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Abstract. We applied optimal control theory to a mathematical model for
guinea worm disease, to determine the effectiveness of optimal education cam-

paigns on long-term dynamics of the disease. Our model is concerned with

two different host populations, represented by two patches, sharing a common
water source. We computed the basic reproduction number of the model and

demonstrated that whenever the reproduction number is less than unity the

disease dies out in the community. Also we established that when the basic re-
production number is greater than unity the disease persists. Utilizing optimal

control theory, we explored the potential of time dependent education to elim-
inate the disease within 120 months. The model showed that time dependent

education can be successful to minimize disease prevalence in the two patches,

however, its success strongly depends on the total cost of implementation as
well as its maximum strength.

1. Introduction

In the previous three decades the global community witnessed a major decline
on the number of reported Guinea worm disease (GWD) cases, from 3.5 million in
20 countries in 1986 to only 22 cases in 2015 from only 4 countries, namely South
Sudan, Mali, Chad and Ethiopia [3]. Prior studies have attributed this remarkable
decline to the Guinea worm eradication program launched in the 1980s [3]. Despite
this remarkable achievement, there are a couple of challenges that may thwart
global eradication of the disease. Among many other challenges, continued use
and sharing of open water sources by individuals from differential communities in
GWD endemic countries remains a stumbling block to GWD eradication [3, 9, 24].
Individuals from different communities are known to have different behavior and
knowledge about the disease [23]. Such heterogeneities have strong impacts on the
dynamics of GWD, hence there is need to evaluate and quantify the possibility of
GWD eradication under these circumstances.

GWD is a waterborne disease which infects humans when they drink unfiltered
water containing copepods (small crustaceans) which are infected with larvae of
Dracunculus medinensis. Once ingested, the copepods are destroyed by gastric
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juice in the human stomach, releasing the infective larvae [3, 7]. The released larvae
will then migrate to small intestines where they penetrate through the duodenal
wall and become adult worms in connective tissues. After maturation into adults
and copulation, the male worm subsequently dies while the female worm grow into
a full-size adult (length: 70 to 120 cm) [4]. After a year long incubation period,
during which time the human host shows almost no symptoms, the female worm
will migrate to other parts of the body, mostly on the distal lower extremity and
induces a blister on the skin which ruptures leading to the emergence of the worm
[6]. The itching and pain of the induced blister prompts the use of water as therapy,
whereby infected individuals in rural communities often immerse their affected body
part into water sources to get relief from the pain. Subsequently, the female worm
releases thousands of its immature larvae (L1) [12]. These larvae are then ingested
by copepods also called cyclops. Cyclops serve as intermediate host for Dracunculus
medinensis [3]. Although GWD is rarely fatal, it may cause permanent disability
and may result in loss of family income and school absenteeism [3, 13].

Since GWD has no vaccine or medicine the eradication programme has been
based on the following preventive measures: provision of improved water sources,
use of water filtration using different types of cloth or filament filters, health edu-
cation to inform populations of how the infection is acquired and can be prevented,
control of the intermediate host copepod using the larvicide, Abate, (temephos),
containment of cases before they have an opportunity to contaminate water sources,
active surveillance in endemic or previously endemic [24, 26].

In this paper, we aim to utilize a mathematical model to provide a comprehensive
assessment on the impact of time dependent educational campaigns on controlling
the spread of GWD in heterogeneous environment characterised by communities
sharing a common open water source. Mathematical models play an important
role in understanding and providing solutions to phenomena which are difficult to
measure in the field [19, 22]. Only a few mathematical models have been con-
tributed by researchers on the study of GWD (see, for example [1, 17, 18, 26, 31]).
For example Adetunde, [1] investigated the current pattern of GWD in the northern
region of Ghana. He analyzed the data from the region and proposed a time series
model for the purpose of prediction. From his analysis it was observed that the
number of infection cases reduces with time, implying that if the current trend con-
tinues then there is a likelihood that GWD will be completely eradicated. Recently,
Link [17] proposed a compartment framework to study the dynamics of GWD. The
author determined an algebraic solution to disease-free equilibrium and performed
numerical stability analysis of the solution as well. Using the next generation ma-
trix, Link determined the reproduction number R0 and found that the disease-free
equilibrium is stable provided that the host visitation rate to the contaminated
water sources is reduced. Smith? et al. [31] also developed a mathematical model
for GWD. Impulsive differential equations were used to evaluate the effectiveness
of chlorination. Latin Hypercube Sampling was used to determine model parame-
ters that were highly sensitive to the basic reproduction number. From their work
Smith? and co-workers established that education is the most effective intervention
method, but a combination of education, chlorination and filtration will likely be
required to achieve the final steps in the long journey to eradication.

Although these studies produced many useful results and improved the exist-
ing knowledge on GWD dynamics, however, none of these studies evaluated the
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impact of time dependent educational campaigns on long term GWD dynamics in
an environment where different communities share a common water source. This
paper aims to fill this gap. The literature on epidemic models of the concurrent
spread of infectious diseases and information is quite substantial (see, for example
[5, 14, 25, 29, 30]). In [14], Joshi et al. used a deterministic compartmental model
to demonstrate the effects of time dependent educational campaigns on lowering
susceptibility classes and its impact on long term disease dynamics. Also, Samanta
et al. [29], utilized a mathematical model to illustrate the effects of awareness
programs by media on epidemic outbreaks. These studies, indeed, produced useful
results and we will utilize some of the results to develop and analyze our framework.

The remainder of this paper is structured as follows. In Section 2, we present the
methods and main results of the study. Precisely, we will analyze the dynamical
behavior of the model, and perform an optimal control study for the implementation
of educational campaigns. Analytical results in this section will be supported by
numerical results constructed using MATLAB software. Section 3 provides a brief
discussion to conclude the paper.

