = \frac{\tilde{a}_0}{A_0}, \quad b_2 = -\frac{\tilde{b}_2}{B_0}, \quad b_1 = -\frac{\tilde{b}_1}{B_0}, \quad b_0 = \frac{\tilde{b}_0}{B_0}, \]

\[A_0 = 9c^2(a_{12} - a_{30})^2, \quad B_0 = c^3(3\mu - 1)(3\mu + 1)^2\alpha^4, \]

\[\tilde{a}_1 = 8a_{12}^4c^2 - 12a_{12}^4a_{30}c^2 - 2a_{12}^2c^3\alpha - 10a_{12}c\alpha^2 + 6a_{12}a_{30}c^3\alpha \]
\[+ 24a_{12}a_{30}c\alpha^2 - 18a_{30}^2c\alpha^2 - (c^2 - \omega^2)^2, \]

\[a_0 = \omega^2(4a_{12}^2c^2 - 6a_{12}a_{30}c^3 - 6a_{12}a_{30}c^2 + 9a_{30}^2c^2 + \alpha(c^2 - \omega^2)^2), \]

\[\tilde{b}_2 = 3(9a_{12}^2c^3\mu - 10a_{12}c\mu + 36a_{12}a_{30}\alpha c^2 + 2a_{12}a_{30}c - 9a_{30}c\mu \]
\[- 18c^2\mu^3\alpha + 2c^2\mu^3\alpha - 27\mu^2\alpha^2 - 12\mu^2\alpha^2 - \alpha^2), \quad (1.1) \]

\[b_1 = 8a_{12}^4c^2 - 36a_{12}^2a_{30}c^2\mu + 18a_{12}^4c^2\mu^3\alpha - 4a_{12}^2c^3\mu^3\alpha - 30a_{12}^2c\mu^3\alpha \]
\[+ 18a_{12}a_{30}^3\mu^3\alpha + 108a_{12}a_{30}^3c^2\mu^3\alpha^2 + 12a_{12}a_{30}c^2\mu^2\alpha^2 - 54a_{30}^2c\mu^2\omega^2 \]
\[- 9c^4\mu^2 - 54c^2\mu^3\omega^2 + 12c\mu^2\alpha^2 + 18\mu^2\alpha^2 - 3c^2\omega^4, \]

\[b_0 = \omega^2(4a_{12}^2c^2 - 18a_{12}a_{30}c^3\mu - 6a_{12}a_{30}c^2 + 27a_{30}c\mu^2 + 9c^2\mu^2\alpha \]
\[- 6c^2\mu\alpha^2 + \alpha^2), \quad (1.2) \]

and \(\Delta = c^2\Delta_1^2\Delta_2, \) where

\[\Delta_1 = 36a_{12}^6c^2\mu^2 + 8a_{12}^4c^2 - 162a_{12}a_{30}c^3\mu^3 - 72a_{12}a_{30}c\mu + 162a_{12}^2a_{30}c^2\mu \]
\[+ 81a_{12}^2c^2\mu^3\alpha + 18a_{12}^2c^2\mu^3\alpha - 81a_{12}\mu^3\alpha^2 - 81a_{30}c^2\mu^3\alpha \]
\[+ 243a_{30}c^2\mu^3\alpha^2, \quad (1.2) \]

and

\[\Delta_2 = 36a_{12}^6c^2\mu^4 + 32a_{12}^6c^3 - 216a_{12}a_{30}c^2\mu^3 + 36a_{12}a_{30}^3\mu + 108a_{12}^2c^4\mu^2 \]
\[- 8a_{12}^4c^4\alpha - 32a_{12}^2c^2\mu^3\omega^2 - 180a_{12}a_{30}c\mu^2 + 216a_{12}a_{30}c^2\mu^3 \]
\[+ 1296a_{12}a_{30}c^3\mu^2\alpha^2 + 108a_{12}a_{30}c^2\mu^2\alpha^2 - 36a_{30}^2c^2\mu^3\alpha^2 + 24a_{12}^2c^5 \]
\[- 864a_{12}a_{30}c^2\mu^2\omega^2 - 135a_{12}c^2\mu^4 - 648a_{12}^2c^3\mu^3\omega^2 + 18a_{12}^2c^3\mu^2 \]
\[+ 972a_{12}a_{30}c^2\mu^2\omega^4 + 216a_{12}c^2\mu^2\omega^4 - 27a_{12}c^3\mu^2\omega^4 + 108a_{12}a_{30}c^2\mu^2 \]
\[- 54a_{12}a_{30}c^5\mu + 810a_{12}a_{30}c^3\mu^2 - 54a_{12}a_{30}c^3\mu^2 \]
\[- 1944a_{12}a_{30}c^3\mu^3 + 162a_{12}a_{30}c\mu^4 - 9a_{30}c^5 - 54a_{30}^2c^3\mu^2 \]
\[+ 81a_{30}c^2\mu^2\omega^4 + 36c^2\mu^2\alpha - 4c^2\mu^2 - 32a_{12}^2c^3\mu^2 + 36a_{12}c^4\mu^2\omega^2 \]
\[+ 972a_{12}^2c^4\mu^4 - 108a_{12}^2c^2\mu^4 - 972a_{12}^3c^2\mu^4 + 108a_{12}^3c^2\mu^4. \quad (1.3) \]

