
Electronic Journal of Differential Equations, Vol. 2020 (2020), No. 76, pp. 1–23.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
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Abstract. This note considers Sturm oscillation theory for regular matrix

Sturm-Liouville operators on finite intervals and for matrix Jacobi operators.

The number of space oscillations of the eigenvalues of the matrix Prüfer phases
at a given energy, defined by a suitable lift in the Jacobi case, is shown to be

equal to the number of eigenvalues below that energy. This results from a

positivity property of the Prüfer phases, namely they cannot cross −1 in the
negative direction, and is also shown to be closely linked to the positivity of

the matrix Prüfer phase in the energy variable. The theory is illustrated by

numerical calculations for an explicit example.

1. Introduction

Classical Sturm oscillation theory states that the number of oscillations of the
fundamental solutions of a regular Sturm-Liouville equation at energy E and over
a (possibly rescaled) interval [0, 1] is equal to the number of eigenvalues of the
Sturm-Liouville operator on the interval with energy less than or equal to E. This

is also given by the rotation of the Prüfer phase eıθ
E
x in the spatial coordinate x.

Alternatively, it is also equal to the rotation of the Prüfer phase eıθ
e
1 at the end

point 1 of the interval, when the energy is varied in e ∈ (−∞, E]. A nice historic
account of these facts is given in [1].

Matrix Sturm-Liouville equations are of the same form as the classical ones,
but the coefficient functions now take values in the square matrices of a given
fixed size. They are not only of intrinsic mathematical interest, but also of great
relevance for numerous applications, such as the Jacobi equation for closed geodesics
(however, with periodic boundary conditions), mathematical physics, and many
more, resulting in an abundant mathematical literature dating back many decades.
Morse developed a variational approach to the study of closed geodesics [12], that
was further extended by Bott [4]. Intersection theory of Lagrangian planes for
the associated eigenvalue problem was developed by Lidskii [10] and Bott [4], see
also the follow-up by Bott’s student Edwards [7]. The matrix Prüfer phase was
used in these works, albeit not under this name. It is a unitary matrix UE(x)
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the definition of which is recalled below. When stemming from a matrix Sturm-
Liouville equation, it depends on energy and position. Its eigenvalues (on the unit
circle) are also called Prüfer phases. Actually the matrix Prüfer phase is merely
a global chart for the (hermitian symplectic) Lagrangian planes as given by the
fundamental solution of the Sturm-Liouville equation with a fixed left boundary
condition (which is a Lagrangian plane). The matrix Prüfer phase allows to read
off the dimension of the intersection of the Lagrangian plane of the solution and
the right boundary condition. This intersection theory is essentially due to Bott
and was further developed and applied by Maslov [11]. The associated intersection
number should therefore be called the Bott-Maslov index. Its relevance for Sturm
oscillation theory was stressed by Arnold [2], see also [15] where all the above is
explained in detail.

Positivity properties of the Prüfer phases in its parameters E and x are crucial
elements of oscillation theory. Bott proved in [4], by an argument that is essentially
reproduced in Theorem 5.1 below, that the Prüfer phases (unit eigenvalues of the
matrix Prüfer phase) always rotate in the positive sense as a function of the energy
E. This type of positivity is very robust and holds also for more general Hamiltonian
systems (not stemming from a Sturm-Liouville equation), for block Jacobi operators
[15, 16] and even in a setting with infinite dimensional fibers [8]. On the other hand,
Lidski argued [10] that the Prüfer phases rotate in the positive sense as functions
of the position x as well, provided that a certain positivity property of the matrix
potential holds. This was later on refined by Atkinson [3] for a particular class of
Hamiltonian systems, and for more general ones by Coppel [5], see also the book
by Reid [14]. For general potentials entering the Sturm-Liouville operator, this
monotonicity of the Prüfer phases in x simply does not hold, even for scalar Sturm-
Liouville operators. This is clearly visible in the numerical example in Section 8
below. One contribution of this note (going slightly beyond [5, 14]) is to show
that for any matrix Sturm-Liouville operator there is nevertheless a positivity in
x, albeit in the following restricted sense: the Prüfer phases always pass through
−1 in the positive sense (Theorem 6.1). This fact is of crucial importance for the
eigenvalue counting and allows to reconcile space and energy oscillations of the
Prüfer phases. We also stress the geometric aspects of the problem and thus offer
a modern perspective on the above classical results.

Jacobi matrices are the discrete analogues of Sturm-Liouville operators. The
eigenvalue calculation can be done via Prüfer phases which have the same positivity
properties in the energy, also in the matrix-valued case [15, 16]. For positivity
in space and the Sturm oscillation theory, considerable care is needed though as
it depends on the choice of interpolation between the discrete points in space.
Building on a detailed spectral analysis of the transfer matrix in the generalized
Lorentz group, Section 9 shows how to construct a Sturm-Liouville operator with
piecewise continuous coefficients associated to the Jacobi matrix, and how the space
oscillations of its matrix Prüfer phase are linked to the spectral properties of the
Jacobi matrix.

This article continues in Section 2 by recalling the definition of a matrix Sturm-
Liouville equation and the selfadjoint operator given by separate boundary con-
ditions at the ends of the interval (periodic boundary conditions are discussed in
[4, 16] and are dealt with similarly). Section 4 introduces the matrix Prüfer phase
and states how it can be used for the eigenvalue calculation of the Sturm-Liouville
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operator. Section 5 proves the positivity of the matrix Prüfer phase in energy. In
the following Sections 6 and 7, the space oscillations and asymptotics of the Prüfer
phase are analyzed. Section 8 contains a numerical example in order to illustrate
the theoretical results. Section 9 then shows how to transpose the framework and
some of the results to matrix-valued Jacobi matrices. Finally Sections 10 and 11
provide two separate interpolations in the Prüfer matrices in the space variable that
allow to compare space and energy oscillations also for Jacobi matrices.

2. Matrix Sturm-Liouville operators

Let us consider the matrix Sturm-Liouville operator:

H = −∂x
(
p∂x + q

)
+ q∗∂x + v ,

where p, q and v = v∗ are continuous functions on [0, 1] into the L × L matrices
and p is continuously differentiable and positive (definite) with a uniform lower
bound p ≥ c1L for some constant c > 0. For many of the results below, less
regularity of p, q and v is sufficient. In particular, piecewise continuity of q and v
and piecewise continuous differentiability of p with finitely many pieces (as well as
singular Kronig-Penney-like potentials) can be dealt with by working with boundary
conditions at the discontinuities in a similar manner as described below. This is
relevant for the analysis of Jacobi matrices later on, but we choose to avoid the
associated technical issues in the first sections of the paper. Crucial is, however,
the uniform lower bound on p. Vanishing of p at the boundaries leads to a singular
Sturm-Liouville operator with numerous interesting questions (e.g. Weyl extension
theory) that are not dealt with here. For now, H will be considered as acting on
all functions in the Sobolev space H2((0, 1),CL), namely as the so-called maximal
operator. Let us consider the Schrödinger equation Hφ = Eφ at energy E ∈ R
which is a second order differential equation. It is known at least since Bott’s
seminal work [4] that the standard rewriting of this second order linear equation as
a first order equation leads to a special type of a Hamiltonian system. Indeed, let
us set

Φ(x) =

(
φ(x)(

(p∂x + q)φ
)
(x)

)
, V(x) =

(
(v − q∗p−1q)(x) (q∗p−1)(x)

(p−1q)(x) (−p−1)(x)

)
. (2.1)

Then Hφ = Eφ is equivalent to(
J ∂x + V(x)

)
Φ(x) = EPΦ(x) , Φ ∈ H1((0, 1),C2L) , (2.2)

where

J =

(
0 −1L
1L 0

)
, P =

(
1L 0
0 0

)
. (2.3)

Next let us recall that functions in φ ∈ H2((0, 1),CL) have limit values φ(0) and
(∂xφ)(0), and similarly at x = 1. Then one has for φ, ψ ∈ H2((0, 1),CL),

〈φ |H ψ〉 = 〈Hφ |ψ〉 = Φ(1)∗JΨ(1)− Φ(0)∗JΨ(0) , (2.4)

where the scalar product on the left-hand side is taken in L2((0, 1),CL) and Φ, Ψ
on the right-hand side are associated to φ, ψ as in (2.1).