2. Mathematical model

We developed a mathematical model for GWD that comprises of two popula-
tions (patches) sharing a common water source. Although there are many possible
network configurations here we considered a network of non-mixing patches with
a single common water source, allowing patches to differ in the level of GWD
awareness which in-turn affects their degree of risk to infection as well as their
contribution to the pathogen population in the environment. This simple frame-
work is motivated by living conditions in rural GWD endemic countries such as
Ethiopia [3]. In rural Ethiopia, the provision of potable water supply remains a
big challenge, for instance in one recent published study it was noted that only 42
out of 70 villages had access to safe drinking water [2]. Due to the unavailability of
potable water supply, it was also noted that villagers in Ethiopia and other GWD
endemic countries highly depend on water from open sources which are often shared
by several communities [9]. According to Mari et al [23] different communities may
be endowed with differential infection risk due to their geographical and/or socioe-
conomic factors. Heterogeneity in health education is one of the socio-economic
factors that leads to differential in infection risk among individuals living within or
in different communities.

To account for heterogeneity in this study we let the host population at time t in
patch i by Ni(t), i = 1, 2, such that N(t) = N1(t) +N2(t). Further, we subdivided
the total population of individuals in patch i into categories of: susceptible Si(t), ex-
posed (latently infected) Ei(t) and infectious Ii(t), individuals. Meanwhile, let the
dynamics of infected copepods in the environment be represented by compartment
W (t). Note that, here the intrinsic dynamics of the parasite have been neglected,
as our aim is to provide a comprehensive, yet as simple as possible, account of the
impact of heterogeneity in awareness on GWD dynamics. Therefore the proposed
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model is governed by the following system of ordinary differential equations:

Ṡi(t) = Λi − βi(1− ui)SiW − µiSi,

Ėi(t) = βi(1− ui)SiW − (αi + µi)Ei,

İi(t) = αiEi − (κi + µi)Ii,

Ẇ (t) = (1− u1)γ1I1 + (1− u2)γ2I2 − εW.

(2.1)

All model variables and parameters are considered to be positive. Model parameter
Λi denotes the constant recruitment rate of the host through birth and movement
of susceptible individuals, µi is the natural mortality rate of the host; i.e., 1

µi
is the

average life span, βi account for indirect disease transmission rate, ui represents
the effects of health education on disease transmission, αi is the incubation rate
and it follows that 1

αi
is the incubation period-for GWD and it ranges between

10–14 months [3], κi is the recovery rate; i.e., 1
κi

is the average infectious period.
Meanwhile, clinically infected individuals of patch i contribute to the parasite pop-
ulation in the environment at rate γi when they immerse their affected body part
into water sources to get relief from the pain. Infected copepods die naturally at
rate ε. Table 1 presents a summary of the model parameters and their baseline
values.

Table 1. Description of model parameters and their baseline values

Var. Definition Value Units Source

β1 Copepods ingestion rate for patch 1 1.2 × 10−5 month−1 [18]
β2 Copepods ingestion rate for patch 2 3β1 month−1

µi Host natural death rate 0.0015 month−1 [18]
ε Parasite death rate 2.16 month−1 [18]
αi Incubation rate 0.9996 month−1 [18]
κi Recovery rate 0.0083 month−1 [18]
Λi Host birth rate 100 Individ. month−1 [18]
γ1 Parasite shedding rate for patch 1 0.2 month−1 [18]
γ2 Parasite shedding rate for patch 2 0.2 month−1

ui Efficacy of educational
campaigns in Path i varied Dimensionless

Since model (2.1) represents human and pathogen population, all parameters in
the model are non-negative and one can easily verify that all the solutions of the
system are non-negative, given non-negative initial values. The model (2.1) will be
analyzed in a biologically feasible region Ω defined as{

(N,W ) ∈ R7
+ : N ≤ (Λ1 + Λ2)

[min(µ1, µ2)]
, W ≤ (Λ1 + Λ2)((1− u1)γ1 + (1− u2)γ2)

[εmin(µ1, µ2)]

}
.

Thus, the compact set Ω is positively invariant and attracting for model (2.1).
Table 1 presents the model parameters and their baseline values.

Now, we compute the basic reproduction number of the model (2.1). The basic
reproduction number R0, is arguably the most important quantity in infectious
disease epidemiology. It can be utilized to account for the severity of the disease in
the community whether epidemic or pandemic. To compute the basic reproduction
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number of system (2.1) we need to determine the disease-free equilibrium (DFE)
of the system. Thus, one can easily verify that system (2.1) has the following DFE

E0 =
(
S0

1 , S
0
2 , E

0
1 , E

0
2 , I

0
1 , I

0
2 ,W

0
)

=
(Λ1

µ1
,

Λ2

µ2
, 0, 0, 0, 0, 0

)
.

Using the next-generation matrix notations in [32], the non-negative matrix F that
denotes the generation of new infections and the non-singular matrix V that denotes
the disease transfer among compartments, are respectively given by (at DFE)

F =


0 0 0 0 β1(1− u1)S0

1

0 0 0 0 β2(1− u2)S0
2

0 0 0 0 0
0 0 0 0 0

 , V =


m1 0 0 0 0
0 m2 0 0 0
−α1 0 m3 0 0

0 −α2 0 m4 0
0 0 −m5 −m6 ε

 ,
where

m1 = (α1 + µ1), m2 = (α2 + µ2),

m3 = (κ1 + µ1), m4 = (κ2 + µ2),

m5 = (1− u1)γ1, m6 = (1− u2)γ2.

It follows that the spectral radius of system (2.1) is determined from ρ(FV −1) and
is given by

R0 =
β1α1(1− u1)2γ1Λ1

εµ1m1m3
+
β2α2(1− u2)2γ2Λ2

εµ2m2m4
. (2.2)

The quantity R0 corresponds to the average number of secondary infections through
environment-to-host transmission caused by one infectious individual in its infec-
tious lifetime. Next, we investigate the existence of the endemic equilibrium point
of model system (2.1).

