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EXISTENCE OF SOLUTION FOR A SEGMENTATION

APPROACH TO THE IMPEDANCE TOMOGRAPHY PROBLEM

RENIER MENDOZA, STEPHEN KEELING

Abstract. In electrical impedance tomography (EIT), image reconstruction

of the conductivity distribution of a body can be calculated using measured
voltages at the boundary. This is done by solving an inverse problem for

an elliptic partial differential equation (PDE). In this work, we present some

sensitivity results arising from the solution of the PDE. We use these to show
that a segmentation approach to the EIT inverse problem has a unique solution

in a suitable space using a fixed point theorem.

1. Introduction

Electrical impedance tomography (EIT) is an imaging technique proposed by
Calderon [6] in recovering the spatial distribution of the conductivities in the interior
of a body Ω based on the voltage and current measurements from electrodes placed
around its boundary ∂Ω. EIT is a non-invasive imaging technique with a wide range
of applications. We can refer to the following works [12, 13, 22, 23, 24, 29, 30, 38].

The EIT consists of two sub-problems: the forward problem and the inverse
problem. Suppose Ω ⊆ Rn is a bounded domain with a sufficiently smooth bound-
ary. In the forward EIT problem, given the boundary currents f ∈ L2(∂Ω) and
the conductivity distribution σ ∈ L∞(Ω) satisfying σ(x) ≥ σ > 0, for all x ∈ Ω,
the electric potential φ in Ω and the boundary voltage V = φ

∣∣
∂Ω

are solved. These
electrical measurements satisfy a generalized Laplace equation:

∇ · (σ∇φ) = 0 in Ω,

σ ∂φ∂n = f on ∂Ω,
(1.1)

where n is the outward normal direction at ∂Ω. The boundary currents are chosen
so that

∫
∂Ω
f dS = 0. This condition is imposed to satisfy the conservation of

charge. Furthermore, the electric potential φ must satisfy
∫
∂Ω
φdS = 0. This

amounts to choosing the reference voltage. The equation (1.1) can be viewed as a
generalized Ohm’s law and is a well-posed boundary value problem with a unique
solution (up to a constant) φ ∈ H1(Ω). The partial differential equation (PDE)
(1.1) is called the continuum model of EIT. We focus our study on this model.
Other EIT models are discussed in [5, 8, 34].
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The inverse EIT problem or the conductivity reconstruction problem is the re-
covery of σ inside Ω given V and f in ∂Ω. Denote

L̃2(∂Ω) :=
{
f ∈ L2(∂Ω) :

∫
∂Ω

f dS = 0
}

and define Λσ : L̃2(∂Ω)→ L̃2(∂Ω) by

Λσ(f) = φ
∣∣
∂Ω
, (1.2)

where φ ∈ H1(Ω) satisfies (1.1) and
∫
∂Ω
φdS = 0. The inverse EIT problem is the

recovery of σ given Λσ. Although the reconstruction problem is severely ill-posed, a
unique solution exists. Physically, this makes sense but to show this mathematically
is not trivial. For the discussion of this result, we refer the readers to [36, 35] for
the case n ≥ 3 and to [2, 5, 25] for the case n = 2.

Because of its ill-posedness, the inverse EIT problem is an active research area.
Hence, several approaches have been proposed to solve this problem. Different
techniques are discussed in [5, 8, 20, 28, 37]. In this work, we focus on a technique
proposed by Mendoza and Keeling in [27]. We assume that the conductivity σ is
piecewise constant. This assumption is based on the fact that the conductivities
of healthy tissues show great contrast [3, 17]. By assuming that σ is piecewise-
constant, the inverse problem is treated as a segmentation problem. A segmentation
technique called “Multi-Phase Segmentation”, proposed by Fürtinger in [15], is
explored in [27]. Moreover, it is assumed that the desired conductivity can be
expressed in terms of M phases, i.e., of the form

σ(x) =

M∑
m=1

σm(x)χm(x), (1.3)

where for the mth phase χm is the characteristic function of a subdomain Ωm ⊂ Ω
and σm is globally smooth. In [27], the number of phases is fixed to 2, hence the
method is referred to as a two-phase segmentation approach. This is possible if the
subdomain Ω1 has disjoint non-adjacent components. The subdomains Ω1 and Ω2

form a disjoint partition of Ω, i.e., Ω1 ∩Ω2 = ∅ and Ω = Ω1 ∪Ω2. The conductivity
σ2 in Ω2 is assumed to be known and χ2 = 1 − χ1. Therefore, the inverse EIT
problem becomes a problem of identifying σ1 and χ1. It is shown in [27] that σ1

can be expressed in terms of χ1. Given an initial guess for χ1, an iterative algorithm
is proposed. The main goal of this paper is to show that this iterative process has
a unique solution given an initial guess for χ1.

In the next section, we briefly discuss the two-phase segmentation algorithm.
Then an analysis of the algorithm is carried out. We show that the algorithm can
be expressed as a fixed point iteration. Finally, the existence of a fixed point in a
suitable space is presented.

2. Two-phase segmentation algorithm

Let us fix f ∈ L̃2(∂Ω) and define the function F : L2(Ω)→ L̃(∂Ω) by

F (σ) = φ
∣∣
∂Ω
, (2.1)

where φ is the solution of (1.1) given σ and f . Let σ? be the actual conductivity
distribution in Ω. The inverse problem is to recover σ? from Λσ? . Suppose f ∈
L̃2(∂Ω) and let V ? = Λσ?(f) = F (σ?) be the exact boundary voltage. Moreover,
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let Ṽ ≈ V ? be the measured boundary voltage. Let σ̃1 be an estimate of σ1. To
solve the EIT inverse problem, our aim is to minimize

J̃(σ1, χ1) =

∫
∂Ω

|F (σ)− Ṽ |2 dS +

∫
Ω

α|∇σ1|2(χ1 + ε) + λ(σ1 − σ̃1)2 dV (2.2)

with σ = σ1χ1 + σ2(1 − χ1) and σ2 is given. The first term of the integral is the
fidelity term, the second term provides smoothness on σ1 on Ω1 and the third term
comes from Tikohonov regularization.