Selfadjoint boundary conditions now have to assure that the right-hand side of
(2.4) vanishes. Here the focus will be on separate boundary conditions specified
by two J -Lagrangian planes at the boundary points 0 and 1. Recall that a J -
Lagrangian plane is an L-dimensional subspace of C2L on which J vanishes as a
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quadratic form. Such an L-dimensional subspace will here always be given as the
range of a matrix Ψ ∈ C2L×L of full rank L and satisfying

Ψ∗JΨ = 0 . (2.5)

Note that two such matrices Ψ and Φ specify the same J -Lagrangian plane if and
only if there is an invertible matrix c ∈ CL×L such that Ψ = Φc. In this case, we
say that Ψ and Φ are equivalent and denote this by Ψ ∼ Φ. Note that this indeed
defines an equivalence relation on the space of matrices in Ψ ∈ C2L×L of full rank
L satisfying (2.5). The set of equivalence classes is denoted by

LL = {[Ψ]∼ : Ψ ∈ C2L×L of full rank L and Ψ∗JΨ = 0}
and called the Lagrangian Grassmannian.

Now let [Ψ0]∼, [Ψ1]∼ ∈ LL and define the following domain for H:

DΨ0,Ψ1(H) =
{
φ ∈ H2((0, 1),CL) : Φ(j) ∈ Ran(Ψj) , j = 0, 1

}
. (2.6)

Note that this indeed only depends on the classes [Ψ0]∼ and [Ψ1]∼. The conditions
Φ(j) ∈ Ran(Ψj) assure that both terms on the r.h.s. of (2.4) vanish, and not
only their difference (periodic boundary conditions are of a different type, but can
be analyzed similarly [16]). Therefore H restricted to DΨ0,Ψ1

(H) is a selfadjoint
operator, which is denoted by HΨ0,Ψ1 . Dirichlet boundary conditions at the left
and right boundary correspond to the choices Ψ0 = Ψ1 = ΨD,

ΨD =

(
0
1L

)
.

It is, moreover, a standard result that the selfadjoint operator HΨ0,Ψ1
has a

compact resolvent so that it has discrete real spectrum. These eigenvalues can
be calculated by looking for solutions of the Schrödinger equation Hφ = Eφ in
the domain DΨ0,Ψ1

(H). Of course, any other finite interval instead of [0, 1] can
be considered in the same manner, and it is also possible to work with periodic
boundary conditions. For sake of concreteness, we restrict to the case described
above.

3. Hamiltonian systems

The fundamental solution T E(x) of (2.2) is

∂xT E(x) = J
(
V(x)− EP

)
T E(x) , T E(0) = 12L . (3.1)

This is a particular case of a Hamiltonian system of the form

∂xT (x) = J H(x)T (x) , T (0) = 12L , (3.2)

where H(x) is piecewise continuous and pointwise selfadjoint H(x)∗ = H(x). It
is called the classical Hamiltonian. To recover the special case (3.1), one chooses
H(x) to be

HE(x) = V(x)− EP . (3.3)

with P independent of x and given by (2.3). The focus will be on this case stemming
from a matrix Sturm-Liouville operator and in this case the fundamental solution
will be denoted by T E(x) instead of simply T (x). However, some results also hold
for the general Hamiltonian system (3.2) and other Hamiltonian systems depending
on an energy parameter as in (3.3) with general positive P(x). As the following
example shows, such systems can be of interest.
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Example 3.1. If V(x) = V(x)∗ is an arbitrary continuous matrix-valued function,
not necessarily of the form given in (2.1), the l.h.s. of (2.2) is given in terms of a
one-dimensional Dirac-type operator D = J ∂x + V(x). If one furthermore chooses
P = 12L, then (3.2) is simply the associated eigenvalue equation DΦ = EΦ if
the energy dependent classical Hamiltonian is (3.3). One also needs selfadjoint
boundary conditions. As

〈Φ |DΨ〉 − 〈DΦ |Ψ〉 = Φ(1)∗JΨ(1)− Φ(0)∗JΨ(0) , Φ,Ψ ∈ H1((0, 1),C2L) ,

and if one focuses again on separate boundary conditions, they are again given by
two J -Lagrangian planes as in (2.5). This allows to define a selfadjoint operator
DΨ0,Ψ1

with domain DΨ0,Ψ1
(D) as in (2.6).

It turns out that the positivity property

−
(

0

1

)∗
H(x)

(
0

1

)
> 0 , (3.4)

is crucial for the space oscillations analyzed in Section 6. For the matrix Sturm-
Liouville case with (3.3) and V(x) and P as given in (2.1) and (2.3) respectively, this
holds for all E ∈ R because the l.h.s. of (3.4) is equal to p(x)−1 which is positive. On
the other hand, the eigenvalue calculation by intersection theory (Theorem 4.1) and
the positivity in the energy variable (Theorem 5.1) hold for arbitrary Hamiltonian
systems (3.2) with HE(x) = V(x) − EP(x) and P(x) > 0, namely P(x) need not
be constant for these results and given by (2.3) nor is it necessary that (3.4) holds.

4. Matrix Prüfer phase and intersection theory

The solution to (3.2) lies in the group G(L) = {T ∈ C2L×2L : T ∗J T = J } which
via the Cayley transform is isomorphic to the generalized Lorentz group U(L,L) of
inertia (L,L). For a given initial condition Ψ0 ∈ C2L×L of rank L and satisfying
(2.5), one then obtains a path

x ∈ [0, 1] 7→ Φ(x) = T (x)Φ0

of matrices spanning Lagrangian planes, namely Φ(x) satisfies Φ(x)∗JΦ(x) = 0
and is of rank L so that [Φ(x)]∼ ∈ LL. If the Hamiltonian depends on E, then
so does T E(x) and thus also ΦE(x) carries an upper index E. This path leads to
an eigenfunction of the operator HΨ0,Ψ1

(or DΨ0,Ψ1
if the example of the Dirac

operator is considered) for the eigenvalue E if and only if the intersection of the
planes spanned by ΦE(1) and the right boundary condition Ψ1 is non-trivial. More
precisely, the dimension of this intersection is equal to the multiplicity of E as an
eigenvalue of HΨ0,Ψ1 (or DΨ0,Ψ1). If this intersection is non-trivial, one calls 1 a
conjugate point for the solution. More generally, given the above path x 7→ Φ(x)
and a fixed Lagrangian plane [Ψ1]∼, one calls a point x a conjugate point for the
Hamiltonian system (3.2) if the intersection of (the span of) Φ(x) and Ψ1 is non-
trivial. The dimension of the intersection is called the multiplicity of the conjugate
point.

The theory of intersections of Lagrangian planes is precisely described by the
Bott-Maslov index. Most conveniently, it can be studied using the stereographic
projection Π : LL → U(L) which is a real analytic bijection [15] that is (well-)
defined by

Π([Φ]∼) =

(
1L
ı1L

)∗
Φ
[( 1L
−ı1L

)∗
Φ
]−1

.
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Note, in particular, that the r.h.s. does not depend on the choice of the represen-
tative of the class [Φ]∼. To shorten notation, we will also write

Π(Φ) = Π([Φ]∼) .