Theorem 2.1. Suppose R0 > 1. Then model system (2.1) admits a unique endemic
equilibrium point.

Proof. Let the endemic equilibrium of (2.1) be denoted by E∗(S∗i , E∗i , I∗i ,W ∗), i =
1, 2. This steady state is determined by solving the system of equations

Λi − βi(1− ui)S∗iW ∗ − µiS∗i = 0,

βi(1− ui)S∗iW ∗ − (αi + µi)E
∗
i = 0,

αiE
∗
i − (κi + µi)I

∗
i = 0,

2∑
i=1

(1− ui)γiI∗i − εW ∗ = 0.

(2.3)

For the third and fourth equations of (2.3) we have

Ei =
(κi + µi)

αi
I∗i , W =

2∑
i=1

(1− ui)γi
ε

I∗i . (2.4)

Substituting (2.4) into the second equation of (2.3) leads to

2∑
i=1

(βi(1− ui)γiS∗i
ε

− (κi + µi)(αi + µi)

αi

)
I∗i = 0.
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We can write
2∑
i=1

( βi(1− ui)2γiαiS
∗
i

ε(κi + µi)(αi + µi)
− 1
) (κi + µi)(αi + µi)

αi
I∗i = 0. (2.5)

Equation (2.5) implies that

I∗i = 0, or S∗i =
ε(κi + µi)(αi + µi)

βi(1− ui)2γiαi
=

Λi
µiRi

.

From the first equation of (2.3) we have

2∑
i=1

(
Λi − βi(1− ui)2 Λi

µiRi
γi
ε
I∗i −

Λi
Ri

)
= 0,

and this gives

I∗i =
εµiRi

βi(1− ui)2γi

(
1− 1

Ri

)
.

From (2.4) we have

E∗i =
εµi(κi + µi)Ri
βi(1− ui)2αiγi

(
1− 1

Ri

)
, W ∗ =

2∑
i=1

µiRi
βi(1− ui)2

(
1− 1

Ri

)
.

As we can note, E∗ exists whenever, S∗i > 0, E∗i > 0, I∗i > 0 and W ∗ > 0 and this
only feasible if R0 > 1. Therefore we conclude that the endemic equilibrium E∗
exists and is unique whenever R0 > 1. �

Now, we are aware that model (2.1) has two unique equilibrium points and the
existence of a unique endemic equilibrium implies that the disease will persist in
the community if R0 > 1. Next, we carry out sensitivity analysis of R0 to infer
the role of awareness campaigns on the average number of secondary cases that
will be generated in the community. From the expression of the basic reproduction
number (2.2) shows that changes in behavior of individuals from either patch due
to awareness can lead to extinction or persistence of the disease, since

lim
(u1→1,u2→1)

R0 = 0,

and the reverse case leads to

lim
(u1→0,u2→0)

R0 = R∗0 (2.6)

with

R∗0 =
β1α1γ1Λ1

εµ1m1m3
+
β2α2γ2Λ2

εµ2m2m4
,

note that R0 < R∗0, for ui 6= 0.
In what follows, we utilize numerical simulations to demonstrate the effects of

different awareness levels on the basic reproduction number R0. As presented on
Table 1, let patch 1 represent the less risk population while patch 2 represents the
high risk population, such that disease transmission in the risk patch is three times
that of low risk patch, that is, β2 = 3β1.

In Figure 1, a contour plot of the basic reproduction number R0 as a function
of u1 and u2 is presented. Baseline values of other model parameters are based
on Table 1. We can observe that there are many combinations of u1 and u2 that
can lead to disease eradication, for instance if u1 = 0.4, then the disease can be
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Figure 1. Contour plot illustrating the effects of different levels
of awareness per patch on the basic reproduction number. Baseline
values for parameters used are in Table 1

eliminated from the community if u2 ≥ 0.3, however, if u2 < 0.3 then the infection
will persist. Overall, we can conclude that if ui ≥ 0.4 in both patches then the
infection will not persist in either of the patches.

In Figure 2 shows the effects of varying disease transmission rate and educational
campaigns on the magnitude of the basic reproduction number. By varying ui (with
u1 = u2) and β1, we observed that an increase in transmission rate in both patches
will require an increase in educational campaigns for the disease to be eradicated,
for instance when β1 = 4 × 10−4 then educational campaigns equivalent to 0.7 or
above will be needed to reduce the basic reproduction number to a value below
unity.

Figure 2. Effects of varying disease transmission rate and edu-
cational campaigns on the basic reproduction number. Parameter
values used are in Table 1

Next, we determine the global stability of the disease-free equilibrium and the
endemic equilibrium. The global stability of these equilibrium points will be inves-
tigated with the aid of Lyapunov functionals.
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Theorem 2.2. If R0 ≤ 1, then the DFE is globally asymptotically stable in Ω.

Proof. Consider the Lyapunov function

L(t) =

2∑
i=1

[aiEi(t) + biIi(t)] + cW (t), (2.7)

where

a1 = α1γ1m2m4, a2 = α2γ2m1m3, b1 = γ1m1m2m4,

b2 = γ2m1m2m3, c = m1m2m3m4.

Differentiating L(t) along the solutions of the system (2.1) gives

L̇(t) =

2∑
i=1

(
aiĖi(t) + biİi(t)

)
+ cẆ (t).