Before we proceed, we first need to define the forward solution and the adjoint
solution of the EIT problem.

Definition 2.1. The forward solution φ is the solution of (1.1) given f ∈ L̃2(∂Ω)

and σ ∈ L∞(Ω). Moreover, let Ṽ be the measured boundary voltage. We define
the adjoint solution φ∗ as the solution of

∇ · (σ∇φ∗) = 0 in Ω,

σ
∂φ∗

∂n
= F (σ)− Ṽ on ∂Ω.

(2.3)

Both φ and φ∗ satisfy
∫
∂Ω
φdS = 0 and

∫
∂Ω
φ∗ dS = 0.

Using (1.1), (2.3), and (1.3), the variational formulations of the forward and
adjoint problems are∫

Ω

(σ1χ1 + σ2(1− χ1))∇φ · ∇v dV =

∫
∂Ω

fv dS, (2.4)∫
Ω

(σ1χ1 + σ2(1− χ1)∇φ∗ · ∇v dV =

∫
∂Ω

(F (σ1χ1 + σ2(1− χ1))− Ṽ )v dS, (2.5)

for all v ∈ H1(Ω). Formulations (2.4) and (2.5) have unique solutions [27] in

H̃1(Ω) := {v ∈ H1(Ω)|
∫
∂Ω
v dS = 0}. Because of (1.3), the forward and adjoint

solutions φ and φ∗ are dependent on σ1 and χ1 alone. Thus, we have the following
definition.

Definition 2.2. We define Φ(σ1, χ1) and Φ∗(σ1, χ1) to be the operators that map
any given σ1 ∈ L∞(Ω) and characteristic function χ1 to the respective solutions
φ and φ∗ of (2.4) and (2.5), respectively. Equivalently, Φ : (σ1, χ1) → φ and
Φ∗ : (σ1, χ1)→ φ∗.

The computation of the derivative of J̃ is necessary to express σ1 in terms of χ1.
For a fixed χ1, the variational derivative of J̃ in (2.2) with respect to σ1 ∈ H1(Ω)
in the direction of δσ1 ∈ H1(Ω) is given by

δJ̃

δσ1
(σ1, χ1; δσ1) = −

∫
Ω

2χ1δσ1∇φ · ∇φ∗ dV +

∫
Ω

2α(χ1 + ε)∇(δσ1) · ∇σ1 dV

+

∫
Ω

2λ(σ1 − σ̃1)δσ1 dV.

If we equate the above expression to 0, we conclude that the following optimality
condition must be satisfied,∫

Ω

[α(χ1 + ε)∇σ1 · ∇v + λ(σ1 − σ̃1)v] dV =

∫
Ω

(χ1∇φ · ∇φ∗)v dV, (2.6)

for all v ∈ H1(Ω). Given χ1 and an estimate σ̃1, the quantity σ1 is calculated via
(2.6). We formalize this in the following definition.
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Definition 2.3. We define the operator Σ1 : χ1 → σ1 that maps an element
χ1 ∈ L∞(Ω) to an element σ1 ∈ H1(Ω) via (2.6) and the the operator Σ : χ1 → σ
via σ(χ1) = Σ1(χ1)χ1 + σ2(1− χ1).

Definitions 2.2 and 2.3 are used to replace σ̃1 and σ1 in (2.6) with σk1 and

σk+1
1 = Σ1(χ1), respectively. Hence,∫

Ω

α(χ1 + ε)∇Σ1(χ1) · ∇v dV +

∫
Ω

λ(Σ1(χ1)− σk1 )v dV

=

∫
Ω

χ1∇Φ(σk1 , χ1) · ∇Φ∗(σk1 , χ1)v dV.

(2.7)

Furthermore, the following operators are defined for the global conductivity,

Σk(χ1) := σk1χ1 + σ2(1− χ1), (2.8)

Σk+1(χ1) := Σ1(χ1)χ1 + σ2(1− χ1), (with Σ1(χ1) = σk+1
1 ). (2.9)

Under some assumptions, we will show that (2.7) admits a unique solution (see

Lemma 3.25). Observe that the functional J̃(σ1, χ1) in (2.2) can be written as a

functional J̃(Σ1(χ1), χ1) depending only on χ1. To determine χ1, we add a Total
Variation (TV) regularization to (2.2) to penalize oscillations. For discussions of
TV-regularization, one can refer to [31, 32, 10, 21]. Given a (sufficiently smooth)
function f , its total variation is given by

TV (f) :=

∫
Ω

|∇f | dV ≈
∫

Ω

√
|∇f |2 + β2 dV,

for some 0 < β � 1 (compare, e.g., [7, 11]). To determine the optimal χ1, our aim
is to minimize the TV-regularized functional

J(χ1) =

∫
∂Ω

|F (Σ(χ1))− Ṽ |2 dS +

∫
Ω

α|∇Σ1(χ1)|2(χ1 + ε)

+

∫
Ω

λ(Σ1(χ1)− σ̃1)2 + γ
√
|∇χ1|2 + β2 dV,

(2.10)

for α, λ, γ > 0 and ε, β ∈ (0, 1). Thus we find an update for χ1 that reduces the cost
J . This update can be obtained using the method of steepest descent [33], which is
given in weak form for J as follows,∫

Ω

χk+1
1 v dV =

∫
Ω

χk1v dV − ω
δJ

δχ1
(χk1 ; v), (2.11)

for all v ∈ H1(Ω), where ω ∈ (0, 1) is the step size and k ∈ N. Let χk1 , δχ
k
1 ∈ L2(Ω)

and suppose

δΣ1

δχk1
(χk1 ; δχk1) ∈ H1(Ω),

then the variational derivative of J in (2.10) is

δJ

δχk1
(χk1 ; δχ1) =

∫
Ω

−2(Σ1(χk1)− σ2)δχk1∇Φ(σk1 , χ
k
1) · ∇Φ∗(σk1 , χ

k
1) dV

+

∫
Ω

α|∇Σ1(χk1)|2δχk1 dV + γ

∫
Ω

∇(δχk1) · ∇χk1√
|∇χk1 |2 + β2

dV.