It is well-known (e.g. [16]) that the dimension of the intersection of two J -
Lagrangian subspaces spanned by matrices Φ and Ψ respectively is equal to the
multiplicity of 1 as an eigenvalue of the unitary Π(Ψ)∗Π(Φ). Furthermore, the Bott-
Maslov index of a given (continuous) path x ∈ [0, 1] 7→ [Φ(x)]∼ of J -Lagrangian
subspaces w.r.t. the singular cycle given by a Lagrangian subspace [Ψ]∼ is given
by adding up all intersections with their multiplicity and orientation which is pre-
cisely given by the spectral flow of the path of unitaries x ∈ [0, 1] 7→ Π(Ψ)∗Π(Φ(x))
through 1. Intuitively, this counts the number of eigenvalues passing through 1
in the positive sense, minus those passing in a negative sense. The spectral flow
of a path is denoted by Sf, a notation that is used below. A particularly simple
functional analytic definition of spectral flow is given by Phillips [13]. All this is
also described in detail in [15, 16].

For all the above reasons, it is reasonable to define the matrix Prüfer phase by

U(x) = Π
(
T (x)Φ0

)
. (4.1)

If the classical Hamiltonian HE(x) depends on E, also UE(x) has an index to
indicate this dependence. Then the above proves (e.g. [15, 16], but this is essentially
known since the works of Bott and Lidski [4, 10]).

Theorem 4.1. The multiplicity of x as conjugate point w.r.t. Ψ1 is equal to the
multiplicity of 1 as eigenvalue of the unitary Π(Ψ1)∗U(x). For a matrix Sturm-
Liouville operator HΨ0,Ψ1

, the multiplicity of E as an eigenvalue of HΨ0,Ψ1
is equal

to the multiplicity of 1 as eigenvalue of the unitary Π(Ψ1)∗UE(1).

Let us note that for Dirichlet boundary condition at x = 1, one has Π(Ψ1) =
Π(ΨD) = −1 so that one is interested in the eigenvalue −1 of the Prüfer matrix
UE(1).

5. Positivity of Prüfer phases in the energy variable

The next result states a crucial positivity property intrinsic to Hamiltonian sys-
tems with classical Hamiltonian HE(x) = V(x) − EP(x) with P(x) ≥ 0. It dates
back to Bott [4] and the proof is reproduced from [16] for the convenience of the
reader and because it serves as a preparation for the arguments following further
down.

Theorem 5.1. Consider the matrix Prüfer phase UE(x) defined by (4.1) associated
with the fundamental solution of (3.2) for a classical Hamiltonian HE(x) = V(x)−
EP(x) with P(x) ≥ 0. For all x ∈ (0, 1], one has

1

ı
(UE(x))∗∂EU

E(x) ≥ 0 . (5.1)

As a function of E, the eigenvalues of UE(x) rotate around the unit circle in the
positive sense. If V(x) and P are given by (2.1) and (2.3) respectively, then the
inequality in (5.1) is strict.
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Proof. Let us introduce φE±(x) = (1 ± ı1)ΦE(x) where ΦE(x) = T E(x)Φ0. Then

ΦE(x) span J -Lagrangian subspaces and thus φE±(x) are invertible L×L matrices.
One has by definition

UE(x) = φE−(x)(φE+(x))−1 = ((φE−(x))−1)∗(φE+(x))∗ .

Now

1

ı
UE(x)∗∂EU

E(x)

= ((φE+(x))−1)∗
1

ı

[
(φE−(x))∗∂Eφ

E
−(x)− (φE+(x))∗∂Eφ

E
+(x)

]
(φE+(x))−1

= ((φE+(x))−1)∗2(ΦE(x))∗J ∂EΦE(x)(φE+(x))−1

= 2(Ψ0(φE+(x))−1)∗T E(x)∗J ∂ET E(x)Ψ0(φE+(x))−1 .

Thus it is sufficient to verify the positive definiteness T E(x)∗J ∂ET E(x) ≥ 0. For
that purpose, let ε > 0. By (3.1),

∂y
(
T E(y)∗J T E+ε(y)

)
= εT E(y)∗P(y)T E+ε(y) .

As T E(x)∗J T E(x) = J = T E(0)∗J T E+ε(0), one thus has

T E(x)∗J ∂ET E(x) = lim
ε→0

ε−1
(
T E(x)∗J T E+ε(x)− T E(x)∗J T E(x)

)
= lim
ε→0

ε−1
(
T E(x)∗J T E+ε(x)− T E(0)∗J T E+ε(0)

)
= lim
ε→0

∫ x

0

dyT E(y)∗P(y)T E+ε(y)

=

∫ x

0

dyT E(y)∗P(y)T E(y) .

(5.2)

Because P(y) is non-negative, this implies the claim (5.1). The second statement
follows from first order perturbation theory [9]. For the proof of the final statement,
it is sufficient to show that the integrand T E(y)∗P(y)T E(y) is strictly positive for
y sufficiently small. Indeed, it follows from (3.1) that T E(y) = 1 + yJ ∗(EP −
V(y)) +O(y2). Thus replacing (2.1) and (2.3) shows

T E(y)∗PT E(y) =

(
1 0
0 0

)
− y

(
q∗p−1 + p−1q −p−1

−p−1 0

)
+O(y2) .

For y sufficiently small, this is indeed a strictly positive matrix. �

As all intersections of the path E 7→ Π(Ψ1)∗UE(1) are in the positive sense by
Theorem 5.1, one deduces the following result connecting the eigenvalue counting
of HΨ0,Ψ1 to the Bott-Maslov index of that path.

Corollary 5.2. One has

#{eigenvalues of HΨ0,Ψ1
≤ E} = Sf

(
e ∈ (−∞, E] 7→ Π(Ψ1)∗Ue(1) through 1

)
,

where the spectral flow counts the number of unit eigenvalues passing through 1 in
the positive sense (necessarily by Theorem 5.1), counted with their multiplicity.
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6. Positivity of Prüfer phases in the space variable

The following result now concerns residual positivity properties of the matrix
Prüfer variables in the spatial coordinate under the condition that (3.4) holds. It
is essentially a corollary of Theorem V.6.2 of [3], but we provide a direct proof.

Theorem 6.1. Consider matrix Prüfer phase (4.1) associated with the fundamental
solution of the Hamiltonian system (3.2) with (3.4). For all x ∈ (0, 1), one has on
the subspace ker(U(x) + 1L)

1

ı
(U(x))∗∂xU(x)

∣∣
ker(U(x)+1L)

> 0 .

As a function of x, the eigenvalues of U(x) pass through −1 only in the positive
sense.

Proof. The same objects as in the proof of Theorem 5.1 will be used, but the index
E will be dropped and also the argument x on U(x), Φ(x) and φ±(x). Also let us
introduce the upper and lower entry of Φ as φ0 and φ1, namely φ± = φ0 ± ıφ1. As
in the proof of Theorem 5.1, one first checks that

1

ı
(U)∗∂x U = 2 ((φ+)−1)∗Ψ∗0 (T )∗ J ∂xT Ψ0(φ+)−1

Replacing the equation for the fundamental solution (3.1) thus gives

1

ı
(U)∗∂x U = −2((φ+)−1)∗(Ψ0)∗(T )∗HT Ψ0(φ+)−1

= −2((φ+)−1)∗(Φ)∗HΦ(φ+)−1
(6.1)

Now let v ∈ ker(U + 1L), namely −v = Uv = ((φ−)−1)∗(φ+)∗v or equivalently
−(φ−)∗v = (φ+)∗v or yet simply (φ0)∗v = 0. But, as (φ0)∗φ1 = (φ1)∗φ0 by the
Lagrangian property of Φ,

(φ0)∗v = (φ0)∗φ+(φ+)−1v = (φ0)∗(φ0 + ıφ1)(φ+)−1v = (φ−)∗φ0(φ+)−1v .