Theorem 1.3. Any Hamiltonian planar polynomial vector field of degree three with a global linear type center at the origin, symmetric with respect to the x-axis and with no infinite singular points in the Poincaré disc, after a linear change of variables and a rescaling of its independent variables, can be written as:

\[
\dot{x} = -\frac{\omega^2}{c} y - 2a_{12} xy - 3\mu x^2 y - c\mu x^3
\]
\[
\dot{y} = c x + 3a_{30} x^2 + a_{12} y^2 + c\mu x y^2,
\]

where \(\alpha = \pm 1 \) and \(c, \omega, \mu \in \mathbb{R} \) with \(c \neq 0, \omega > 0, \mu > -1/3, a_{12} + a_{30} \neq 0, \) and:
Theorem 1.4. Any Hamiltonian planar polynomial vector field of degree 3 with a global linear type center at the origin, symmetric with respect to the x-axis and with all infinite singular points formed by two degenerated hyperbolic sectors, after a linear change of variables and a rescaling of its independent variables, can be written as one of the following systems

(i) $x' = -\omega^2 y/c$, $y' = cx + 3a_{30}x^2 + ax^3$ with $\omega > 0$, $ca > 0$, $a = \pm 1$ and $9a_{30}^2 - 4ca < 0$;
(ii) $x' = -\omega^2 y/c - 2a_{12}xy - 3ax^2y$, $y' = cx + a_{12}y^2 + 3axy^2$ with $\omega > 0$, $ca > 0$, $a = \pm 1$ and $c(a_{12} - 3ao^2) < 0$;
(iii) \(\dot{x} = -\frac{\omega^2}{c} y - 2a_{12}xy - 3\alpha x^2 y - \alpha y^3, \) \(\dot{y} = cx + a_{12}y^2 + 3\alpha xy^2, \) with \(\omega > 0, \) \(\alpha = \pm 1, c > 0 \) and either:

(iii.1) \(\Delta_1 < 0 \) and \(\hat{b}_0 > 0 \) (see (1.5));

(iii.2) \(\Delta_3 \geq 0, \hat{b}_2 > 0, \hat{b}_0 > 0 \) and \(\hat{b}_2 \hat{b}_1 > \hat{b}_0 \) (see (1.3)).

The above theorem is proved in Section 3. Note that the conditions in statement (iii.1) are fulfilled for example when \(\alpha = 1, c = 1/17, \omega = 1/8 \) and \(a_{12} = -1, \) and the conditions in statement (iii.2) are fulfilled for example when \(\alpha = 1, c = 2, \omega = 1 \) and \(a_{12} = 1/16. \)

2. Proof of Theorem 1.3

First we will state and prove several propositions needed later.

Proposition 2.1. Any Hamiltonian planar polynomial vector field of degree 3 with a linear type center at the origin, symmetric with respect to the \(x \)-axis and with no infinite singular points, after a linear change of variables and a rescaling of its independent variables it can be written as the following system

\[
\dot{x} = -\frac{\omega^2}{c} y - 2a_{12}xy - 3\alpha x^2 y - \alpha y^3, \\
\dot{y} = cx + 3a_{30}x^2 + a_{12}y^2 + 3\alpha xy^2,
\]

where \(\alpha = \pm 1 \) and \(c, \omega, a_{12}, a_{30}, \mu \in \mathbb{R} \) with \(c \neq 0, \mu > -1/3 \) and \(\omega > 0. \)

Proof. Doing a linear change of variables and a rescaling of the independent variable, planar cubic homogeneous differential systems which has no infinite singular points can be classified in the following class, see [?, Theorem 3.2]:

\[
\dot{x} = p_1 x^3 + (p_2 - 3\alpha \mu)x^2 y + p_3xy^2 - \alpha y^3, \\
\dot{y} = \alpha x^3 + p_1 x^2 y + (p_2 + 3\alpha \mu)xy^2 + p_3y^3,
\]

(2.2)

with \(\mu > -1/3 \) and \(\alpha = \pm 1. \)

It was proved in [6] that in the case in which the vector field is Hamiltonian then \(p_i = 0 \) for \(i = 1, 2, 3, \) that is we obtain the system (2.2) with \(p_i = 0 \) for \(i = 1, 2, 3. \)

For studying the Hamiltonian cubic planar polynomial vector fields having linear, quadratic and cubic terms, it is sufficient to add to the above family (with \(p_i = 0 \) for \(i = 1, 2, 3 \)) a linear and quadratic parts being Hamiltonian. This is so because the linear changes of variables that are done to obtain the class (2.2) are not affine, they are strictly linear.

For the linear part, we add the linear terms \(ax + by \) in \(\dot{x} \) and the linear terms \(cx + dy \) in \(\dot{y}. \) Doing so, taking into account that we must have a linear type center at the origin, it is not easy to see that we can add \(-dx - (d^2 + \omega^2)/cy \) in \(\dot{x} \) and \(cx + dy \) in \(\dot{y} \) with \(c \neq 0 \) and \(\omega > 0. \)

For the quadratic part, we add the linear terms \(-\partial H_3/\partial y \) in \(\dot{x} \) and \(\partial H_3/\partial x \) in \(\dot{y} \) with

\[
H_3 = a_{30}x^3 + a_{21}x^2 y + a_{12}xy^2 + 3a_{03}y^3.
\]

Doing so, we obtain the system

\[
\dot{x} = -dx - \frac{d^2 + \omega^2}{c} y - 2a_{12}xy - 3a_{03}y^3 - 3\alpha x^2 y - \alpha y^3, \\
\dot{y} = cx + dy + 3a_{30}x^2 + 2a_{21}xy + a_{12}y^2 + 3\alpha xy^2.
\]
Since this system must be invariant under the transformation \((x, y, t) \mapsto (x, -y, -t)\) we must have \(d = a_{21} = a_{03} = 0\) and then we obtain the system (2.1) in the statement of the proposition. This concludes the proof.