(2.12)
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Remark 2.4. Observe that (2.12) requires the calculation of ∇χk1 but since χk1 is
binary, a smooth approximation of χk1 is necessary. This will be discussed later. The
assumption that δΣ1

δχk1
(χk1 ; δχk1) ∈ H1(Ω) can be shown if χk1 is sufficiently smooth

(see Theorem 3.28).

Instead of performing the iteration (2.11) by evaluating δJ/δχ1(χk1 ; v) explicitly
in terms of χk1 , the iteration may be performed semi-implicitly by evaluating part

of the variational derivative of J in (2.12) at χk+1
1 as follows:∫

Ω

[
vχk+1

1 + ωγ
∇v · ∇χk+1

1√
|∇χk1 |2 + β2

]
dV =

∫
Ω

vG(χk1) dV, (2.13)

for all v ∈ H1(Ω), where

G(χ1) = χ1−ωα|∇Σ1(χ1)|2 + 2ω
[
(Σ1(χ1)−σ2)∇Φ(σ̃1, χ1) ·∇Φ∗(σ̃1, χ1)

]
. (2.14)

We show later that (2.13) admits a unique solution (see Lemma 4.3).
As mentioned in Remark 2.4, a smooth approximation of χ1 is necessary. To

do this, we introduce the kernel function ξδ(x) = 1
4πδ e

− x2

4δ , for some δ > 0. We

approximate χk1 using the convolution of χk1 and ξδ, i.e., we let

χ̃k1 := χk1 ∗ ξδ =

∫
R2

ξδ(x− y)χk1(y)dy. (2.15)

The following result gives the regularity and continuity of the above mollification.

Theorem 2.5. Let k ∈ N, then χ̃k1 is a real analytic function on Ω and χ̃k1 → χk1
almost everywhere as δ → 0. Furthermore, suppose 0 ≤ χk1 ≤ 1, for all x ∈ Ω.
Then 0 ≤ χ̃k1 ≤ 1 [15].

Using (2.15), we approximate (2.13) by∫
Ω

ωγ
∇χ̃k+1

1 · ∇v√
|∇χ̃k1 |2 + β2

+ χ̃k+1
1 v dV =

∫
Ω

G(χ̃k1)v dV, ∀v ∈ H1(Ω). (2.16)

Definition 2.6. We define the operator Θ : L2(Ω) → L2(Ω) to be the solution

χ̃k+1
1 ∈ L2(Ω) of (2.16) for a given χ̃k1 ∈ L2(Ω).

Because the solution of (2.16) is not binary, the update for χ is obtained by
performing a thresholding step.

We summarize the two-phase segmentation method in the algorithm below. The
analysis of the numerical solution of the PDEs arising from this algorithm can be
found in [26].

Two-phase segmentation algorithm.

(1) Given f and Ṽ . Choose parameters ε, δ, λ, γ, β � 1, α � 1, and ζ, ω ∈
(0, 1). Select the maximum number of iterations K and the tolerance ρ.
Set k = 1 and choose the initial σk1 . Select an initial guess χk1 . The value
of σ2 is given and χk2 = 1− χk1 .

(2) Take χ̃k1 = χk1 ∗ ξδ and χ̃k+1
1 = Θ(χ̃k1). Then, χ1 is updated by

χk+1
1 (x) =

{
1, if χ̃k+1

1 (x) ≥ ζ,
0, otherwise.

Set χk+1
2 = 1− χk+1

1 .
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(3) If k = K or ‖χk+1
1 − χk1‖L2(Ω) < ρ, the algorithm terminates. Otherwise,

k ← k + 1 and go back to step 2.

3. Analysis of the algorithm

In this section, we analyze the two-phase segmentation algorithm. We start
with results obtained by assuming that σ ∈ L∞(Ω) and that χ1 is a characteris-
tic function. Because the characteristic function χ1 is binary, we use its smooth
approximation (2.15) instead. This is necessary because some of the essential re-
sults require χ1 to have a higher regularity. This might seem like a deviation from
our proposed method but we will argue that these modifications can be justified.
We will then introduce a modification of the two-phase segmentation algorithm to
adapt with the mollification of χ1. In the next section, we prove that the modified
version of two-phase segmentation algorithm has a fixed point via Schauder’s Fixed
Point Theorem.

3.1. Preliminaries. We already emphasized that φ and φ∗ are solved using σk. In
this section, we try to understand how a perturbation on σk affects φ and φ∗. Recall
that σk depends on χ1. Therefore, φ and φ∗ depend on χ1 as well. Working under
the assumption that σ ∈ L∞(Ω) and χ1 is a characteristic function, we show that
φ and φ∗ depend continuously on σk and on χ1. We begin this section by showing
that the variational forward problem and the variational adjoint problem both
have unique solutions in H1(Ω) under stated assumptions on σ. In the succeeding
sections, we study the behavior of φ and φ∗ when we require additional regularity
of σk.

Theorem 3.1. Let σk ∈ L∞(Ω) such that 0 < σ ≤ σk(x) for all x ∈ Ω and

f ∈ L̃2(∂Ω). Then ( the variational forward EIT problem)∫
Ω

σk∇φ · ∇v dV =

∫
∂Ω

σk
∂φ

∂n
v dS, ∀v ∈ H1(Ω) (3.1)

has a unique solution φ ∈ H1(Ω) with
∫
∂Ω
φdS = 0. Similarly, let Ṽ ∈ L̃2(∂Ω) be

the known boundary voltage. Then ( the variational adjoint problem)∫
Ω

σk∇φ∗ · ∇v dV =

∫
∂Ω

(φ− Ṽ )v dS, ∀v ∈ H1(Ω) (3.2)

has a unique solution φ∗ ∈ H1(Ω) with
∫
∂Ω
φ∗ dS = 0.