Thus by the invertibility of φ− one thus concludes

v ∈ ker(U + 1L) ⇐⇒ φ0(φ+)−1v = 0 ⇐⇒ Φ (φ+)−1v =

(
0
w

)
,

for some vector w. Moreover, one checks v 6= 0 if and only if w 6= 0. Finally
replacing in the above (6.1), one finds for all v ∈ ker(U + 1L)

v∗
1

ı
(U)∗∂xUv = −2

(
0
w

)∗
H
(

0
w

)
.

Thus (3.4) completes the proof of the claimed positivity. The last statement follows
again from first order perturbation theory [9]. �

7. Asymptotics and global properties of Prüfer phase

Next let us examine the low-energy asymptotics of the matrix Prüfer phases of a
matrix Sturm-Liouville operator. Hence the classical Hamiltonian HE(x) depends
on E with P as in (2.3). The outcome is the continuous analogue of results in [8]
(even though only less detailed information is provided here).
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Proposition 7.1. For a matrix Sturm-Liouville operator, one has for any boundary
condition Ψ0 and any x > 0,

lim
E→−∞

UE(x) = −1 .

Moreover, if Ψ0 ∩ΨD = {0} and 0 < x ≤ C(−E)−1 for some constant C > 0,

1

ı
UE(x)∗∂xU

E(x) < 0 .

Proof. For the analysis of the fundamental solution of (3.1) in the limit E → −∞,
let us consider the rescaled object

T̃ E(y) = T E(−E−1y) , y ∈ [0,−E] .

It satisfies

∂yT̃ E(y) = J ∗
(
P − E−1V(−E−1y)

)
T̃ E(y) , T̃ E(0) = 12L .

Thus

T̃ E(y) = 12L +

∫ y

0

dz
(
J ∗P − E−1J ∗V(−E−1z)

)
T̃ E(z) .

A Dyson series argument using ‖V‖∞ < C < ∞ and the explicit form J ∗P thus
shows

T̃ E(y) =

(
1 0
−y 1

)
+O(|E|−1y) .

Hence

T E(x) =

(
1 0
Ex 1

)
+O(x) , (7.1)

with an error term that is uniformly bounded in E. Hence using the matrix Möbius
transformation and UE(0) = Π(Ψ0),

UE(x) = Π
(
T E(x)Ψ0

)
=
(
1− ı

2
Ex

(
1 1
−1 −1

)
+O(x)

)
· UE(0)→ −1 ,

in the limit E → −∞ for x > 0. The proof of the second claim is based on the
identity (6.1). Using (7.1) let us thus evaluate

(Ψ0)∗(T E)∗
(
EP − V

)
T EΨ0 = E(Ψ0)∗PΨ0 +O(Ex) ,

which implies the claim because Ψ0∩ΨD = {0} is equivalent to (Ψ0)∗PΨ0 > 0. �

Theorem 7.2. For a matrix Sturm-Liouville operator with Dirichlet boundary con-
dition at x = 1,

#{eigenvalues of HΨ0,ΨD ≤ E} = Sf
(
x ∈ [0, 1] 7→ UE(x) through − 1

)
,

where the spectral flow counts the number of eigenvalues passing through −1 in the
positive sense (necessarily by Theorem 6.1), counted with their multiplicity.

Proof. By Proposition 7.1 there exists an E− such that for any e ≤ E− the spectral
flow of x ∈ [0, 1] 7→ Ue(x) by −1 vanishes, namely there are no conjugate points
in [0, 1] for all e ≤ E−. Furthermore, the spectral flow of e ∈ (−∞, E−] 7→ Ue(1)
through −1 vanishes. Hence it is sufficient to consider the compactly defined con-
tinuous map (x, e) ∈ [0, 1] × [E−, E] 7→ Ue(x). By the homotopy invariance, the
spectral flow from (0, E−) to (1, E) is independent of the choice of path. In par-
ticular, when one considers the spectral flow along the segments [0, 1]× {E−} and
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Figure 1. The phases of the eigenvalues of x 7→ UE(x) for the
particular Sturm-Liouville operator described in Section 8 for two
energies E = −3.5 and E = 2.0 respectively. The vertical lines
indicate a passage of one Prüfer phase by eıπ = −1 and thus fix a
conjugate point xc at which the Sturm-Liouville operator on [0, xc]
with Dirichlet boundary condition at xc has an eigenvalue. The
number of such points on [0, 1] is equal to the number of eigenvalues
of HΨ0,ΨD below E. Hence there is one eigenvalue below −3.5 and
five below 2.0.

1× [E−, E], it is equal to the number of eigenvalues of HΨ0,ΨD below E by Corol-
lary 5.2. On the other hand, let us consider the spectral flow along the segments
{0}×[E−, E] and [0, 1]×{E}. The spectral flow along {0}×[E−, E] clearly vanishes
as Ue(0) is constant, and thus the second contribution leads to the statement. �

8. Numerical illustration

To illustrate the above results by a concrete example, we used a short Mathemat-
ica program that numerically solves for the matrix Prüfer phase and its spectrum.
Even though the particular form of matrix Sturm-Liouville operator may not be of
great importance, let us spell it out explicitly anyhow. First of all, the fiber size is
L = 2 and the matrix valued coefficients were chosen (fairly randomly) to be

p(x) =

(
2 + cos(12x) sin(11.5x)
sin(11.5x) 3− sin(16x)

)
, q(x) =

(
3 cos(10x)
0 3 sin(20x)

)
,

and

v(x) =

(
cos(5x) 7 sin(61.5x)

7 sin(61.5x) −2 + sin(27.5x)

)
.

Finally, the left boundary condition is fixed to be

Ψ0 =

(
M
12

)
, M =

(
2 1
1 −3

)
.

For a given energy E ∈ R, the fundamental equation (3.1) can be solved numerically
and then allows to infer the matrix Prüfer phase UE(x) via (4.1). Its eigenvalues,
namely the Prüfer phases can then readily be calculated. Any of the plots shown in
Figures 1-3 did not take longer than a few minutes on a laptop. The figure captions
further discuss the outcome of the numerics in view of the results above.
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Figure 2. These plots are the same as in Figure 1, but for two
further energies. Let us stress that the Prüfer phases at x = 0 are
the same for all plots, and they are given by the (phases of the)
eigenvalues of Π(Ψ0). The first plot of this figure is for energy −5
which (according to the plot) lies below the spectrum of HΨ0,ΨD .
Hence there is no passage of a Prüfer phase by −1. This plot also
illustrates Proposition 7.1, namely the energy is already sufficiently
small so that the eigenvalue slopes at x = 0 are negative. The plot
at E = 0.602 is included because there is a passage by −1 of one
of the two Prüfer phases precisely at x = 1. Therefore E = 0.602
is an eigenvalue of HΨ0,ΨD .
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Figure 3. The eigenvalues of E 7→ UE(1) for the particular
Sturm-Liouville operator described in Section 8. For a discrete
set of energies, the solution x ∈ [0, 1] 7→ UE(x) is calculated nu-
merically to extend the matrix Prüfer phase at x = 1. One clearly
observes the monotonicity of the Prüfer phases in the energy vari-
able. The eigenvalues of HΨ0,ΨD are given by those energies at
which one Prüfer phase is equal to −1. The rough numerical anal-
ysis in the first figure may have missed the lowest eigenvalue at
about E = −4.766 , but clearly the first plot of Figure 1 indicates
that there must be one eigenvalue with energy less than −3.5,
which is then readily found by the more careful numerical study
in the second plot.
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9. Energy oscillations for matrix Jacobi operators

A matrix Jacobi operator of length N ≥ 3 is a matrix of the form

HN =



V1 T2

T ∗2 V2 T3

T ∗3 V3
. . .

. . .
. . .

. . .