Now we continue with the proof of the theorem. To do so, we compute the finite singular points of system (2.1). Note that on \(y = 0\) we have the solution
\[
x = \frac{-3a_{30} + \sqrt{9a_{30}^2 - 4ca}}{2a}
\]
Since this solution cannot exist we must have \(9a_{30}^2 - 4ca < 0\).

Now we consider \(y \neq 0\) and we compute the Groebner basis for the polynomials \(x\) and \(y\). We get a set of six polynomials. The first polynomial is a polynomial of degree six in the variable \(y\) while the polynomials \(p_3\) and \(p_4\) are linear in the variable \(x\). More precisely,
\[
p_1 = -c^3(3\mu - 1)^2(3\mu + 1)^2y^6 + 3c^2(2a_{12}a_{30}c - 10c\mu a_{12} - 9c\mu^2 + 2c\alpha\mu + 36a_{12}a_{30}c^2 + 9a_{12}c^3 - 18c^2\mu^3 - 27\mu^4\omega^2 - 27\mu^4\omega^2)y^4
\]
\[
+ c(8a_{12}c^2 - 4a_{12}^2\mu - 36a_{12}a_{30}c^2\mu + 18a_{12}a_{30}c^2\alpha + 18a_{12}^2\mu^2 - 9c^2\mu^2 + 12a_{12}a_{30}\cos\omega^2 - 30a_{12}c\mu\omega^2 - 54a_{30}c\alpha\mu\omega^2 + 12c^2\mu\omega^2
\]
\[
+ 108a_{12}a_{30}\mu\omega^2 - 54c\mu^2\mu^2 - 3\omega^4 + 18\mu^2\omega^4)y^2 + \omega^2(4a_{12}c^2
\]
\[
- 18a_{12}a_{30}c^2\mu + 9c\mu^4\mu^2 - 6a_{12}a_{30}c\mu^2 + 27a_{30}c\mu\omega^2 - 6c\mu\omega^2 + \omega^4)
\]
\[
p_3 = c\mu y^2(2a_{12} - 9a_{30}\mu + 9a_{12}\mu^2) + (2a_{12} - 9a_{30}\mu)\omega^2
\]
\[
+ x(4a_{12}c^2 - 18a_{12}a_{30}c\mu + 9c^2\alpha\mu^2 - 3c\mu\omega^2 + 3c\mu(3\mu - 1)(3\mu + 1)y^2),
\]
and
\[
p_4 = -c^2y^4(3\mu - 1)(3\mu + 1) - \omega^2(3\mu^2 - \mu - \omega^2) + cy^2(6a_{12}c\mu - 3c^2\alpha\mu + 2c\omega^2
\]
\[
- 9c\mu^2\omega^2) + x(c^2\alpha(2a_{12} - 9a_{30}\mu + 9a_{12}\mu^2)y^2 + c(2a_{12} - 9a_{30}\mu)\omega^2).
\]
Note that for any value of \(y\) which is a solution of \(p_1 = 0\) we obtain a unique value of \(x\) which is a solution of \(p_3 = 0\) or \(p_4 = 0\), namely
\[
x = \frac{(9a_{30}c\alpha\mu - 9a_{12}c\alpha\mu^2 - 2a_{12}c\alpha)\omega^2 - 2a_{12}c\omega^2 + 9a_{20}c\mu^2}{4a_{12}c^2 - 18a_{12}a_{30}\mu + 3c\mu\omega^2 + 9c\mu(3\mu + 1)(3\mu - 1)y^2}
\]
or
\[
x = \frac{c^2(9\mu^2 - 1)y^4 - c(6a_{12}c\mu - 3c\mu\omega^2 + 2c\omega^2 - 9c\mu^2\omega^2)y^2 + \omega^2(3c\mu^2 - \omega^2)}{c(c\alpha(2a_{12} - 9a_{30}\mu + 9a_{12}\mu^2)y^2 + 2a_{12}c\omega^2 - 9a_{30}c\mu)\omega^2}
\]
Moreover, both denominators of \(x\) and \(\bar{x}\) cannot be zero simultaneously and then for each value of \(y\) we always have a value of \(x\). Moreover, setting \(x\) (or \(\bar{x}\)) into the Groebner basis we obtain that all the polynomials have \(p_1\) as a factor in them. In short, in order to show that there are no solutions of system (2.1) with \(x \neq 0\) we must guarantee that there are no real solutions of \(p_1 = 0\). Since \(p_1\) depends in the variable \(y^2\) we introduce the new variable \(z = \sqrt{y}\) and we must have that \(z > 0\) (note that \(z = 0\) yields \(y = 0\)).

