Giuseppe Floridia
Abstract:
We consider a nonlinear degenerate reaction-diffusion equation.
First we prove that if the initial state is nonnegative, then
the solution remains nonnegative for all time.
Then we prove the approximate controllability between nonnegative states
via multiplicative controls, this is done using the reaction coefficient
as control.
Submitted March 10, 2020. Published June 15, 2020.
Math Subject Classifications: 93C20, 35K10, 35K65, 35K57, 35K58.
Key Words: Semilinear degenerate reaction-diffusion equations;
energy balance models in climate science; approximate controllability;
multiplicative controls; nonnegative states.
DOI: 10.58997/ejde.2020.59
Show me the PDF file (822 KB), TEX file for this article.
Giuseppe Floridia Università Mediterranea di Reggio Calabria Dipartimento Patrimonio, Architettura, Urbanistica Via dell'Università 25, Reggio Calabria, 89124, Italy email: floridia.giuseppe@icloud.com |
Return to the EJDE web page