. . . VN−1 TN
T ∗N VN


, (9.1)

where (Vn)n=1,...,N are selfadjoint complex L × L matrices and (Tn)n=2,...,N are
invertible complex L×L matrices. The aim of the remaining part of the paper is to
carry out a spectral analysis of HN by using suitably defined matrix Prüfer phases
and to discuss Sturm oscillation theory of these operators. This section reviews
energy oscillations based essentially on [15], then the remaining two sections provide
two different approaches to study space oscillations of the matrix Prüfer phases.

To slightly simplify the set-up, let us start out with a gauge transformation
(namely a strictly local unitary) denoted by G = diag(G1, . . . , GN ) with L × L
unitary matrices Gn, n = 1, . . . , N . Then GHNG

∗ is the matrix

G1V1G
∗
1 G1T2G

∗
2

(G1T2G
∗
2)∗ G2V2G

∗
2 G2T3G

∗
3

(G2T3G
∗
3)∗ G3V3G

∗
3

. . .

. . .
. . .

. . .

. . . GN−1VN−1G
∗
N−1 GN−1TNG

∗
N

(GN−1TNG
∗
N )∗ GNVNG

∗
N


.

Now one can iteratively choose the Gn. Start out with G1 = 1. Then choose G2 to
be the (unitary) phase in the polar decomposition of T2 = G2|T2|, next let G3 be
the phase of G2T3 = G3|G2T3|, and so on. One concludes that GHNG

∗ is again of
the form of HN given in (9.1), but with positive off-diagonal terms. From now on,
we thus suppose that Tn > 0 for all n = 2, . . . , N .

Next let us introduce the 2L× 2L transfer matrices T En by

T En =

(
(E1− Vn)T−1

n −Tn
T−1
n 0

)
, n = 1, . . . , N , (9.2)

with T1 = 1. Then define 2L× L matrices by

ΦEn = T En ΦEn−1 , n = 1, . . . , N , (9.3)

and the initial condition

ΦE0 =

(
1
0

)
, (9.4)

given by the left Dirichlet boundary condition. Of crucial importance is the con-
servation of the sesquilinear form

J =

(
0 −1
1 0

)
,
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namely T En lies in the group

G(L) =
{
T ∈ C2L×2L : T ∗J T = J

}
.

Moreover, ΦEn is J -Lagrangian, namely its span is of dimension L and (ΦEn )∗JΦEn =
0. For each such J -Lagrangian plane Φ, one can define its stereographic projection
Π(Φ), which is a unitary L × L matrix [15]. Finally let us introduce the matrix
Prüfer phases by

UEn = Π(ΦEn ) .

Now let us introduce φEn ∈ CL×L for n = 0, 1, . . . , N+1 as the matrix coefficients
of

ΦEn =

(
Tn+1φ

E
n+1

φEn

)
.

By definition, φE0 = 0 and φE1 = 1. Furthermore, φEN+1 is associated with the point

N + 1 lying outside of the support {1, . . . , N}. The matrix φEN+1 is, however, of

great importance for the eigenvalue problem of HN . More precisely, if φEN+1 = 0,

the Schrödinger equation HφE = EφE holds for φE = (φEn )n=1,...,N . This is not
typical, but if the intersection of ΦEN with the right boundary condition is non-
trivial, namely there is a non-vanishing v ∈ CL such that

ΦENv ∈
(

0
1

)
CL ,

then one can set
ψEn = φEn v ,

which then defines ψE = (ψEn )n=1,...,N ∈ CLN satisfying the Schrödinger equation

HNψ
E = EψE . (9.5)

The dimension of the intersection of ΦEN with the right boundary condition can
conveniently be calculated from intersection theory using the matrix Prüfer phase
UEN , namely the following statement analogous to Theorems 4.1 and 5.1 holds [15].

Theorem 9.1. The multiplicity of E as eigenvalues HN is equal to the multiplicity
of −1 as eigenvalue of UEN . Moreover,

1

ı
(UEN )∗∂EU

E
N > 0 .

As a function of energy E, the eigenvalues of UEN rotate around the unit circle in
the positive sense and with non-vanishing speed. Furthermore,

#{eigenvalues of HN ≤ E} = Sf
(
e ∈ (−∞, E] 7→ UeN through − 1

)
.

10. Interpolating Prüfer phases via Sturm oscillations

To state an analogue of Theorem 6.1 for matrix Jacobi operators is more delicate.
Even for a one-dimensional fiber L = 1 where the Sturm oscillation counts the
number of sign changes of the wave function (solution of the eigenvalue equation)
along the discrete set {1, . . . , N}, this requires some care as it is possible that
the wave function has zeros. The surprisingly intricate analysis is carried out in
[17]. To deal with the matrix-valued case with L > 1, a careful definition of a
suitable path of unitaries interpolating between UEn−1 and UEn is needed. One can
then define the Sturm oscillation number of the Jacobi matrix as the intersection
number of the interpolating path. In this section, the path is constructed using
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discrete Sturm oscillations which counts the number of sign changes of the principal
solution n ∈ {1, . . . , N} 7→ ΦEn . This theory is developed in a much more general
set-up in the book [6] and here we merely extract the information essential for the
present purposes.

Let us begin by introducing the matrix

SEn = (φEn )∗Tn+1φ
E
n+1 . (10.1)

It is selfadjoint because

(ΦEn )∗JΦEn = 0 ⇐⇒
(

(φEn )∗Tn+1φ
E
n+1

)∗
= (φEn )∗Tn+1φ

E
n+1 .

Let us note that

SE1 = E − V1 , SE2 = (E − V1)T−1
2 (E − V2)T−1

2 (E − V1)− (E − V1) ,

and that there is a recurrence relation

SEn = (φEn )∗(E − Vn)φEn − SEn−1 . (10.2)

For any S = S∗ ∈ CL×L let us recall the definition of the Morse index

i(S) = Tr(χ(S < 0)) .

In view of the definition (10.1) of SEn , the index i(SEn ) can be interpreted as the
number of sign changes of the principal solution from site n to n + 1. It is the
object of Sturm oscillation theory to connect the total number of sign changes
to the eigenvalue counting. This is well-known to be a special case of oscillation
theory for discrete symplectic systems, see [6] for a detailed review of the history.
The following result and its proof condensate the arguments in [6] and is thus, due
to the particular set-up and the supplementary assumption on E not being in a
finite singular set, considerably shorter. For sake of notational convenience, let us
also introduce the complement of the Morse index

ic(S) = Tr(χ(S ≥ 0)) = L− i(S) .

Theorem 10.1. Suppose that E is not in the finite singular set

S =
⋃

n=1,...,N−1

σ(Hn) .

Then one has

#{eigenvalues of HN ≤ E} =

N∑
n=1

ic(SEn ) .

Proof. Let us set NE =
∑N
n=1 ic(SEn ). The proof consists of showing that there is

a subspace EE≤ ⊂ CNL of dimension NE on which HN −E is non-positive definite,

and a subspace EE> ⊂ CNL of dimension NL − NE on which HN − E is positive
definite. These subspaces will be constructed iteratively in n, that is for ∗ either ≤
or >,

EE∗ = ⊕Nn=1EE,n∗ ,

with

EE,n∗ ⊂ En ,
where

En =
{
ψ = (ψ1, . . . , ψN ) ∈ CNL : ψn 6= 0 and ψn+1 = . . . = ψN = 0

}
∪ {0} .
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By construction, these subspaces satisfy EE,n∗ ∩ EE,m∗ = {0} for n 6= m. Let us first

construct EE,n> . For this purpose, let us choose v ∈ CL such that

v∗SEn v < 0 .

Writing out the definition of SEn , one then has φEn v 6= 0. Setting

ψE,nv =
(
φE1 v, . . . , φ

E
n v, 0, . . . , 0

)
, (10.3)

where φE is the principal solution constructed above, one thus has ψE,nv ∈ En.
Now (HN − E)ψE,nv is supported only on the sites n and n + 1. This implies,

first of all, that taking the scalar product with ψE,nv , that is, multiplying on the
left by (ψE,nv )∗, only the contribution at the site n remains. Thus

(ψE,nv )∗(HN − E)ψE,nv = −v∗(φEn )∗Tn+1φ
E
n+1v = −v∗SEn v > 0 .