Proof. We define I := {u ∈ H1(Ω) :
∫
∂Ω
u dS = 0}, a(u, v) :=

∫
Ω
σk∇u ·∇v dV , and

b(v) :=
∫
∂Ω
fv dS. Clearly, a is bilinear and b is linear. Using the Cauchy-Schwarz

identity, Hölder’s inequality, and the definition of the H1 norm, a is bounded, i.e.,

|a(u, v)| ≤ ‖σk‖L∞(Ω)‖u‖H1(Ω)‖v‖H1(Ω).

Because u ∈ I, then
∫
∂Ω
u dS = 0. Therefore, using the lower bound of σ, and the

generalized Friedrich’s inequality [4], we obtain

|a(u, u)| ≥ σ‖∇u‖2L2(Ω)

=
σ

2
‖∇u‖2L2(Ω) +

σ

2
‖∇u‖2L2(Ω)

≥ σ

2

( 1

C
‖u‖2L2(Ω) −

(∫
∂Ω

u dS
)2)

+
σ

2
‖∇u‖2L2(Ω)
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=
σ

2C
‖u‖2L2(Ω) +

σ

2
‖∇u‖2L2(Ω)

≥ σmin
{ 1

C
, 1
}
‖u‖2H1(Ω),

for some C > 0. Finally, by the Trace Theorem [14], b is bounded. Hence, by
the Lax-Milgram Theorem ∃! φ ∈ H1(Ω) satisfying (3.1). Similarly, there exists a
unique φ∗ ∈ I satisfying (3.2). �

Corollary 3.2. Let φ and φ∗ satisfy the variational forward and the variational
adjoint problem stated in the previous theorem. We have the following estimates:

‖φ‖H1(Ω) ≤ C1‖f‖L̃2(∂Ω) (3.3)

‖φ∗‖H1(Ω) ≤ C2‖(φ− Ṽ )‖L̃2(∂Ω) (3.4)

for some C1, C2 > 0.

Note that using the Trace Theorem and the triangle inequality, φ∗ can be further
estimated by

‖φ∗‖H1(Ω) ≤ C3

(
‖f‖L̃2(∂Ω) + ‖Ṽ ‖L̃2(∂Ω)

)
(3.5)

for some C3 > 0. Throughout this work, we use the following notation.

Definition 3.3. We let δσk and δχ1 denote perturbations of σk ∈ L∞(Ω) and
χ1 ∈ L∞(Ω), respectively. In Definition (2.2), Φ and Φ∗ are operators that map
(σk1 , χ1) to φ and φ∗, respectively. But because σk = σk1χ1 + σ2(1 − χ1), we can
make the identifications

Φ(σk) = Φ(σk1 , χ1), Φ∗(σk) = Φ∗(σk1 , χ1).

Hence, Φ : σk → φ and Φ∗ : σk → φ∗.

Remark 3.4. Given a perturbation δσk ∈ L∞(Ω), how can we choose η > 0 so that
the forward and the adjoint problems have unique solutions if we use σk+ηδσk? We
know that the forward and adjoint problems have unique solutions given σk ∈ L∞
if σk(x) ≥ σ > 0 for all x ∈ Ω. To make sure that Φ(σk + ηδσk) is unique, we can
simply select η sufficiently small so that (σk + ηδσk)(x) ≥ στ > 0 for all x ∈ Ω
and η ∈ (0, τ) for some τ > 0. This is possible because σk(x) ≥ σ > 0. Thus,
the coercivity of the bilinear functional in the variational formulations of both the
forward and the adjoint problems is guaranteed and the solvability of these problems
is assured. Consequently, by (3.3) and (3.5) there exist C1, C2 > 0 such that

‖Φ(σk + ηδσk)‖H1(Ω) ≤ C1‖f‖L̃2(∂Ω), (3.6)

‖Φ∗(σk + ηδσk)‖H1(Ω) ≤ C2(‖f‖L̃2(∂Ω) + ‖Ṽ ‖L̃2(∂Ω)), (3.7)

for any η ∈ (0, τ).

The result below shows how a perturbation δσk affects φ and φ∗.

Theorem 3.5. Let σk, δσk ∈ L∞(Ω). Then there exist C1, C2 > 0 such that

‖Φ(σk + ηδσk)− Φ(σk)‖H1(Ω) ≤ C1η‖δσk‖L∞(Ω), (3.8)

‖Φ∗(σk + ηδσk)− Φ∗(σk)‖H1(Ω) ≤ C2η‖δσk‖L∞(Ω), (3.9)

for any η ∈ (0, τ), where τ is chosen according to Remark 3.4.
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Proof. From (3.1), we have∫
Ω

σk∇Φ(σk) · ∇v dV =

∫
Ω

fv dV. (3.10)

Similarly, for σk + ηδσk,∫
Ω

(σk + ηδσk)∇(Φ(σk) + δφ) · ∇v dV =

∫
Ω

fv dV, (3.11)

where we denote δφ := Φ(σk + ηδσk)− Φ(σk). Subtracting (3.10) from (3.11), we
obtain ∫

Ω

σk∇δφ · ∇v dV = −
∫

Ω

ηδσk∇Φ(σk + ηδσk) · ∇v dV. (3.12)

We define a(u, v) :=
∫

Ω
σk∇u·∇v dV and b1(v) := −

∫
Ω
ηδσk∇Φ(σk+ηδσk)·∇v dV .

Clearly, a and b1 are bilinear and linear, respectively. Recall from Theorem (3.1)
that for any u, v ∈ I, a(u, v) is coercive and continuous. By the Cauchy-Schwarz
inequality and (3.6), b1 is bounded. Thus, if we take u = v = δφ, use the previous
inequality, and the coercivity of a(u, v) we obtain

‖δφ‖H1(Ω) ≤
1

C̄
C̄1η‖f‖L̃2(∂Ω)‖δσ

k‖L∞(Ω), (3.13)

where C̄ > 0 is the coercivity constant and C̄1 is the constant from (3.6). This
proves the first inequality. Using similar arguments, one can show (3.9). �

Definition 3.6. Recall that from (2.8), Σk(χ1) := σk1χ1 +σ2(1−χ1) = σk. There-
fore, φ and φ∗ depend on χ1 for a fixed σk1 . Hence, for brevity we denote

Φ(χ1) := Φ(Σk(χ1)) and Φ∗(χ1) := Φ∗(Σk(χ1)). (3.14)

From here onwards, it is assumed that φ and φ∗ are solved using σk1χ1 +σ2(1−χ1).