We consider several cases.
Case 1: $\mu = 1/3$ and $a_{12} = a_{30}$. In this case
\[p_1 = cz(-4a_{30}^4c^2 + 4a_{30}^2c^3\alpha - 4a_{30}^2c\omega^2 - c^4 + 2c^2\omega^2 - \omega^4) \]
\[- \omega^2(-2a_{30}^2c^3 + 3a_{30}^2c\omega^2 + c^4\alpha - 2c^2\alpha\omega^2 + \alpha\omega^4).\]
Solving for the variable z we obtain
\[z = -\frac{\omega^2(a_{30}^2(3c\omega^2 - 2c^3) + \alpha(c^2 - \omega^2)^2)}{c(a_{30}^2c + \alpha(\omega^2 - c^2))^2} \quad (2.3) \]
whenever the denominator is not zero. Note that the denominator is equal to zero (solving in ω which is positive) whenever
\[\omega = \sqrt{\frac{c^2\alpha - 2a_{30}^2c}{\alpha}}. \]
But then introducing ω into p_1 we obtain
\[p_1 = -a_{30}^2c^3(2a_{30}^2 - a\alpha)^2. \]
Setting it to zero, taking into account that $a\alpha > 0$ and $9a_{30}^2 - 4a\alpha < 0$ we conclude that $a_{30} = 0$. But then $a_{12} = 0$ which is not possible. Hence, z in equation (2.3) is well-defined. Taking into account that it must be negative we must have
\[a_{30}^2(3c\omega^2 - 2c^3) + \alpha(c^2 - \omega^2)^2 < 0. \]
In short, the condition so that there are no finite singular points besides the origin in this case is
\[a_{30}^2(3c\omega^2 - 2c^3) + \alpha(c^2 - \omega^2)^2 < 0, \quad 0 < 9a_{30}^2 < 4c\alpha. \]
This concludes the proof of statement (a).

Case 2: $\mu = 1/3$ and $a_{12} \neq a_{30}$. In this case
\[p_1 = -\omega^2(4a_{12}^2c^3 - 6a_{12}a_{30}c^3 - 6a_{12}a_{30}c\omega^2 + 9a_{30}^2c\omega^2 + c^4\alpha - 2c^2\alpha\omega^2 + \alpha\omega^4) + c(8a_{12}^4c^2 - 12a_{12}^3a_{30}c^2 - 2a_{12}^2c^3\alpha - 10a_{12}^2c\omega^2 + 6a_{12}a_{30}c^3\alpha + 24a_{12}a_{30}c\omega^2 - 18a_{30}^2c\omega^2 - c^4 + 2c^2\omega^2 - \alpha^2\omega^4) \quad (2.4) \]
\[- 9c^2z^2(a_{12} - a_{30})^2. \]
Note that now p_1 is quadratic in z. We need to investigate when this quadratic equation has either no real roots or both real roots are negative. We state and prove an auxiliary result.

Proposition 2.2. Any quadratic polynomial of the form
\[P(z) = z^2 + az + a_0 \quad (2.5) \]
has complex roots if and only if $a_1^2 - 4a_0 < 0$. It has all roots being real and negative if and only if $a_1^2 - 4a_0 \geq 0$, $a_1 > 0$ and $a_0 > 0$.

Proof. The solutions are real if and only if $a_1^2 - 4a_0 \geq 0$. In this case, it follows directly from the Routh-Hurwitz criterium that these roots are negative if and only if $a_1 > 0$ and $a_0 > 0$. This concludes the proof of the proposition. \(\Box\)

We can write p_1 in (2.4) as in (2.5) with (note that $a_{12} \neq a_{30}$) a_1 and a_0 as in (1.1). So, the conditions so that there are no finite singular points are either $a_1^2 - 4a_0 < 0$ and $9a_{30}^2 - 4c\alpha < 0$, or $a_1^2 - 4a_0 \geq 0$ with $a_1 > 0$, $a_0 > 0$ and $9a_{30}^2 - 4c\alpha < 0$. This concludes the proof of statements (b) and (c).
Case 3: \(\mu \neq 1/3 \). or in other words, that all the solutions of the cubic equation

\[
p_1 = -c^3(3\mu - 1)^2(3\mu + 1)^2z^3 + 3c^2(2a_{12}a_{30}c - 10c\mu a_{12} - 9c\mu a_{30}) + 2c^2\alpha \mu + 36a_{12}a_{30}\mu^2 + 9a_{12}^2\mu^3 - 18c^2\alpha \mu^3 - \alpha \omega^2 + 12\alpha \mu^2 \omega^2 - 27\alpha \mu^4 \omega^2 z^2 + c(8a_{12}c^2 - 4a_{12}^2c^3)\alpha - 36a_{12}^2a_{30}c^2\mu + 18a_{12}^2c^3\mu^2 + 18a_{12}a_{30}c^3\alpha \mu - 9c^4\mu^2 + 12a_{12}a_{30}c\alpha \omega^2 - 30a_{12}^2c\alpha \mu \omega^2 + 12c^2\mu \omega^2 - 54a_{30}^2c\alpha \mu \omega^2 + 108a_{12}a_{30}c\mu \omega^2 - 54c^2\mu^3 \omega^2 - 3\alpha \mu^4 + 18\mu^2 \omega^4 z + \omega^2(4a_{12}c^3 - 18a_{12}a_{30}c^3 \mu + 9c\alpha^4 \mu^2 - 6a_{12}a_{30}c \omega^2 + 27a_{30}^3c \mu \omega^2 - 6c^2\alpha \mu \omega^2 + \alpha \omega^4)
\]

are negative. For that we state and prove an auxiliary result that characterize when this happens for a general cubic equation.

Proposition 2.3. Any cubic polynomial of the form

\[
P(z) = z^3 + b_2 z^2 + b_1 z + b_0
\]

has only negative real roots if and only if: either

- \(\Delta : = b_1^2b_2^2 - 4b_2^2 - 4b_1^2b_0 + 18b_1b_2b_0 - 27b_0^2 < 0 \) and \(b_0 > 0 \), or
- \(\Delta \geq 0, b_2 > 0, b_0 > 0 \) and \(b_2 b_1 > a_0 \).