This can be done for all vectors v satisfying v∗SEn v < 0. Therefore

dim(EE,n> ) ≥ i(SEn ) .

Second, for all k < n, one has by construction and the above support property that

ψ∗(HN − E)ψE,nv = 0 , ψ ∈ Ek .

This implies that

ψ∗(HN − E)ψE,nv = 0 , ψ ∈ ⊕n−1
k=1E

E,k
> .

Now let us argue inductively in n and suppose that HN −E is positive definite on

⊕n−1
k=1E

E,k
> . For ψ ∈ ⊕n−1

k=1E
E,k
> and all µ, µ′ ∈ C with either µ 6= 0 or µ′ 6= 0,

(µψ + µ′ψE,nv )∗(HN − E)(µψ + µ′ψE,nv )

= |µ|2 ψ∗(HN − E)ψ + |µ′|2 (ψE,nv )∗(HN − E)ψE,nv > 0 ,

namely HN − E is positive definite on ⊕nk=1E
E,k
> . Proceeding iteratively in n, one

deduces that HN −E is positive definite on all EE> = ⊕Nn=1E
E,n
> . Because the EE,n>

have trivial intersection, it follows that

dim(EE> ) ≥
N∑
n=1

dim(EE,n> ) ≥
N∑
n=1

i(SEn ) = NL−NE . (10.4)

Next let us construct the EE,n≤ . Proceeding as above, let us work with vectors

v ∈ CL satisfying

v∗SEn v ≥ 0 ,

and construct ψE,nv as in (10.3). As before, if v∗SEn v > 0, then φEn v 6= 0. If
v∗SEn v = 0, then one cannot conclude directly that φEn v 6= 0. If, however, one
would have φEn v = 0, then ψE,nv restricted to the first n−1 sites is an eigenvector of
Hn−1 with eigenvalue E, which is not possible for E 6∈ S. Thus again φEn v 6= 0 and

one can conclude dim(EE,n≤ ) ≥ ic(SEn ) and finish the argument as above, showing
that

dim(EE≤ ) ≥
N∑
n=1

ic(SEn ) = NE . (10.5)

Given the bounds (10.4) and (10.5) combined with the fact that the subspaces EE≤
and EE> have trivial intersection, one concludes that EE≤ + EE> has a dimension of at
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least NL. Therefore the two inequalities (10.4) and (10.5) must be equalities and
the claim follows. �

Remark 10.2. The main reason why the above proof is relatively short is the
following: there are many subspaces on which HN −E is positive (or non-positive).
This can be understood even in a two-dimensional situation with N = 2 and L = 1
for which HN − E is a 2 × 2 matrix. If one of its eigenvalues is positive and one
negative, then the set of positive vectors forms a bicone and all one-dimensional
subspaces in this bicone are positive. This non-uniqueness leads to a lot freedom in
the construction of these subspaces. The important point is that, nevertheless, the
dimension of all these subspaces allows to conclude how many positive eigenvalues
HN−E must have. The same holds for the non-positive subspaces and as, moreover,
the dimensions add up, one has fully determined the number of positive and non-
positive eigenvalues of HN − E.

Remark 10.3. If E ∈ S and say E ∈ σ(Hn−1) there is v ∈ CL such that φEv 6= 0
restricted to {1, . . . , n − 1} is an eigenvector of Hn−1. Then φEn v = 0. Moreover,
φEn−1v 6= 0 because otherwise the three-term recurrence relation would imply φEv =

0. It follows from the definition that SEn v = 0 and SEn−1v = 0 (note that this also
fits with (10.2)). Hence, one faces the difficulty that at step n, one cannot add a

new linearly independent vector to EE,n≤ for this vector v ∈ ker(SEn ). This issue is

not addressed here and the reader is referred to [6].

Based on Theorem 10.1, it is now possible to construct the desired paths x ∈
[n− 1, n] 7→WE(x) of unitaries interpolating between UEn−1 and UEn by setting

WE(x) =


e−ı3(x−n+ 2

3 )QEn−1 , x ∈ [n− 1, n− 2
3 ] ,

eı3(x−n+ 2
3 ) 2π χ(SEn≥0) , x ∈ [n− 2

3 , n−
1
3 ] ,

eı3(x−n+ 1
3 )QEn , x ∈ [n− 1

3 , n] ,

(10.6)

where QEn are defined using the principal branch Log of the logarithm as

QEn = −ıLog(UEn ) .

During the first and third parts of the path (10.6), UEn−1 and UEn are deformed into
the identity without any eigenvalue passing through −1, while in the middle part
exactly ic(SEn ) loops are inserted leading to a spectral flow through −1 equal to
ic(SEn ). Therefore Theorem 10.1 implies

Corollary 10.4. Suppose that E 6∈ S and that WE(x) is defined by (10.6). Then

#{eigenvalues of HN ≤ E} = Sf
(
x ∈ [0, N ] 7→WE(x) through − 1

)
. (10.7)

One shortcoming of this result is that it excludes the finite set S of singular
energies, another one that it is based on the somewhat artificial construction (10.6)
so that Corollary 10.4 is merely a restating of Theorem 10.1. The following section
provides another construction of the interpolations.

11. Interpolating Prüfer phases via Hamiltonian systems

This section provides an alternative approach to construct the interpolating
paths x 7→ UE(x) satisfying UE(x) = UEn for all n = 0, . . . , N . Moreover, the
construction will be done continuously in E, however, only for energies below some
critical energy Ec, or alternatively for all energies above some other critical energy



EJDE-2020/76 MATRIX STURM-LIOUVILLE AND JACOBI OPERATORS 17

(see the Remark below). These critical energies will be defined below and the re-
strictions in energy are imposed due to technical difficulties. The paths x 7→ UE(x)
themselves will be given in terms of the fundamental solution of a suitably con-
structed Sturm-Liouville operator (depending continuously on E) and the eigenval-
ues of UE(x) pass through −1 only in the positive direction. Hence, this section
establishes a connection between matrix Jacobi operators and Sturm-Liouville oper-
ators. This is best done with a Sturm-Liouville operator having Dirichlet boundary
conditions ΨD both at the left and right boundary. To match this for the matrix
Jacobi operator, let us add an artificial site 0 with T0 = 1 and V0 = 0 so that the
left boundary condition is

ΦE−1 =

(
0
1

)
= ΨD . (11.1)

Once the continuous path (x,E) ∈ [−1, N ]× [−∞, Ec) 7→ UE(x) is constructed,
one can again deduce a Sturm-Liouville-like oscillation in the spatial variable as in
Corollary 10.4. Indeed, one can use a homotopy argument on the square [−1, N ]×
[−∞, E] because the contributions of the paths x ∈ [−1, N ] 7→ U−∞(x) as well as
e ∈ [−∞, E] 7→ Ue(−1) vanish, so that the intersection number of x ∈ [−1, N ] 7→
UE(x) is equal to the intersection number of e ∈ [−∞, E] 7→ Ue(N) which is known
to be equal to the number of eigenvalues below E, see Theorem 9.1. Therefore

#{eigenvalues of HN ≤ E} = Sf
(
x ∈ [−1, N ] 7→ UE(x) through − 1

)
. (11.2)

Let us note that the piece x ∈ [−1, 0] 7→ UE(x) connects UE−1 = −1 to UE0 = 1 and
has no intersection with −1 so that one can also drop this piece in (11.2) which is
hence the same statement as in Corollary 10.4, albeit only for energies below Ec
and for different interpolating matrix Prüfer phases. On the other hand, it is not
necessary to exclude the set of critical energies. We expect that both approaches
allow to prove (10.7) for all energies, but this remains an open problem at this
point.