We now show that φ and φ∗ depend continuously on χ1.

Corollary 3.7. Let χ1 ∈ L∞(Ω), then ∃C̄1, C̄2 > 0 such that

‖Φ(χ1 + ηδχ1)− Φ(χ1)‖H1(Ω) ≤ C̄1η‖δχ1‖L∞(Ω), (3.15)

‖Φ∗(χ1 + ηδχ1)− Φ∗(χ1)‖H1(Ω) ≤ C̄2η‖δχ1‖L∞(Ω), (3.16)

for any η ∈ (0, τ), where τ is chosen according to Remark 3.4.

Proof. We use the decomposition

Σk(χ1) = σk1χ1 + σ2(1− χ1). (3.17)

Let η ∈ (0, τ). If we use χ1 + ηδχ1 instead of χ1, we have

Σk(χ1) + δσk = Σk(χ1) + η(σk1 − σ2)δχ1, (3.18)

where δσk is the associated change in σk given a ηδχ1 perturbation of χ1. Sub-
tracting (3.17) from (3.18), we obtain

δσk = η(σk1 − σ2)δχ1. (3.19)

The inequalities we need to show directly follow from Theorem (3.5) and

‖δσk‖L∞(Ω) ≤ η‖σk1 − σ2‖L∞(Ω)‖δχ1‖L∞(Ω).

�
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3.2. Smooth approximation of χ1. From (2.7), the quantity σk+1
1 := Σ1(χ1)

can be obtained via∫
Ω

α(χ1 + ε)∇σk+1
1 · ∇v dV +

∫
Ω

λ(σk+1
1 − σk1 )v dV

=

∫
Ω

χ1∇Φ(χ1) · ∇Φ∗(χ1)v dV.

(3.20)

This equation can be interpreted as

a(σk+1
1 , v) = b(v), ∀v ∈ H1(Ω), (3.21)

where

a(σk+1
1 , v) :=

∫
Ω

α(χ1 + ε)∇σk+1
1 · ∇v dV +

∫
Ω

λσk+1
1 v dV,

b(v) :=

∫
Ω

λσk1v dV +

∫
Ω

χ1∇Φ(χ1) · ∇Φ∗(χ1)v dV.

To guarantee solvability of (3.21), b(v) must be bounded. To show this, it is
necessary that χ1∇Φ(χ1) ·∇Φ∗(χ1) be in L2(Ω). If either ∇Φ(χ1) or ∇Φ∗(χ1) is in
L∞(Ω), then ∇Φ(χ1) ·∇Φ∗(χ1) ∈ L2(Ω). In [9], it was shown that ‖∇Φ(χ1)‖L∞(Ω′)

can be bounded by ‖∇Φ(χ1)‖L2(Ω) for some Ω′ compactly embedded in Ω. This was

proven under the assumption that σk ∈ C1(Ω̄). Recall that σk = σk1χ1 +σ2(1−χ1).
Clearly, σk is not necessarily in C1(Ω̄) because χ1 is a characteristic function. We
have introduced a mollification χδ1 of χ1 in (2.15) to resolve this. Thus, σk1 ∈ C∞(Ω̄).
Moreover, σk is not just in C1(Ω̄) but in C∞(Ω̄) as well. This might seem like
a deviation from our proposed method but technically, we can choose δ to be
extremely close to 0 so that χδ1 is a good approximation of χ1. We show that the
mollification affects the corresponding φ and φ∗ to a very small extent as long as
the distance between χδ1 and χ1 is small enough. But first, we need the following
results.

Lemma 3.8. Let 1 ≤ p < ∞ and take 1 ≤ r ≤ ∞ such that 1
r + 1 − 1

p ∈ [0, 1].

Define the operator from Lp(Ω) to Lr(Ω) by

Tδ(g) := g ∗ ξδ. (3.22)

Then Tδ is continuous and injective [15].

Lemma 3.9. For any g ∈ Lp(Ω), 1 ≤ p <∞, ∂ν(g ∗ ξδ) = (∂νg) ∗ ξδ, for |ν| ≤ 1.
Moreover, ∂ν(g ∗ ξδ)→ ∂νg almost everywhere as δ → 0.

The proof of the above lemma is rather straightforward and is omitted. The
second assertion follows from Lemma (2.5) (compare with [14]). For brevity, from
here onwards we let

χδ1 := χ1 ∗ ξδ
denote the mollification of χ1. We now show how the perturbation of χ1 affects the
solution of the forward and adjoint problems.

Theorem 3.10. For a fixed δ, the solution of the forward problem given χ1 ∈
L∞(Ω) and the solution of the forward problem given χδ1 satisfy

‖Φ(χδ1)− Φ(χ1)‖H1(Ω) ≤ Cδ1‖χδ1 − χ1‖L∞(Ω) (3.23)

for some C1 > 0. The same applies to the adjoint problem

‖Φ∗(χδ1)− Φ∗(χ1)‖H1(Ω) ≤ Cδ2‖χδ1 − χ1‖L∞(Ω) (3.24)
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for some C2 > 0.

Proof. We proved in (3.15) that φ depends continuously on χ1. Note that we proved
this given the assumption that χ1 ∈ L∞(Ω), which implies that χ1 ∈ L2(Ω) as well.
By Lemma (3.8), we can infer that χδ1 ∈ L∞(Ω) by choosing p = 2 and r = ∞.
Finally, Theorem (3.5) proves the rest of our claim. �

Remark 3.11. The superscript δ in Cδ1 and Cδ2 from (3.23) and (3.24) are used to
emphasize the dependence of the inequality constants on the mollification parameter
δ. From here onwards, we use the same notation for all constants dependent on δ.