Proof. Note that \(\Delta < 0 \) if and only if the cubic equation \(P(z) \) has one real root and two complex conjugate roots. Since \(P(z) \to -\infty \) as \(z \to -\infty \), the unique real root is negative if and only if \(P(0) = b_0 > 0 \).

On the other hand, \(\Delta \geq 0 \) if and only if the cubic equation \(P(z) \) has three (counted with multiplicity) real roots. Using the Routh-Hurwitz criterium these roots are negative if and only if \(b_2 > 0, b_0 > 0 \) and \(b_2 b_1 > b_0 \). This concludes the proof of the proposition. \(\square \)

We can write \(p_1 \) in (2.6) as in (2.7) with \(b_2, b_1 \) and \(b_0 \) as in (1.1). So, the conditions so that there are no finite singular points are either \(\Delta < 0 \) (see (1.2)–(1.3)), \(b_0 > 0 \) and \(9a_{30}^2 - 4ca < 0 \), or \(\Delta \geq 0, b_2 > 0, b_0 > 0 \), \(b_2 b_1 > b_0 \) and \(9a_{30}^2 - 4ca \alpha < 0 \). This concludes the proof of statements (d) and (e) and finishes the proof of the theorem.

3. Proof of Theorem 1.4

First we state and prove several propositions.

Proposition 3.1. Any Hamiltonian planar polynomial vector field of degree three with a linear type center at the origin, symmetric with respect to the x-axis and with all infinite singular points being linearly zero, after a linear change of variables and a rescaling of its independent variables it can be written as one of the following systems

- (I) \(\dot{x} = -\frac{\alpha}{c} y - 2a_{12} xy, \dot{y} = c x + 3a_{30} x^2 + a_{12} y^2 + \alpha x^3; \)
- (II) \(\dot{x} = -\frac{\alpha}{c} y - 2a_{12} xy - 3a x^2 y, \dot{y} = c x + 3a_{30} x^2 + a_{12} y^2 + 3a x y^2; \)
- (III) \(\dot{x} = -\frac{\alpha}{c} y - 2a_{12} xy - 3a x^2 y - \alpha y^3, \dot{y} = c x + 3a_{30} x^2 + a_{12} y^2 + 3a x y^2 \)

where \(\alpha = \pm 1 \) and \(c, \omega, a_{12}, a_{30} \in \mathbb{R} \) with \(c \neq 0, a_{12}^2 + a_{30}^2 \neq 0 \) and \(\omega > 0 \).
Proof. The proof is very similar to the one of Proposition 2.1. Doing a linear change of variables and a rescaling of the independent variable, planar cubic homogeneous differential systems which have infinite singular points being linearly zero can be classified in the following three classes, see [3]:

(i') \(\dot{x} = p_1 x^3 + p_2 x^2 y, \quad \dot{y} = \alpha x^3 + p_1 x^2 y + p_2 xy^2; \)

(ii') \(\dot{x} = (p_2 - 3\alpha)x^2 y, \quad \dot{y} = (p_2 + 3\alpha)xy^2; \)

(iii') \(\dot{x} = (p_2 - 3\alpha)x^2 y + p_3 xy^2 - \alpha y^3, \quad \dot{y} = (p_2 + 3\alpha)xy^2 + p_3 y^3, \)

where \(\alpha = \pm 1. \)

System (i') comes from systems \(\text{[3, IX']} \) of Theorem 3.2] of taking into account that the unique pair of infinite singular points at the origins of the local chart \(U_2 \) and \(V_2 \) (see the Poincaré compactification in [2]) is linearly zero if and only if \(p_3 = 0 \).

System (ii') comes from \(\text{[3, system (VII')] \)} taking into account that the unique pair of infinite singular points at the origins of the local chart \(U_2 \) and \(V_1 \), which are linearly zero if and only if \(p_1 = p_3 = 0. \)

System (iii') comes from \(\text{[3, system (IV')] \)} of taking into account that the above systems must be invariant under the transformation \((x, y, t) \mapsto (x, -y, -t) \) we must have \(d = a_{21} = a_{03} = 0 \) and then we obtain the classes (i')–(iii') with \(p_i = 0 \) for \(i = 1, 2, 3. \)

For studying the Hamiltonian cubic planar polynomial vector fields having linear, quadratic and cubic terms, it is sufficient to add to the above families (with \(p_i = 0 \) for \(i = 1, 2, 3 \) linear and quadratic parts being Hamiltonian. This is due to the fact that the linear changes of variables that are done to obtain the classes (i') and (ii') are strictly linear, see [3].