Since Si ≤ Ni ≤ Λi/µi for i = 1, 2, it follows that

L̇(t) = εm1m2m3m4

( 2∑
i=1

βi(1− ui)2αiγiSi
ε(µi + αi)(µi + κi)

− 1
)
W (t)

≤ εm1m2m3m4

( 2∑
i=1

βi(1− ui)2αiγiΛi
εµi(µi + αi)(µi + κi)

− 1
)
W (t)

= εm1m2m3m4 (R0 − 1)W (t) ≤ 0

provided that R0 ≤ 1. When R0 < 1, L̇ = 0 yields W = 0. Then it can be
easily observed from the system (2.1) that as t → ∞, Ei → 0, Ii → 0, and

Si → S0
i , for i = 1, 2. Hence, the only invariant set when L̇ = 0 is the singleton

E0 = (S0
1 , S

0
2 , 0, 0, 0, 0, 0). It follows from Lasalle’s Invariance Principle [20] that

every solution of the system (2.1), with initial conditions in Ω, approaches E0 as
t→∞. Thus the equilibrium point E0 is globally asymptotically stable if R0 < 1.
When R0 = 1, L̇ = 0 implies either W = 0, or

1 =

2∑
i=1

βi(1− ui)2αiγiSi
ε(µi + αi)(µi + κi)

≤
2∑
i=1

βi(1− ui)2αiγiΛi
εµi(µi + αi)(µi + κi)

= R0 = 1.

The latter case yields Si = S0
i and, consequently, Ei = Ii = W = 0 for i =

1, 2. Hence, in either case, the only invariant set for L̇ = 0 is the singleton E0 =
(S0

1 , S
0
2 , 0, 0, 0, 0, 0). Therefore the equilibrium point E0 is globally asymptotically

stable if R0 = 1. �

In contrast, if R0 > 1, then by continuity, L̇(t) > 0 in a neighbourhood of E0

in Ω̂. Solutions in Ω̂ sufficiently close to E0 move away from E0 implying that the
DFE is unstable. Applying a uniform persistence result from [11] and an argument
as in the proof of [16, Prop. 3.3], it can be shown that, if R0 > 1, instability of E0

implies uniform persistence of the system (2.1).
Next, we study the global stability of the positive endemic equilibrium E∗. The

problem is generally difficult for systems with dimensions higher than two. Follow-
ing the approach used in [8], we introduce the following assumptions for our model
(2.1):
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(A1) There exist a family of functions Φi(Si) : (0, Λi

µi
]→ R+, i = 1, 2, Such that

for all Si, Ei, W > 0,

[Si − S∗i ] [Φi(Si)− Φi(S
∗
i )] ≥ 0,[ fi(Si,W )Φi(S

∗
i )

fi(S∗i ,W
∗)Φi(Si)

− 1
][

1− fi(S
∗
i ,W

∗)Φi(Si)Ei
fi(Si,W )Φi(S∗i )E∗i

]
≤ 0.

(A2) For all Ei, Ii > 0, 1 ≤ i ≤ 2,[Ei
E∗i
− 1
][

1− E∗i Ii
EiI∗i

]
≤ 0. (2.8)

(A3) For all Ii, W > 0, 1 ≤ i ≤ 2,[ gi(Ii)
gi(I∗i )

− 1
][

1− gi(I
∗
i )W

gi(Ii)W ∗
]
≤ 0.

These assumptions are motivated by the proof of [8, Theorem 6.1]. The functions
Φi, for example, can be taken as Φi(Si) = Si for i = 1, 2. We now prove that if
R0 > 1 then the endemic equilibrium point is globally asymptotically stable.

Theorem 2.3. If R0 > 1 then the endemic equilibrium point of system E∗ exists
and is globally asymptotically stable.

Proof. Consider the Lyapunov function

V(t) =

2∑
i=1

{∫ Si

S∗
i

Φi(ξ)− Φi(S
∗
i )

Φi(ξ)
dξ +

[
Ei − E∗i − E∗i ln

Ei
E∗i

]
+
[
Ii − I∗i − I∗i ln

Ii
I∗i

]}
+
[
W −W ∗ −W ∗ ln

W

W ∗
]
.

At endemic equilibrium we have the following identities

Λi = fi(S
∗
i ,W

∗) + µiS
∗
i ,

(αi + µi)E
∗
i = fi(S

∗
i ,W

∗),

(κi + µi)I
∗
i = αiE

∗
i ,

εW ∗ =

2∑
i=1

g(I∗i ).

(2.9)

Differentiating V along the solutions of (2.1) and using the equilibrium equations
(2.9), we obtain

dV
dt

=

2∑
i=1

{[
1− Φi(S

∗
i )

Φi(Si)

]dSi
dt

+
[
1− E∗i

Ei

]dEi
dt

+
[
1− I∗i

Ii

]dIi
dt

}
+
[
1− W ∗

W

]dW
dt

=

2∑
i=1

{[
1− Φi(S

∗
i )

Φi(Si)

]
[fi(S

∗
i ,W

∗) + µiS
∗
i − fi(Si,W )− µiSi]

+
[
fi(Si,W )− fi(Si,W )

E∗i
Ei
− fi(S∗i ,W ∗)

Ei
E∗i

+ fi(S
∗
i ,W

∗)
]

+
[
αiEi − αiEi

I∗i
Ii
− αiE∗i

Ii
I∗i

+ αiE
∗
i

]
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+
[
gi(Ii)− gi(Ii)

W ∗

W
− gi(I∗i )

W

W ∗
+ gi(I

∗
i )
]}
.

After some algebraic manipulations, we have

dV
dt

=

2∑
i=1

{ −µi
Φi(Si)

[Si − S∗i ][Φi(Si)− Φi(S
∗
i )]

+ fi(S
∗
i ,W

∗)
[ fi(Si,W )Φi(S

∗
i )

fi(S∗i ,W
∗)Φi(Si)

− 1
][

1− fi(S
∗
i ,W

∗)Φi(Si)Ei
fi(Si,W )Φi(S∗i )E∗i

]
+ fi(S

∗
i ,W

∗)
[
3− Φi(S

∗
i )

Φi(Si)
− fi(Si,W )E∗i
fi(S∗i ,W

∗)Ei
− fi(S

∗
i ,W

∗)Φi(Si)Ei
fi(Si,W )Φi(S∗i )E∗i

]
+ αiE

∗
i

[Ei
E∗i
− 1
][

1− E∗i Ii
EiI∗i

]
+ αiE

∗
i

[
2− EiI

∗
i

E∗i Ii
− E∗i Ii
EiI∗i

]
+ gi(I

∗
i )
[ gi(Ii)
gi(I∗i )

− 1
][

1− gi(I
∗
i )W

gi(Ii)W ∗

]
+ gi(I

∗
i )
[
2− gi(Ii)W

∗

gi(I∗i )W
− gi(I

∗
i )W

gi(Ii)W ∗

]}
.