We know that χδ1 converges to χ1 pointwise [15]. Although it does not guarantee
that ‖χδ1−χ1‖L∞(Ω) converges to 0, this can still be a gauge to measure the distance

between the solution of the forward problem using χ1 and the solution using χδ1.
To make our modifications consistent, we find a new thresholding approach to

adapt with the mollification of χ1. First, we define a space that will be important
in our succeeding computations. Let B(Ω) be the Borel σ−algebra over Ω and let
µ(·) denote the Lebesgue measure. For any A1, A2 ∈ B(Ω), we define the symmetric
difference of A1 and A2 to be

A1 4A2 := (A1\A2) ∪ (A2\A1).

Definition 3.12. Let the distance d : B(Ω) × B(Ω) → R ∪ {∞} be d(A1, A2) =
µ(A1 4A2). We now define M(Ω) = (B(Ω), d)/ker(d).

The space M(Ω) is, in fact, a metric space [19, 15]. In our algorithm, we did a
thresholding on Θ in order to get an update for χ1. In the following definition, we
modify this thresholding to make it coherent with the mollification of χ1.

Definition 3.13. Let z ∈ L2(Ω)\H1(Ω). We define H : L2(Ω)→M(Ω) by

H(g) = {x ∈ Ω : ((gδ − ζ + δz) ∗ ξδ)(x) ≥ 0}, (3.25)

for some ζ ∈ (0, 1) and gδ = g ∗ ξδ. Moreover, define M : M(Ω) → L2(Ω) as the
map that assigns ω ∈M(Ω) to its characteristic function χω, that is,

M(ω) = χω. (3.26)

Observe that if we let δ → 0, then

(gδ − ζ + δz) ∗ ξδ → g − ζ. (3.27)

See [15]. This means that as δ → 0, H(g) becomes the set of x ∈ Ω for which
g(x) ≥ ζ. Using the above-mentioned functions Tδ, H, M , and Θ (Definition 2.6),
we can modify the two-phase segmentation algorithm into

χk+1
1 = (Tδ ◦M ◦H ◦Θ ◦ Tδ)(χk1). (3.28)

The main goal of this article is to show that (3.28) has a fixed point.

Remark 3.14. It is again emphasized that the introduction of z ∈ L2(Ω)\H1(Ω)
in (3.25) and the modification of Algorithm (1) as a result of the mollification of χ1

are purely technical devices and are used only for theoretical purposes. This might
seem like a deviation from Algorithm (1) but as shown in (3.23), (3.24) and (3.27),
these changes are justified.
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3.3. Gradient of the functional J . This section is devoted to showing the va-
lidity of the explicit formulation of the gradient of J in (2.10). As shown in the
computation of (2.12), it is sufficient to show that

δΣ1

δχ1
(χ1; δχ1) ∈ H1(Ω).

This is not necessarily true for an arbitrary characteristic function χ1. Hence, we
use χδ1 instead of χ1 so that we are dealing with a smooth function rather than a

characteristic function. Thus, we are now solving σk+1
1 using the equation∫

Ω

α(χδ1 + ε)∇σk+1
1 · ∇v dV +

∫
Ω

λ(σk+1
1 − σk1 )v dV =

∫
Ω

χδ1∇φ · ∇φ∗v dV, (3.29)

for all v ∈ H1(Ω). Before we start our calculations, we first make few assumptions.
These will be used throughout our analysis.

Let α, σ, λ, δ > 0. We assume that σk1 ∈ C∞(Ω̄) such that
Σk(χδ1) ≥ σ > 0. We also assume that ∂Ω is sufficiently smooth.

(3.30)

The assumption that σk1 ∈ C∞(Ω̄) might seem like a strong assumption but if we

can show that σk+1
1 ∈ C∞(Ω̄) as well, then this assumption makes sense. Moreover,

the initial guess for σ1 in our algorithm can be chosen to be constant throughout
Ω so that it is in C∞(Ω̄).

We now investigate what happens to φ and φ∗ if we use the above assumption.

Lemma 3.15. Under assumption (3.30),

‖∇φ‖L∞(Ω) ≤ Cδ‖φ‖H1(Ω), (3.31)

for some Cδ > 0 (compare with [9]). In fact, φ ∈ C∞(Ω̄).

Proof. By assumption (3.30) and Lemma (2.5), σk ∈ C∞(Ω̄). Let l ≥ 1. Obviously,
σk ∈ Cl(Ω̄). Therefore, using standard regularity estimates (see, e.g., [16]), we
obtain

‖φ‖Hl+2(Ω) ≤ C1‖φ‖H1(Ω), (3.32)

for some C1 > 0. Furthermore, by the Sobolev imbedding theorem [14], we have

‖φ‖Cl,γ(Ω̄) ≤ C2‖φ‖Hl+2(Ω). (3.33)

By the definition of ‖ · ‖Cl,γ(Ω̄), the embedding

C1,γ(Ω̄) ↪→ C1(Ω̄) (3.34)

is continuous (see [18]). If we compare (3.32), (3.33), and (3.34), we can deduce
that there exists C > 0 such that

‖∇φ‖L∞(Ω) ≤ C‖∇φ‖H1(Ω), (3.35)

which completes the first part of the proof. Moreover, because l ≥ 1, it follows that
φ(χδ1) ∈ C∞(Ω̄). �

Lemma 3.16. Under assumption (3.30), there exists Cδ > 0 such that

‖∇φ∗‖L∞(Ω) ≤ Cδ‖φ∗‖H1(Ω). (3.36)

Furthermore, φ∗ ∈ C∞(Ω̄).
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The proof of this theorem is similar to that of the previous theorem. We now
analyze the dependence of φ and φ∗ on χδ1. From here onwards, we denote

δχδ1 := δχ1 ∗ ξδ
so that (χ1 + ηδχ1) ∗ ξδ = χδ1 + ηδχδ1.