For the linear part we add the linear terms \(ax + by \) in \(\dot{x} \) and the linear terms \(cx + dy \) in \(\dot{y} \). Doing so, taking into account that we must have a linear type center at the origin, it is easy to see that we can add \(-dx - \frac{\partial^2 + \omega^2}{c} y \) in \(\dot{x} \) and \(cx + dy \) in \(\dot{y} \) with \(c \neq 0 \) and \(\omega > 0. \)

For the quadratic part we add the quadratic terms \(-\partial H_3/\partial y \) in \(\dot{x} \) and \(\partial H_3/\partial x \) in \(\dot{y} \) with

\(H_3 = a_{30} x^3 + a_{21} x^2 y + a_{12} xy^2 + a_{03} y^3. \)

Doing so, we obtain the system

\[\begin{align*}
\dot{x} &= -dx - \frac{\partial^2 + \omega^2}{c} y - a_{21} x^2 - 2a_{12} xy - 3a_{03} y^3 + P_3, \\
\dot{y} &= cx + dy + 3a_{30} x^2 + 2a_{21} xy + a_{12} y^2 + Q_3,
\end{align*} \]

where \(P_3 \) and \(Q_3 \) are the vector fields in each of the classes (i')–(iii') with \(p_i = 0 \) for \(i = 1, 2, 3. \)

Since the above systems must be invariant under the transformation \((x, y, t) \mapsto (x, -y, -t) \) we have \(d = a_{21} = a_{03} = 0 \) and then we obtain the systems (II)–(IV) in the statement of the proposition. This concludes the proof. \(\square \)

Proposition 3.2. System (I) has a global linear-type center at the origin and no more finite singular points with all the infinite singular points formed by two degenerated hyperbolic sectors if and only if they can be written as in (i) of Theorem 1.4 Consequently system (I) has a global center at the origin.
Proof. We already know that the pair of infinite singular points of system (I) are the origins of the local charts U_2 and V_2. Thus on the local chart U_2 we obtain

$$
\begin{align*}
 u' &= -3a_{12}uv - 3a_{30}u^3v - cu^2v^2 - \alpha u^4 - \frac{\omega^2}{c}v^2, \\
 v' &= -v(a_{12}v + cu^2 + 3a_{30}u^2v + \alpha u^3).
\end{align*}
$$

The origin of the local chart U_2 is linearly zero. We need to do blow-ups to understand the local behavior at this point. We perform the directional blow-up $(u, v) \mapsto (u, w)$ with $w = v/u$ and we obtain

$$
\begin{align*}
 u' &= -u^2 \left(3a_{12}w + 3a_{30}u^2 + cu^2w^2 + \alpha u^2 + \frac{\omega^2}{c}w^2 \right), \\
 v' &= uw^2 \left(2a_{12} + \frac{\omega^2}{c}w \right).
\end{align*}
$$

When $u = 0$, this system has the singular points $(0, 0)$ and $\left(0, \frac{-2\alpha a_{12}}{\omega^2} \right)$. Computing the eigenvalues of the Jacobian matrix at the second singular point we obtain that it is a node. Going back through the changes of variables we see that in this case the origin of U_2 must have parabolic sectors, and so the origin of U_2 cannot be the union of two degenerated hyperbolic sectors. Hence, $a_{12} = 0$. In this case the unique singular point is the origin which is again linearly zero. Hence we need to do another blow up. We do it in the form $(u, w) \mapsto (u, z)$ with $z = w/u$. Doing so, and eliminating the common factor u^2 we obtain

$$
\begin{align*}
 u' &= -u \left(\alpha + 3a_{30}uz + cu^2z^2 + \frac{\omega^2}{c}z^2 \right), \\
 z' &= z \left(\alpha + 3a_{30}uz + cu^2z^2 + 2\frac{\omega^2}{c}z^2 \right).
\end{align*}
$$

When $u = 0$ the possible singular points are $(0, 0)$ and $\left(0, \pm \frac{i\alpha}{\omega} \sqrt{\frac{\omega}{2\alpha}} \right)$. The sign of $c\alpha$ determines the existence of the last two singular points, and so we analyze both possibilities.

If $c\alpha < 0$, all three singular points are real. The origin which is a saddle and the points $\left(0, \pm i\alpha / \sqrt{2\omega} \right)$ which are nodes. Again going back through the changes of variables up to systems (3.1) we obtain that the origin of U_2 contains parabolic sectors. Hence, we must have $c\alpha > 0$.

If $c\alpha > 0$ the only singular point is the origin which is a saddle. Going back to the changes of variables until system (3.1) we see that locally the origin of U_2 consists of two degenerated hyperbolic sectors.

In short, in order that the origin of the local chart U_2 is formed by two degenerated hyperbolic sectors, we must have $a_{12} = 0$ and $c\alpha > 0$. Then system (I) becomes

$$
\begin{align*}
 \dot{x} &= -\frac{\omega^2}{c} y, \\
 \dot{y} &= cx + 3a_{30}x^2 + \alpha x^3
\end{align*}
$$

with $c\alpha > 0$. The finite singular points are $(0, 0), \left(-3a_{30} \pm \frac{9a_{30}^2 - 4c\alpha}{2\alpha}, 0 \right)$.

\textbf{\textit{10. Barreira, J. Llibre, C. Valls}}

\textbf{\textit{EJDE-2020/57}}
Since we want that there are no finite singular points among the origin we must have $9a_{30}^2 - 4\alpha < 0$. This completes the proof of the proposition. \[\square\]

Proposition 3.3. System (II) has a global linear-type center at the origin and no more finite singular points with all the infinite singular points formed by two degenerated hyperbolic sectors if and only if they can be written as in (ii) of Theorem 1.4.