The procedure for the construction of the path x ∈ [−1, N ] 7→ UE(x) is the
following: For each fixed E < Ec and all n = 0, . . . , N , the results below allow

to construct a selfadjoint HEn such that T En = eJH
E
n . Moreover, it can be assured

(due to the later choice of Ec) that each HEn satisfies the positivity property (3.4).
Then we set

HE(x) =

N∑
n=0

HEn χ(x ∈ (n− 1, n]) , x ∈ [−1, N ] . (11.3)

The condition allows to extract a positive coefficient function p, and consecutively
q and v from HE . These functions are piecewise continuous on [−1, N ]. Hence,
one can consider the associated fundamental solution T E(x) obtained by solving
(3.2). On the interval [n−1, n], the solution with initial condition 1 = 12L at n−1

is given by x ∈ [n − 1, n] 7→ e(x−n+1)JHEn so that at x = n one has eJH
E
n = T En .

Hence starting with the left boundary condition ΦE−1 = ΨD, let us set

UE(x) = Π
(
T E(x)ΨD

)
, x ∈ [−1, N ] .

By the argument above, with this choice of UE(x), the Sturm oscillation (11.2)
holds for E < Ec.

It now remains to construct the selfadjoint HEn such that T En = eJH
E
n and

the positivity (3.4) holds. Roughly stated, this means taking the logarithm of
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T En . As the transfer matrices are not normal and the logarithm has to satisfy
the positivity condition, the functional calculus has to be carried out by hand, is
somewhat lengthy and involves several steps.

Proposition 11.1. Let V, T ∈ CL×L with V = V ∗ and T > 0. Set

T E =

(
(E 1− V )T−1 −T

T−1 0

)
∈ G(L) . (11.4)

The spectrum of T E lies in R∪S1 and is invariant under the map λ 7→ (λ)−1. Both
eigenvalues λ = −1 and λ = 1 always have even algebraic multiplicity with Jordan
blocks of size 2 with generalized eigenvectors. No other eigenvalue has a non-trivial
Jordan block. As a function of E, all eigenvalue pairs (λE , (λE)−1) move from the
negative real axis via a Krein collision at −1 onto the unit circle and then they leave
the unit circle again via a Krein collision at 1.

Proof. Let us begin by factorizing

T E =

(
T−1/2 0

0 T 1/2

)−1(
T−1/2(E 1− V )T−1/2 −1

1 0

)(
T−1/2 0

0 T 1/2

)
.

The next step is to diagonalize the selfadjoint matrix T−1/2(E 1− V )T−1/2 with a
unitary matrix M , notably

M∗T−1/2(E1− V )T−1/2M = DE ,

where DE is a real diagonal matrix. Of course, M also depends on E, but this
dependence is suppressed in the notations. As T and thus also T−1 are positive,
this matrix DE is increasing in E. Now one has(

T−1/2 0
0 T 1/2

)(
M 0
0 M

)
T E

(
M 0
0 M

)−1(
T−1/2 0

0 T 1/2

)−1

=

(
DE −1
1 0

)
.

(11.5)

Hence, T E is similar to a block diagonal real symplectic matrix with only 2 × 2
blocks. Now all statements follow directly from the analysis of such 2 × 2 blocks.
While this is well-known, the main steps of this analysis are also contained in the
proof of Proposition 11.2 below. �

Now it is possible to define the critical energy Ec to be the smallest energy at
which one of the transfer matrices T En , n = 1, . . . , N , undergoes a Krein collision
at 1. Alternatively,

Ec = sup
{
E ∈ R : σ(T En ) ⊂ (−∞, 0) ∪ S1 for n = 1, . . . , N

}
.

The next result is now about functional calculus of T E . This is based on the
diagonalization of T E in the group G(L) = {T ∈ C2L×2L : T ∗J T = J }. On first
sight, this merely looks like a corollary of the surjectivity of the exponential map
for the Lie group G(L). However, the negativity claim on the lower right entry is a
supplementary property that requires the use of the particular form of T E .

Proposition 11.2. Let T E be defined as in (11.4) with V = V ∗ and T > 0.
Suppose that E is such that the spectrum of T E lies in (−∞, 0) ∪ (S1\{1}). Then
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there exists HE = (HE)∗ ∈ C2L×2L such that

T E = eJH
E

,

(
0
1

)∗
HE

(
0
1

)
< 0 .

The map E 7→ HE is continuous.

Proof. Let us start from the block diagonalization (11.5) and also include a suitable
permutation matrix in M so that the eigenvalues of DE can be assumed to be in-
creasing. Next, note that the block-diagonal matrix D = diag(T−1/2M,T 1/2M)−1

is an element of the group G(L) and that the basis change with D does not alter
the two required properties because

D−1T E D = eD
−1JHED = eJD

∗HED ,

and (
0
1

)∗
D∗HED

(
0
1

)
=
(
(T 1/2M)−1

)∗(0
1

)∗
HE

(
0
1

)
(T 1/2M)−1 .

Consequently, one can assume that T 1/2M = 1 or equivalently that T E is given by
the r.h.s. of (11.5). Next, let us introduce some notation by setting

DE = diag(D−h , D
−
p , De, D

+
p , D

+
h ) ,

where the diagonal matrices D±h , D±p and De have sizes L±h , L±p and Le respectively.
Clearly

L−h + L−p + Le + L+
p + L+

h = L .

The indices h, p and e designate the hyperbolic, parabolic and elliptic blocks and
the sizes are chosen such that

±D±h > 21L±
h
, ±D±p = 21L±

p
, −21Le < De < 21Le .

Let us note that all these sizes and diagonal matrices depend on E in a controllable
way. The matrices D±h lead to hyperbolic 2× 2 blocks of T E with real eigenvalues
off the unit circle, while D±p gives 2 × 2 Jordan blocks of T E with eigenvalues
±1 and finally De leads to elliptic blocks which are similar to rotation matrices.
The corresponding diagonalization procedures are now carried out in detail and
in such a manner that all matrices are in the group G(L). By the assumption of
Proposition 11.2, one has L+

p = L+
h = 0. For further reference and because it is

needed to explain the approach for large energies, we nevertheless first continue
without this restriction.

The next step is to perform the diagonalization procedures of the 2 × 2 blocks
in such a manner that all matrices are in the group G(L). Let us begin with the
hyperbolic blocks. The corresponding eigenvalues of T E are the diagonal entries of

±eκ±
,±e−κ±

, where κ± > 0 of size L±h is defined by

e±κ
+

=
D+
h

2
±
( (D+

h )2

4
− 1
)1/2

, −e±κ
−

=
D−h
2
∓
( (D−h )2

4
− 1
)1/2

.

The corresponding eigenvectors are given by(
D±h −1
1 0

)(
±eκ±

e−κ
±

1 ±1

)
=

(
±eκ±

e−κ
±

1 ±1

)(
±eκ±

0

0 ±e−κ±

)
. (11.6)

One can also choose the matrix of eigenvectors to be in the group G(L±h ) associated

with J±h (namely the subset of C2L±
h×2L±

h which conserve J±h as a quadratic form).
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This is achieved by normalizing each matrix entry with the inverse square root of

eκ
± − e−κ±

> 0, which leads to set

(M±h )−1 =

 ±eκ
±

(eκ±−e−κ± )1/2
e−κ

±

(eκ±−e−κ± )1/2
1

(eκ±−e−κ± )1/2
±1

(eκ±−e−κ± )1/2

 ∈ G(L±h ) .

Let us stress that these matrices diverge as κ± → 0, namely one approaches a
Jordan block, but this divergence will disappear once the Hamiltonian is computed.