It follows from assumptions (A1)–(A3) that

dV
dt
≤

2∑
i=1

{
fi(S

∗
i ,W

∗)
[
3− Φi(S

∗
i )

Φi(Si)
− fi(Si,W )E∗i
fi(S∗i ,W

∗)Ei
− fi(S

∗
i ,W

∗)Φi(Si)Ei
fi(Si,W )Φi(S∗i )E∗i

]
+ αiE

∗
i

[
2− EiI

∗
i

E∗i Ii
− E∗i Ii
EiI∗i

]
+ gi(I

∗
i )
[
2− gi(Ii)W

∗

gi(I∗i )W
− gi(I

∗
i )W

gi(Ii)W ∗

]}
≤ 0.

The terms inside the square brackets are non-positive due to the fact that the
geometric mean is less than or equal to the arithmetic mean:

Φi(S
∗
i )

Φi(Si)
+

fi(Si,W )E∗i
fi(S∗i ,W

∗)Ei
+
fi(S

∗
i ,W

∗)Φi(Si)Ei
fi(Si,W )Φi(S∗i )E∗i

≥ 3 3

√
Φi(S∗i )

Φi(Si)
.
fi(Si,W )E∗i
fi(S∗i ,W

∗)Ei
.
fi(S∗i ,W

∗)Φi(Si)Ei
fi(Si,W )Φi(S∗i )E∗i

= 3,

EiI
∗
i

E∗i Ii
+
E∗i Ii
EiI∗i

≥ 2

√
EiI∗i
E∗i Ii

· E
∗
i Ii

EiI∗i
= 2,

gi(Ii)W
∗

gi(I∗i )W
+
gi(I

∗
i )W

gi(Ii)W ∗
≥ 2

√
gi(Ii)W ∗

gi(I∗i )W
.
gi(I∗i )W

gi(Ii)W ∗
= 2.

Meanwhile, it can be easily observed that the largest invariant set where V̇ =
0 is the singleton {E∗}. Hence, by LaSalle’s invariance principle, E∗ is globally
asymptotically stable. This completes the proof of Theorem. �

In Figure 3 phase portraits were constructed to illustrate the convergence of
solutions to the disease-free and endemic equilibrium for R0 < 1 and R0 > 1,
respectively. In Figure 3 (a) one can observe that all the three solution orbits
converge to the disease-free equilibrium over time whenever R0 < 1 as guaranteed
by Theorem 2.2. However, whenever R0 > 1 we can also note that the solution
orbits converge to the endemic point, as illustrated in Figure 3 (b).
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Figure 3. Phase portraits illustrating the converge of solutions to
the (a) disease-free equilibrium when R0 < 1, (b) endemic equilib-
rium when R0 > 1. To construct the phase portrait in (a) we set
u1 = 0.55 and u2 = 0.45 to obtain R0 = 0.983 and for (b) we set
u1 = 0.3 and u2 = 0.1 to obtain R0 = 2.56. In addition, the initial
population levels were set to S(0)i = 1000, E2(0) = 0, I1 = I2 = 0
and W (0) = 500. In (a) we can observe that all the three solution
orbits converge to the disease-free equilibrium demonstrating that
whenever R0 < 1 the disease dies out in the community as guar-
anteed by Theorem 2.2. However, if R0 > 1 we can see that the
disease persists since the solution orbits converge to the endemic
point.

3. Formulation and analysis of the optimal control problem

In this section, we apply optimal control theory to identify optimal educational
campaign strategies for GWD management. Thus the constant educational cam-
paigns parameter ui considered earlier in model (2.1), is now assumed to be time
dependent, i.e. ui(t) i = 1, 2. Utilizing the same variables and parameters names
as before, our model with time dependent controls is given by

Ṡi(t) = Λi − βi(1− ui(t))Si(t)W (t)− µiSi(t),

Ėi(t) = βi(1− ui(t))Si(t)W (t)− (αi + µi)Ei(t),

İi(t) = αiEi(t)− (κi + µi)Ii(t),

Ẇ (t) = γ(1− u1(t))I1 + γ(1− u2(t))I2 − εW.

(3.1)

Our goal is to minimize the numbers of clinically infected individuals over a finite
time horizon [0, T ] at minimal costs in each patch. Mathematically, we formulate
an objective functional J(u(t)) as follows:

J
(
u1(t), u2(t)

)
=

∫ T

0

(
A1I1(t) +

B1

2
u2

1(t) +A2I2(t) +
B2

2
u2

2(t)
)
dt , (3.2)

where Ai and Bi, i = 1, 2, are balancing coefficients (positive) transferring the
integral into monetary quantity over a finite period of time. Note that the control
efforts are assumed to be nonlinear, due to a number of advantages associated with
a nonlinear function on the control. One of the advantages is that a nonlinear
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control allows the Hamiltonian to attain its minimum over the control set at a
unique point. Moreover, a quadratic structure in the control has mathematical
advantages. We seek an optimal control pair (u∗1, u

∗
2) ∈ U such that

J(u∗1, u
∗
2) = inf

(u1,u2)∈U
J(u1, u2) (3.3)

for the admissible set U = {(u1, u2) ∈ (L∞(0, T ))2 : 0 ≤ ui ≤ ai; ai ∈ R+, i = 1, 2}.
The following theorem states the existence of the solution of the system (3.1) as
well as their non-negativity and boundedness.

Theorem 3.1. Given u = (u1, u2) ∈ U , there exists a non-negative bounded so-
lution (Si, Ei, Ii,W ) i = 1, 2 to the state system (3.1) on the finite interval [0, T ]
with given initial conditions.