Proof. We already know that the unique pairs of infinite singular points of system (II) are the origins of U_i and V_i for $i = 1, 2$. System (II) on the local chart U_1 becomes

$$u' = 6\alpha u^2 + 3a_{30}v + 3a_{12}u^2v + cv^2 + \frac{\omega^2}{c}u^2v^2, \quad v' = uv\left(3\alpha + 2a_{12}v + \frac{\omega^2}{c}v^2\right).$$

(3.2)

Computing the eigenvalues of the Jacobian matrix at the origin we obtain that it is nilpotent if $a_{30} \neq 0$ and linearly zero if $a_{30} = 0$. So, in order that it is formed by the union of two degenerated hyperbolic sectors we must have $a_{30} = 0$. We need to do blow-ups to understand the local behavior at this point. We perform the directional blow-up $(u, v) \mapsto (u, w)$ with $w = v/u$ and we eliminate the common factor u between u' and w' and we obtain

$$u' = -u\left(6\alpha + 3a_{12}uw + cw^2 + \frac{\omega^2}{c}u^2w^2\right), \quad w' = -w\left(3\alpha + a_{12}uw + cw^2\right).$$

When $u = 0$, there are three singular points which are $(0, 0)$ and $\left(0, \pm i\sqrt{3\alpha/c}\right)$, if $c\alpha < 0$. Computing the eigenvalues of the Jacobian matrix at the second and third singular points we obtain that they are nodes. Going back through the changes of variables we see that in this case the origin of U_1 must have parabolic sectors and so the origin of U_1 cannot be the union of two degenerated hyperbolic sectors. Hence, $c\alpha > 0$. In this case the unique singular point is the origin which is a saddle. Going back through the changes of variables until systems (3.2) we see that locally the origin of U_1 consists of two degenerated hyperbolic sectors.

On the local chart U_2 system (II) is

$$u' = -6\alpha u^2 - 3a_{12}uw - \frac{\omega^2}{c}v^2 - cu^2v^2, \quad v' = -v(3\alpha u + a_{12}v + cuv^2).$$

(3.3)

The origin of the local chart U_2 is linearly zero. We perform the directional blow-up $(u, v) \mapsto (u, w)$ with $w = v/u$, and eliminating the common factor u we obtain

$$u' = -u\left(6\alpha + 3a_{12}w + cw^2 + \frac{\omega^2}{c}w^2\right), \quad v' = w\left(3\alpha + 2a_{12}w + \frac{\omega^2}{c}w^2\right).$$

When $u = 0$ the possible singular points are $(0, 0)$ and $\left(0, \frac{-c a_{12} \pm \sqrt{a^2 a_{12}^2 - 3c\omega w^2}}{\omega^2}\right)$. If $c^2 a_{12}^2 - 3c\omega w^2 > 0$ the two last singular points exist. Computing the eigenvalues of the Jacobian matrix at these points we obtain that at least one of them is a node. Hence, going back through the changes of variables until system (3.3) we obtain that the origin of the local chart U_2 must have parabolic sectors and so it cannot be formed by two degenerated hyperbolic sectors.
If \(c^2a_{12} - 3c\alpha w^2 = 0 \), that is \(a_{12} = \sqrt{3\alpha\omega}/\sqrt{c} \), we have two finite singular points which are the origin (which is a saddle) and the point \((0, -\sqrt{3\alpha\omega}/\sqrt{c\alpha})\) which is linearly zero. First we translate it to the origin setting \(w = -\sqrt{3\alpha\omega}/\omega + W \). We perform the directional blow-up \((u, W) \mapsto (u, z)\) with \(z = W/u \), and eliminating the common factor \(u^2 \) we obtain

\[
\begin{align*}
u' &= -\frac{1}{c\omega^2} \left(3c^3\alpha u - 2\sqrt{3}a^3 \sqrt{c\alpha} u z + c^2 u^3 z^2 \omega^2 + \sqrt{3} \sqrt{c\alpha} w^3 + u\omega^4 z^2 \right), \\
z' &= \frac{z}{c\omega^2} \left(3\alpha c^3 - 2\sqrt{3}a^3 \sqrt{c\alpha} w z + c^2 \omega^2 u^2 z^2 + 2\omega^4 z^2 \right).
\end{align*}
\]

The singular points are \((0, 0)\) and \((0, i\sqrt{\frac{3a^3}{2\sqrt{c\alpha}}/(\sqrt{2}\omega^2)})\) which due to the fact that \(c\alpha > 0 \) the last two do not exist. Computing the eigenvalues of the Jacobian matrix at the origin we obtain that it is a saddle. Going back through the changes of variables up to system (3.3) we obtain that the origin of the local chart \(U_2 \) is not formed by two degenerated hyperbolic sectors, because there are more hyperbolic sectors not in the equator of the Poincaré sphere coming from these last saddles. Finally, if \(c^2a_{12} - 3c\alpha w^2 < 0 \) we obtain that the unique finite singular point is the origin which is a saddle. Hence, going back through the changes of variables up to system (3.3) we obtain that the origin of the local chart \(U_2 \) is formed by two degenerated hyperbolic sectors.

In short, in order that the origins of the local charts \(U_1 \) and \(U_2 \) be formed by two degenerated hyperbolic sectors we must have \(a_{30} = 0 \), \(c\alpha > 0 \) and \(c(c_{a_{12}} - 3\alpha w^2) < 0 \).

System becomes

\[
\begin{align*}
x' &= -\frac{\omega^2}{c}y - 2a_{12}xy - 3\alpha x^2 y, \\
y' &= cx + a_{12}y^2 + 3\alpha xy^2.
\end{align*}
\]

The singular points are \((0, 0)\) and \((\pm x_\pm, y_\pm)\) where

\[
x_\pm = \frac{-c a_{12} + \sqrt{c^2 c_{a_{12}} - 3c\alpha w^2}}{3\alpha}, \quad y_\pm = \pm \frac{\sqrt{c x_\pm}}{\sqrt{-a_{12} - 3\alpha x_\pm}}.
\]

Taking into account that \(c^2 a_{12} - 3c\alpha w^2 < 0 \) we obtain that the unique finite singular point is the origin. This completes the proof of the proposition.