Suppose we replace χδ1 with χδ1 + ηδχδ1. Again by Remark 3.4, η should be taken
from the set (0, τ) where τ is chosen so that σk + ηδσk ≥ στ > 0. Therefore, from
(3.6), (3.7), (3.14), (3.31), and (3.36), the following estimates hold

‖∇Φ(χδ1 + ηδχδ1)‖L∞(Ω) ≤ C1‖f‖L̃2(∂Ω), (3.37)

‖∇Φ∗(χδ1 + ηδχδ1)‖L∞(Ω) ≤ C2

(
‖f‖L̃2(∂Ω) + ‖Ṽ ‖L̃2(∂Ω)

)
, (3.38)

for some C1, C2 > 0 and for all η ∈ (0, τ).
In Corollary 3.7, we have shown that φ and φ∗ depend continuously on χ1.

Observe that this theorem holds with any χ1 whose value is between 0 and 1.
Therefore, this also holds when we use χδ1 instead because 0 ≤ χδ1 ≤ 1 as proven in
Lemma (2.5). We state this in the following lemma.

Lemma 3.17. Under assumption (3.30), there exists Cδ1 , C
δ
2 > 0 such that

‖Φ(χδ1 + ηδχδ1)− Φ(χδ1)‖H1(Ω) ≤ Cδ1η‖δχ1‖L2(Ω), (3.39)

‖Φ∗(χδ1 + ηδχδ1)− Φ∗(χδ1)‖H1(Ω) ≤ Cδ2η‖δχ1‖L2(Ω), (3.40)

for any η ∈ (0, τ), where τ is chosen according to Remark 3.4.

We define

ψ(χδ1) := ∇Φ(χδ1) · ∇Φ∗(χδ1). (3.41)

Observe that the right-hand side of (3.29) includes ψ(χδ1). In the next lemma,
we show that ψ depends continuously on χ1. This will be necessary when we
analyze the solution of (3.29). Note that ∇Φ∗(χδ1) ∈ L2(Ω) by Corollary 3.2 and
∇Φ(χδ1) ∈ L∞(Ω) by (3.31). Therefore, by Hölder’s inequality,

ψ(χδ1) ∈ L2(Ω). (3.42)

This means that ψ is a map from χ1 ∈ L2(Ω) to ∇Φ(χδ1) · ∇Φ∗(χδ1) ∈ L2(Ω). In
the following lemma, we prove that this mapping is continuous.

Lemma 3.18. Under assumption (3.30), there exists Cδ ≥ 0 such that

‖ψ(χδ1 + ηδχδ1)− ψ(χδ1)‖L2(Ω) ≤ Cδη‖δχ1‖L2(Ω), (3.43)

for any η ∈ (0, τ), where τ is chosen according to Remark 3.4.

Proof. Adding and subtracting ∇Φ(χδ1 + ηδχδ1) ·∇Φ∗(χδ1) to ψ(χδ1 + ηδχδ1)−ψ(χδ1),
we obtain

ψ(χδ1 + ηδχδ1)− ψ(χδ1) =: A1(χδ1; δχδ1) +A2(χδ1; δχδ1),

where

A1(χδ1; δχδ1) = ∇Φ(χδ1 + ηδχδ1) · ∇Φ∗(χδ1 + ηδχδ1)−∇Φ(χδ1 + ηδχδ1) · ∇Φ∗(χδ1),

A2(χδ1; δχδ1) = ∇Φ(χδ1 + ηδχδ1) · ∇Φ∗(χδ1)−∇Φ(χδ1) · ∇Φ∗(χδ1).

Thus
‖ψ(χδ1 + ηδχδ1)− ψ(χδ1)‖L2(Ω)

≤ ‖A1(χ1; δχ1)‖L2(Ω) + ‖A2(χ1; δχ1)‖L2(Ω).
(3.44)
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We can estimate A1(χδ1; δχδ1) using the Hölder’s inequality, (3.37), and (3.40). Thus,

‖A1(χδ1; δχδ1)‖L2(Ω) ≤ C1η‖f‖L̃2(∂Ω)‖δχ1‖L2(Ω),

for some C1 > 0. Similarly, using the Hölder’s inequality, (3.36), and (3.39), we
obtain

‖A2(χδ1; δχδ1)‖L2(Ω) ≤ C2η‖∇Φ∗(χδ1)‖L∞(Ω)‖δχ1‖L2(Ω),

for some C2 > 0. The estimates for A1(χδ1; δχδ1) and A2(χδ1; δχδ1), together with
(3.44), complete the proof. �

Recall that the goal of this section is to validate the explicit formulation of the
gradient of J(χ1) by showing that δΣ1

δχ1
(χδ1; δχδ1) ∈ H1(Ω). To accomplish this, we

first need to show that the derivatives of both Φ and Φ∗ with respect to χ1 converge
in H1(Ω). We start by looking for candidates for the derivatives.

Lemma 3.19. Under assumption (3.30), there exists Dφ(χ1; δχ1) ∈ H1(Ω) satis-
fying ∫

Ω

σk∇Dφ(χ1; δχ1) · ∇v dV =

∫
Ω

(σk1 − σ2)δχδ1∇Φ(χδ1) · ∇v dV (3.45)

with
∫
∂Ω
Dφ(χ1; δχ1) dS = 0, for all v ∈ H1(Ω), such that

∫
∂Ω
v dS = 0.

Proof. Let u, v ∈ H1(Ω) such that
∫
∂Ω
u dS =

∫
∂Ω
v dS = 0. We define

a(u, v) :=

∫
Ω

σk∇u · ∇v dV, b(v) :=

∫
Ω

(σk1 − σ2)δχδ1∇Φ(χδ1) · ∇v dV.

From the proof of Theorem (3.1), a is bilinear, coercive and bounded. Obviously,
b is linear. We wish to employ the Lax-Milgram theorem so it is sufficient to show
that b is bounded. Indeed, using the Cauchy-Schwarz inequality and the Hölder’s
inequality we obtain

|b(v)| ≤ ‖(σk1 − σ2)δχδ1‖L∞(Ω)‖∇Φ(χδ1)‖L2(Ω)‖v‖L2(Ω).