Proof. Since the controls and the state variables are uniformly bounded and non-
negative on the finite interval [0, T ], there exists a minimizing sequence (un1 , u

n
2 )

such that

lim
n→∞

J(un1 , u
n
2 ) = inf

(u1,u2)∈U
J(u1, u2).

We denote the corresponding sequence of the state variables by (Si, Ei, Ii,Wi)
i = 1, 2. Further, since all state and control variables are bounded, then deriva-
tives of the state variables are also bounded and it follows that all state variables
are Lipschitz continuous with the same Lipschitz constant. Thus the sequence
(Si, Ei, Ii,Wi) i = 1, 2 is uniformly equicontinuous in [0, T ]. Therefore by the
Arzela-Ascoli Theorem [21, 27], the state sequence has a subsequence that con-
verges uniformly to (S∗i , E

∗
i , I
∗
i ,W

∗
i ) i = 1, 2 in 0, T ]. Hence the control sequence

unn = (un1 , u
n
2 ) has a subsequence that converges weakly in L2(0, T ). Let (u∗1, u

∗
2) ∈ U

be such that uni ⇀ u∗i weakly in L2(0, T ) for i = 1, 2. utilizing the lower semi-
continuity norms in weak L2, we obtain

‖u∗i ‖2L2 ≤ lim
n→∞

‖uni ‖2L2 , fori = 1, 2. (3.4)

Hence,

J(u∗1, u
∗
2) ≤ lim

n→∞

∫ T

0

[
A1I

n
1 (t) +

B1

2
un1 (t) +A2I

n
2 (t) +

B2

2
un2 (t)

]
dt

= lim
n→∞

J(u1, u2).

Thus, we conclude that there exists a pair of control (u∗1, u
∗
2) that minimizes the

objective functional J(u1, u2). �

By utilizing the result from Lukes [21] one can easily verify the existence and
uniqueness of solutions for the state system (3.1) with a given control pair. Since
there exists an optimal control from Theorem 3.1, now we can apply Pontryagin’s
Maximum Principle [28]. Thus, the optimal control system (3.1) is converted into
an equivalent problem of minimizing the Hamiltonian

H(t) = A1I1(t) +A2I2(t) +
B1

2
u2

1(t) +
B2

2
u2

2(t)

+ λS1

{
Λ1 − [1− u1(t)]β1S1W − µ1S1

}
+ λS2

{
Λ2 − [1− u2(t)]β2S2W − µ2S2

}
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+ λE1

{
[1− u1(t)]β1S1W − (α1 + µ1)E1

}
+ λE2

{
(1− u2(t))β2S2W − (α2 + µ2)E2

}
+ λI1

{
α1E1 − (κ1 + µ1)I1

}
+ λI2

{
α2E2 − (κ2 + µ2)I2

}
+ λW

{
(1− u1(t))γ1I1 + (1− u2(t))γ2I2 − εW

}
,

where λSi
(t), λEi

(t), λIi(t) (i = 1, 2) and λW (t) denote the adjoint functions as-
sociated with the states Si, Ei, Ii and W , i = 1, 2 respectively. Note that, in H,
each adjoint function multiplies the right-hand side of the differential equation of
its corresponding state function. The first term in H comes from the integrand of
the objective functional.

Given an optimal control pair u = (u1, u2) ∈ U and corresponding states
(Si, Ei, Ii,W ), i = 1, 2 there exist adjoint functions [15] satisfying

dλSi
(t)

dt
= −∂H

∂Si
,

dλEi
(t)

dt
= − ∂H

∂Ei
,

dλIi(t)

dt
= −∂H

∂Ii
,

dλW (t)

dt
= − ∂H

∂W
.

These equalities give

λ̇S1
(t) = µ1λS1

(t) + β1[1− u1(t)][λS1
(t)− λE1

(t)]W (t),

λ̇S2
(t) = µ2λS2

(t) + β2[1− u2(t)][λS2
(t)− λE2

(t)]W (t),

λ̇E1(t) = µ1λE1(t) + α1[λE1(t)− λI1(t)],

λ̇E2
(t) = µ2λE2

(t) + α2[λE2
(t)− λI2(t)],

λ̇I1(t) = −A1 + (κ1 + µ1)λI1(t)− (1− u1)γ1λW (t),

λ̇I2(t) = −A2 + (κ2 + µ2)λI2(t)− (1− u2)γ2λW (t),

λ̇W (t) = ελW (t) + β1[1− u1(t)][λS1(t)− λE1(t)]S1(t)

+ β2[1− u2(t)][λS2(t)− λE2(t)]S2(t),

(3.5)

with transversality conditions λj(T ) = 0 for j = Si(t), Ei(t), Ii(t) (i = 1, 2) and
W (t). Furthermore, the optimal controls are characterized by the optimality con-
dition:

u1(t) = min
(

max
(

0,
β1S1W (λE1

− λS1
) + γ1I1λW

B1

)
, a1

)
,

u2 = min
(

max
(

0,
β2S2W (λE2 − λS2) + γ2I2λW

B2

)
, a2

)
.

(3.6)

Finally, for sufficiently large T , one can show the uniqueness of an optimal control
pair by following the approach in [10]. Our optimal control problem thus cou-
ples the state system (3.1), the adjoint system (3.5), and the optimality condition
(3.6). These equations are solved numerically using the forward-backward sweep-
ing method [15], based on parameters listed in Table 1 and the following assumed
initial population levels:

Si(0) = 1000, Ei(0) = 50, Ii(0) = 100, W (0) = 500, i = 1, 2.

In particular, we will find the simulation results under two different cases: Case
A: Homogeneous setting, that is, disease characteristics are the same in the two
patches. Case B: Heterogeneous setting, that is, different disease characteristics
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between the two patches. For each case, we find the total number of new infections
in the two patches by the formula

Tn =

∫ T

0

(
β1(1− u1)S1 + β2(1− u2)S2

)
Wdt. (3.7)

Recall that the total cost associated with infected humans and the controls J , is
given by equation (3.2).