Proposition 3.4. System (III) has a global linear-type center at the origin and no more finite singular points with all the infinite singular points formed by two degenerated hyperbolic sectors if and only if they can be written as in (iii.1) or (iii.2) of Theorem 1.4.

Proof. We already know that the unique pair of infinite singular points are the origins of \(U_1 \) and \(V_1 \). On the local chart \(U_1 \) system (III) becomes

\[
\begin{align*}
u' &= 3a_{30}v + 3a_{12}u^2 v + cv^2 + 6\alpha u^2 + \alpha v^4 + \frac{\omega^2}{c} \nu^2, \\
v' &= uv \left(3\alpha + 2a_{12}v + \frac{\omega^2}{c} v^2 + \alpha v^2 \right).
\end{align*}
\]

Computing the eigenvalues of the Jacobian matrix at the origin we obtain that it is nilpotent if \(a_{30} \neq 0 \) and linearly zero if \(a_{30} = 0 \). So, \(a_{30} = 0 \).
We perform the directional blow-up \((u, v) \mapsto (u, w)\) with \(w = v/u\), and eliminating the common factor \(u\) we obtain
\[
\begin{align*}
 u' &= u(6\alpha + 3a_{12}uw + cw^2 + \alpha u^2 + \frac{\omega^2}{c}w^2), \\
 w' &= -w(3\alpha + a_{12}uw + cw^2).
\end{align*}
\]

The singular points are \((0, 0)\) and \(0, \pm i \sqrt{(3\alpha)/c}\). The two last points exist if and only if \(c\alpha < 0\). In this case computing the eigenvalues of the Jacobian matrix at these points we obtain that they are nodes. So this case is not possible. Hence, we must have \(c\alpha > 0\). Then the unique singular point is the origin which is a saddle.

Going back through the changes of variables till system (3.4) we obtain that the origin of the local chart \(U_1\) is formed by two degenerated hyperbolic sectors.

System (III) becomes
\[
\begin{align*}
 \dot{x} &= -\frac{\omega^2}{c}y - 2a_{12}xy - 3\alpha x^2 y - \alpha y^3, \\
 \dot{y} &= cx + a_{12}y^2 + 3\alpha xy^2.
\end{align*}
\]

On \(y = 0\) the unique finite singular point is the origin. With \(y \neq 0\) solving \(\dot{y} = 0\) we obtain
\[
x = -\frac{a_{12}}{c + 3\alpha y^2}y^2. \tag{3.5}
\]

Note that if \(y = \pm i \sqrt{\frac{c}{3\alpha}}\) then \(\dot{y}\) has no solution and so we can assume that \(c + 3\alpha y^2 \neq 0\).

Substituting (3.5) in \(\dot{x}\) we obtain
\[
\frac{y}{c(c + 3\alpha y^2)^2}(-2c^2a_{12}^2y^2 + c^3y^2\alpha - 3ca_{12}^2y^4\alpha + 6c^2y^4\alpha^2 + 9cy^6\alpha^3 + c^2\omega^2 \\
+ 6cy^2\alpha\omega^2 + 9y^4\alpha^2\omega^2).
\]

We must see that there is no solution of the sextic equation
\[
c\alpha y^6 + 3\alpha(-ca_{12}^2 + 2\alpha c^2 + 3\alpha\omega^2)y^4 + c(-2ca_{12}^2 + \alpha c^2 + 6\alpha\omega^2)y^2 + c^2\omega^2
\]

Or in other words, that there are not positive roots of the cubic equation
\[
Q = 9c\alpha z^3 + 3\alpha x(-ca_{12}^2 + 2\alpha c^2 + 3\alpha\omega^2)z^2 + c(-2ca_{12}^2 + \alpha c^2 + 6\alpha\omega^2)z + c^2\omega^2.
\]

We can write \(Q\) as in (2.7) with \(b_2 = \tilde{b}_2, b_1 = \tilde{b}_1\) and \(b_0 = \tilde{b}_0\) given in (1.5). So, in view of Proposition 2.3, the conditions so that there are no finite singular points are either \(\Delta_3 < 0\) (see (1.5)) and \(\tilde{b}_0 > 0\), or \(\Delta_3 \geq 0, \tilde{b}_2 > 0, \tilde{b}_0 > 0\) and \(\tilde{b}_2\tilde{b}_1 > \tilde{b}_0\).

This concludes the proof.

Then the proof of Theorem 1.4 is an immediate consequence of Propositions 3.1 and 3.3.

Acknowledgements. L. Barreira and C. Valls were partially supported by FCT, Portugal through UID/MAT/04459/2019. J. Llibre, was supported by the Ministerio de Economía, Industria y Competitividad - Agencia Estatal de Investigación grant MTM2016-77278-P (FEDER), the Agència de Gestió d’Ajuts Universitaris i de Recerca grant 2017 SGR 1617, and the European project Dynamics- H2020-MSCA-RISE-2017-777911.
References

Luis Barreira
Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
Email address: barreira@math.tecnico.ulisboa.pt

Jaume Llibre
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
Email address: jllibre@mat.uab.cat

Claudia Valls
Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
Email address: cvalls@math.tecnico.ulisboa.pt