As to the elliptic block, the eigenvalues on the upper half of the unit circle are
given by

−eıθ =
De

2
+ ı
(
1− D2

e

4

)1/2
, −e−ıθ =

De

2
− ı
(
1− D2

e

4

)1/2
.

Here, θ is chosen to have diagonal entries in (−π, 0). The 2×2 block corresponding
to De can be diagonalized exactly as in (11.6), but neither the resulting basis change
nor the diagonal matrix with complex entries are in the group G(Le) of matrices
in C2Le×2Le conserving Je. To achieve the latter, one rather transforms into a
rotation matrix,(

De −1
1 0

)(
cos θ(− sin θ)−1/2 (− sin θ)1/2

−(− sin θ)−1/2 0

)
=

(
cos θ − sin θ
−1 0

)
1√
− sin θ

(
− cos θ sin θ
− sin θ − cos θ

)
.

Hence, we set

(Me)
−1 =

(
cos θ(− sin θ)−1/2 (− sin θ)1/2

−(− sin θ)−1/2 0

)
∈ G(Le) .

Finally, the parabolic cases are based on the identities(
−21 −1
1 0

)
= −

((
1 0
0 1

)
+

(
1 1
−1 −1

))
= exp

((
(1 + ıπ)1 1
−1 (−1 + ıπ)1

))
,

(11.7)

and (
21 −1
1 0

)
=

(
1 0
0 1

)
+

(
1 −1
1 −1

)
= exp

((
1 −1
1 −1

))
. (11.8)

Hence let us also set (M±p )−1 = 1. To regroup all the above, it is convenient to use
the notation of diagonal checkerboard sums:

(
A1 B1

C1 D1

)
⊕̂
(
A2 B2

C2 D2

)
=


A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2

 .

Then, the basis changes can be collected as

M−1 = (M−h )−1⊕̂(M−p )−1⊕̂(Me)
−1⊕̂(M+

p )−1⊕̂(M+
h )−1 ,

and one also has

J = J−h ⊕̂J
−
p ⊕̂Je⊕̂J +

p ⊕̂J +
h .
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Note that G(L−h )⊕̂G(L−p )⊕̂G(Le)⊕̂G(L+
p )⊕̂G(L+

h ) is a subgroup of G(L), which is

strict except in the trivial case. Then M−1 ∈ G(L) and thus M = J ∗(M−1)∗J is
given by

M =M−h ⊕̂M
−
p ⊕̂Me⊕̂M+

p ⊕̂M+
h ,

with summands

M±h =

 ±1

(eκ±−e−κ± )1/2
−e−κ

±

(eκ±−e−κ± )1/2

−1

(eκ±−e−κ± )1/2
±eκ

±

(eκ±−e−κ± )1/2

 ,

Me =

(
0 −(− sin θ)1/2

(− sin θ)−1/2 cos θ(− sin θ)−1/2

)
,

as well as M±p = 1. Furthermore N =MT EM−1 is given by

(
−eκ−

0

0 −e−κ−

)
⊕̂
(
−21 −1
1 0

)
⊕̂
(
− cos θ sin θ
− sin θ − cos θ

)

⊕̂
(

21 −1
1 0

)
⊕̂

(
eκ

+

0

0 e−κ
+

)
.

One can now (using equations (11.7) and (11.8) for the parabolic cases) readily
take the (principal branch of the) logarithm Log(N ) such that N = exp(Log(N )),
namely

Log(N ) =

(
κ− + ıπ1 0

0 −κ− + ıπ1

)
⊕̂
(

(1 + ıπ)1 1
−1 (−1 + ıπ)1

)
⊕̂
(
ıπ1 −θ
θ ıπ1

)
⊕̂
(
1 −1
1 −1

)
⊕̂
(
κ+ 0
0 −κ+

)
.

Now JJ ∗ = 1 implies

T E =M−1 exp(Log(N ))M = exp
(
JM∗J ∗ Log(N )M

)
.

Hence, the Hamiltonian is HE =M∗J ∗ Log(N )M and given by

HE =M∗
(

0 −κ− + ıπ1
−κ− − ıπ1 0

)
⊕̂
(

−1 (−1 + ıπ)1
(−1− ıπ)1 −1

)
⊕̂
(

θ ıπ1
−ıπ1 θ

)
⊕̂
(

1 −1
−1 1

)
⊕̂
(

0 −κ+

−κ+ 0

)
M .

As M is also checkerboard diagonal, one can now check that

HE = HE,−h ⊕̂HE,−p ⊕̂HEe ⊕̂HE,+p ⊕̂HE,+h
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with

HE,−h =

(
−κ−

sinhκ−
−κ− coshκ−

sinhκ− + ıπ1

−κ− coshκ−

sinhκ− − ıπ1 −κ−

sinhκ−

)
,

HE,−p =

(
−1 (−1 + ıπ)1

(−1− ıπ)1 −1

)
,

HEe =

(
− θ

sin θ
−θ cos θ

sin θ + ıπ1
−θ cos θ

sin θ − ıπ1 − θ
sin θ

)
,

HE,+p =

(
1 −1
−1 1

)
,

HE,+h =

(
κ+

sinhκ+
−κ+ coshκ+

sinhκ+

−κ+ coshκ+

sinhκ+
κ+

sinhκ+

)
.

(11.9)

Now from the assumptions on the spectrum of T E in Proposition 11.2, there are only
the first three summands for which one now simply reads off the desired negativity
property. Regarding continuity, κ± and θ depend continuously on the diagonal
entries of DE , which in turn depend continuously on E by (11.5), so continuity
is preserved within each block. Finally, one observes that as an eigenvalue moves
toward the Krein collision at −1 from the real line (resp. the circle), the limit of
the corresponding blockdiagonal entries of the negative hyperbolic (resp. elliptic)
Hamiltonian block converge precisely toward the corresponding entries ofHE,−p . �

Remark 11.3. Considering the behavior as the eigenvalues of T E move toward
the Krein collision at 1, the entries of θ tend toward −π and thus the entries
of HEe in (11.9) diverge. Due to the properties of the logarithm, some form of
either divergence or discontinuity of HE is unavoidable as soon as the spectrum
of T E is allowed to include the entire circle. This is why E being less than the
critical energy Ec has to be imposed for the homotopy argument performed above.
However, one can choose the divergence to be at the Krein collision at −1 while
preserving continuity at the Krein collision at 1 as follows: With De as above,
choose θ to have diagonal entries in (0, π) such that

eıθ =
De

2
+ ı
(
1− (De)

2

4

)1/2
, e−ıθ =

De

2
= ı
(
1− (De)

2

4

)1/2
.

Then one obtains(
De −1
1 0

)(
(sin θ)1/2 cos θ(sin θ)−1/2

0 (sin θ)−1/2

)
=

(
(sin θ)1/2 cos θ(sin θ)−1/2

0 (sin θ)−1/2

)(
cos θ − sin θ
sin θ cos θ

)
and

(Me)
−1 =

(
(sin θ)1/2 cos θ(sin θ)−1/2

0 (sin θ)−1/2

)
∈ G(Le) .

As above, one can thus calculate the Hamiltonian for the elliptic block as

HEe = (Me)
∗J ∗

(
0 −θ
θ 0

)
Me =

(
θ

sin θ − θ cos θ
sin θ

− θ cos θ
sin θ

θ
sin θ

)
.
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Note that now the lower right entry of HEe is positive, just as for HE,+p and HE,+h

as calculated in (11.9). Furthermore, with this choice of the Hamiltonian of the
elliptic block, continuity in E is preserved in the positive Krein collision, while the
divergence occurs at the Krein collision at −1. Having the same signs, one can now
construct UE(x) and for energies larger than

E′c = inf
{
E ∈ R : σ(T En ) ⊂ (0,∞) ∪ S1 for n = 1, . . . , N

}
,

one can adapt (with some effort) the homotopy argument so that (11.2) holds.
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