Case A: Homogeneous setting. To account for homogeneous setting, we assume
equal disease transmission rate and educational campaigns, that is, we set β1 =
β2 = 3.6 × 10−5, and 0 ≤ ui(t) ≤ 0.6. We set the initial guess of the controls as
follows u1 = u2 = 0.3 and these values also correspond to educational campaign
levels in the absence of time dependent intervention strategies. Furthermore, we set
the weight constant to A1 = A2 = 1, B1 = B2 = 10, and the numerical illustrations
are presented in Figure 4.

From Figure 4, we observe that when disease characteristics (initial population
levels and model parameters) are the same in the two patches then the dynamics
of the disease will be similar in both patches. However, in the absence of optimal
control we can see that the total number of exposed and infectious individuals
will be higher compared to when there is optimal control. In particular, with
optimal control implemented, the infected host population for both patches reduces
remarkably to levels close to zero. Precisely, over a period of 120 months, the total
number of new infections that will be generated from the two patches in the absence
of optimal control is 1.2037×104, whereas, with optimal control approximately 408
infections and the total cost is J = 990. These results suggests that the presence
of optimal control may lead to a reduction of approximately 1.1629×104 infections
over a period of 120 months. Figure 4 (d) shows the optimal control profile for
ui(t), i = 1, 2. As we can observe the control profile for ui starts from its maximum
ui = 0.6 and remains there till the final time horizon, where it will drop to the origin.
Thus, for effective GWD management time dependent educational campaigns will
have to be maintained at maximum intensity for the entire horizon suggesting that
perhaps, educational campaigns may need to be combined with other less cost
intervention strategies (such as filtering water using pieces of cloth) in order to
minimize cumulative costs in the long run.

Table 2. Total number of newly infected humans over 120 months
and the total cost J with respect to control bounds, under the
homogeneous scenario. The balancing constants were set to Ai = 1
and Bi = 10, for i = 1, 2.

Upper bounds of ai Total cost J Number of new infections Tn
0.4 2.0256× 104 1.8389× 104

0.6 990.0536 408
0.8 915.1205 52

From Table 2, we can observe that as the upper bound of ui approaches 1, the
total number of newly infected individuals and total cost decreases significantly.
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(a) (b)

(c) (d)

Figure 4. Simulation results for case A: homogeneous setting.
The solid curves in (a)-(c) represent the population levels of the
host and vector in the presence of optimal control while the dotted
lines depict the population levels in the absence of optimal control.
The time varying educational rate is plotted in (d), 0 ≤ ui(t) ≤ 0.6.
Note that since equality is assumed for both patches the diseases
dynamics are similar, thus E1(t) = E2(t), I1(t) = I2(t), u1(t) =
u2(t).

Case B: Heterogeneous setting. Although case A (Homogeneous setting), is
highly impractical it serves to demonstrate the likely outcome under homogeneous
conditions and allows comparison to be made with the real world scenario – the
heterogeneous setting. Here, we will investigate the impact of heterogeneous dis-
eases characteristics between the two patches on long term disease dynamics. In
particular we will investigate heterogeneity on (i) disease transmission rates, with
the assumption that β2 = 6β1 (ii) bounds of the controls a2 < a1 (iii) both disease
transmission rates and upper bounds of the controls. For all the simulations in case
B we set the initial guess for the control as u1 = 0.4,and u2 = 0.3 and these values
also correspond to education campaign levels in the absence of optimal control.

Figure 5 depicts the time evolution of the infected host and pathogen in patches
1 and 2, for the scenario with and without the optimal control, under heterogeneous
disease transmission rates (β2 = 6β1, with β1 = 3.6 × 10−4) and similar bounds
of the controls (0 ≤ ui(t) ≤ 0.8). As we have already observed, the presence of
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Solution of the model (asymptomatic individuals) with
and without optimal control under heterogeneous setting, with 0 ≤
ui(t) ≤ 0.8. The control profile for u2(t) has been omitted since it
has exactly the same pattern as u1(t)

optimal control will be associated with extremely low new infections as compared
to when they is no optimal control. Precisely, in the absence of optimal control
approximately a total of 3.535 × 103 new infections will generated compared to
approximately 98, over a period of 120 months. The total cost of implementing the
strategy will be J = 1.258× 103.
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Table 3. Total number of newly infected humans over 120 months
and the total cost J with respect to control bounds, under the
heterogeneous disease transmission between the two patches. The
balancing constants were set to Ai = 1 and Bi = 10, 0 ≤ ui(t) ≤
0.8 for i = 1, 2, with β1 = 3.6× 10−4.

Transmission rate β2 Total cost J Number of new infections Tn
3β1 1.010× 103 62
6β1 1.258× 103 98
9β1 2.193× 103 256
12β1 5.735× 103 784

Table 3 depicts the effects of heterogeneous disease transmission rates between
the two patches. As we can observe, an increase in disease transmission rate for the
risk patch (patch 2) will lead to an increase on the total number of new infections
and total cost over a period of 120 months. For instance, an increase on disease
transmission rate from 6β1 to 9β1 will increase the total number of new infections
by more than 100%. Furthermore, we can also observe that increasing disease
transmission rate in patch 2 from 9β1 to 12β1 will also be associated with more
than 100% increase on the total number of new infections and total costs over the
same period.

Numerical illustrations in Figure 6 illustrates the impact of different upper bound
to controls u1 and u2 (that is, 0 ≤ u1 ≤ 0.8 and 0 ≤ u2 ≤ 0.5). As once observed
earlier, the total number of new infections will be high in the absence of optimal
control compared to when there is optimal control. In particular, approximately a
total of 1.086 × 104 infections will be generated when there is no time dependent
intervention strategies compared to approximately 260 in the presence of time de-
pendent controls, over the same period of 120 months. The total cost associated
with strategy implementation is J = 927.86. Figure 6 (d) shows the control pro-
files for controls u1 and u2, and we can observe that all the control profiles starts
at their maximum till the final time horizon where they will drop sharply to the
origin. This suggests that for effective disease management educational campaigns
will have to be maintained at their maximum intensities in both patches over 120
months.

Simulations in Figure 7 demonstrates the effects of heterogeneous on: disease
transmission rates, upper bound of the controls and initial population levels between
the two patches, on long term disease dynamics. In particular, we have assumed
higher disease transmission rate, lower upper bound to the control and higher initial
population levels for patch 2-assumed to be the high risk community compared to
patch 1. Under these circumstances we observed that approximately 8.51 × 103

new infections will be generated in the absence of optimal control compared to
approximately 1.673×103 infections in the presence of optimal control over a period
of 120 months. In addition, the total cost of implementing the time dependent
strategies is J = 3.254× 103.

Table 4 presents a summary of the variations in the weight parameters and their
corresponding effects, under a heterogeneous scenario. Overall, we can observe that
as these various weight constants increase the total cost J and the total number
of new infections increases significantly. In particular, an increase in Bi leads
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Simulation results for case B, illustrating the dynamics
of exposed individuals, infectious individuals and the pathogen in
the environment, with and without optimal control, for 0 ≤ u1 ≤
0.8, 0 ≤ u2 ≤ 0.5, β1 = β2 = 3.6 × 10−4. The solid curves in
(a)-(e) represent the population levels of the host and pathogen in
the presence of optimal control while the dotted lines depict the
population levels without optimal control.

to remarkable changes on the total cost and the total number of new infections
compared to Ai, for i = 1, 2.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Solution of the model (asymptomatic individuals) with
and without optimal control under heterogeneous setting, with 0 ≤
u1(t) ≤ 0.8 and 0 ≤ u2(t) ≤ 0.5.

Numerical results in Figure 8 suggest that when the cost of implementing the
strategies is low Bi and the efforts are high Ai, then the disease can be effectively
manage with control profiles at low intensity.

Simulation results in Figure 9 depicts the impact of varying the weights. In
particular, we varied the weights Ai, while Bi, i = 1, 2, is fixed to Bi = 10−2. As
we can observe, increasing Ai may lead to varying optimal controls. Precisely, we
can note that for value of A1 greater that 10, the control profile for u1 may not
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Table 4. Summary of variations in the weight parameters and
their corresponding effects, we set β2 = 1.5β1, with β1 = 3.6 ×
10−4, 0 ≤ u1 ≤ 0.8, 0 ≤ u2 ≤ 0.5. The initial population levels
were assumed as follows, S1(0) = 1000, E1(0) = 50, I1(0) = 100,
S2(0) = 1200, E1(0) = 250, I1(0) = 200 and W = 500.

A1 A2 B1 B2 Total cost J New infections Tn
1 1 10 10 3.254× 103 1.6731× 103

2 2 10 10 5.9743× 103 1.6731× 103

1 1 102 102 8.0461× 103 1.7086× 103

2 2 102 102 1.0772× 104 1.6874× 103

2 2 103 103 5.8477× 104 1.8044× 103

5 5 103 103 6.6785× 104 1.7393× 103

need to be maintained at its maximum (0.8). However, in contrast we can note
that the control profile for u2 may not need to be maintained at its maximum (0.5)
whenever A2 is greater than 104. In a nutshell, one can conclude that whenever
the control efforts are high and the cost of implementation is low, then the disease
can be effectively controlled with control at varying and low intensity.

4. Conclusions

In this article, a differential equation-based two-patch model for guinea worm
disease, a water-borne infection, is proposed and analysed. The proposed model
is is concerned with different host populations at the two patches, but with a
common water source. Results obtained from the study demonstrate that, while
each patch could contribute differently to the infection risk and the transmission
dynamics, the overall reproduction number is determined by the sum of the two
individual reproduction numbers. Further, analytical and numerical results of the
study show that this overall reproduction number, R0, can provide a sharp threshold
for the disease dynamics: when R0 ≤ 1, the disease-free equilibrium is globally
asymptotically stable, indicating that the infection would die out; when R0 > 1,
there exists a unique endemic equilibrium which is globally asymptotically stable,
and the disease persists.

Subsequently, we have performed an optimal control study on this two-patch
model to effectively design control strategies for guinea worm disease. The main
goal here, is to strengthen the efforts of educational campaigns so as to reduce the
number of infectious human populations with minimal costs. From the analysis of
the optimal control system observed that when the two patches have similar charac-
teristics in disease transmission and control efforts, then the disease patterns will be
same for the two patches. The reverse is true when the two patches have different
disease characteristics. We also observed that the presence of optimal control will
always be associated with lower total number of new infections compared to when
there is no optimal control. However, the success of optimal control hinges on the
total cost of implementing the strategies as well as its maximum strength. Further-
more, we observed that an increase in weight constants may lead to a remarkable
increase on the total number of new infections.

Our study is not exhaustive and in future will consider the effects of combin-
ing educational campaigns with other control measures for guinea worm disease,
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(a) (b)

(c) (d)

Figure 8. Simulation results for model system (2.1) with and
without optimal control. We set 0 ≤ u1 ≤ 0.8, 0 ≤ u2 ≤ 0.5, Ai =
100 while Bi is fixed to 10−2, and the rest of the parameters are
as in Table 1. The solid curves in (a)-(b) represent the population
levels of the host in the presence of optimal control while the dotted
lines depict the population levels without optimal control. Figure
(c) and (d) shows the control profiles.

such as water filter, larvicides, and surgery, in our optimal control study. These
control methods, whether individually applied or combined together, might yield
very different results with regard to the optimal control. Nevertheless, our findings
illustrate that a strategic design of prevention and intervention methods for guinea
worm disease that takes into account the unique setting of each different place may
achieve the best outcome.
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