The right-hand side of the last inequality is bounded because of Corollary (3.2) and
the fact that (σk1 − σ2)δχδ1 ∈ C∞(Ω̄). �

Lemma 3.20. Under assumption (3.30), there exists Dφ∗(χ1; δχ1) ∈ H1(Ω) satis-
fying ∫

Ω

σk∇Dφ∗(χ1; δχ1) · ∇v dV

=

∫
Ω

(σk1 − σ2)δχδ1∇Φ∗(χδ1) · ∇v dV +

∫
∂Ω

Dφ(χ1; δχ1)v dV,

(3.46)

with
∫
∂Ω
Dφ∗(χ1; δχ1) dS = 0, for all v ∈ H1(Ω), such that

∫
∂Ω
v dS = 0.

The proof of this lemma is similar to the proof of the previous lemma; we omit
it. Now we prove that Dφ(χ1; δχ1) and Dφ∗(χ1; δχ1) in the last two lemmas are
the derivatives of Φ and Φ∗ at χ1 in the direction of δχ1, respectively. We state
and prove this in the following lemma.

Lemma 3.21. Under assumption (3.30), we have

lim
η→0

∥∥Φ(χδ1 + ηδχδ1)− Φ(χδ1)

η
−Dφ(χδ1; δχδ1)

∥∥
H1(Ω)

= 0, (3.47)



14 R. MENDOZA, S. KEELING EJDE-2020/93

lim
η→0

∥∥Φ∗(χδ1 + ηδχδ1)− Φ∗(χδ1)

η
−Dφ∗(χ

δ
1; δχδ1)

∥∥
H1(Ω)

= 0. (3.48)

Thus, we can make the identifications

δΦ

δχ1
(χδ1; δχδ1) = Dφ(χ1; δχ1),

δΦ∗

δχ1
(χδ1; δχδ1) = Dφ∗(χ1; δχ1).

Furthermore, because Dφ(χ1; δχ1), Dφ∗(χ1; δχ1) ∈ H1(Ω) we have

δΦ

δχ1
(χδ1; δχδ1),

δΦ∗

δχ1
(χδ1; δχδ1) ∈ H1(Ω),

with ∫
∂Ω

δΦ

δχ1
(χδ1; δχδ1) dS =

∫
∂Ω

δΦ∗

δχ1
(χδ1; δχδ1) dS = 0.

Proof. From (3.1), we have
∫

Ω
σk∇Φ(χδ1) · ∇v dV =

∫
Ω
fv dV , where σk = Σk(χδi ).

Then we obtain ∫
Ω

σk∇Φ(χδ1) · ∇v dV =

∫
Ω

fv dV. (3.49)

Similarly, for χδ1 + ηδχδ1,∫
Ω

[σk + η(σk1 − σ2)δχδ1]∇Φ(χδ1 + ηδχδ1) · ∇v dV =

∫
Ω

fv dV. (3.50)

Subtracting (3.49) from (3.50), we obtain∫
Ω

σk∇(Φ(χδ1 + ηδχδ1)− Φ(χδ1)) · ∇v dV

=

∫
Ω

η(σk1 − σ2)δχδ1∇Φ(χδ1 + ηδχδ1) · ∇v dV.
(3.51)

Dividing by η, we have∫
Ω

σk∇
(Φ(χδ1 + ηδχδ1)− Φ(χδ1)

η

)
· ∇v dV

=

∫
Ω

(σk1 − σ2)δχδ1∇Φ(χδ1 + ηδχδ1) · ∇v dV.
(3.52)

Recall from (3.45) that∫
Ω

σk∇Dφ(χδ1; δχδ1) · ∇v dV =

∫
Ω

(σk1 − σ2)δχδ1∇Φ(χδ1) · ∇v dV. (3.53)

Subtracting (3.52) and (3.53), we obtain∫
Ω

σk∇
(Φ(χδ1 + ηδχδ1)− Φ(χδ1)

η
−Dφ(χδ1; δχδ1)

)
· ∇v dV =: A(v) (3.54)

where

A(v) =

∫
Ω

(σk1 − σ2)δχδ1∇[Φ(χδ1 + ηδχδ1)− Φ(χδ1)] · ∇v dV,

which can be estimated using the Cauchy-Schwarz inequality and (3.15):

|A(v)| ≤ C1η‖(σk1 − σ2)δχδ1‖L∞(Ω)‖δχ1‖L2(Ω)‖v‖H1(Ω). (3.55)



EJDE-2020/93 IMPEDANCE TOMOGRAPHY PROBLEM 15

It is worth noting that (σk1 − σ2)δχδ1 ∈ L∞(Ω) and δχ1 ∈ L2(Ω) so that the right-
hand side of the above inequality is bounded. Now observe that a(u, v) :=

∫
Ω
σk∇u·

∇v dV is coercive as demonstrated in the proof of Theorem (3.1), i.e.,

|a(u, u)| ≥ C̄‖u‖2H1(Ω), (3.56)

for some C̄ > 0, for any u ∈ H1(Ω) such that
∫
∂Ω
u dS = 0. Hence, the left hand

side of (3.54) is bounded from above if we set

u =
Φ(χδ1 + ηδχδ1)− Φ(χδ1)

η
−Dφ(χδ1; δχδ1).

Using this fact and comparing (3.54) and (3.55), we obtain the estimate

C̄‖Φ(χδ1 + ηδχδ1)− Φ(χδ1)

η
−Dφ(χδ1; δχδ1)‖H1(Ω)

≤ C1η‖(σk1 − σ2)δχδ1‖L∞(Ω)‖δχ1‖L2(Ω).

Therefore, taking the limit of the last equality as η → 0, we obtain

lim
η→0
‖Φ(χδ1 + ηδχδ1)− Φ(χδ1)

η
−Dφ(χδ1; δχδ1)‖H1(Ω) = 0. (3.57)

The rest of the proof is similar to show the convergence of the derivative of Φ∗

with respect to χ1 in H1(Ω). The last statements of the lemma can be inferred
directly from the last two lemmas. �

Now that we have shown that the derivatives of both Φ and Φ∗ converge in
H1(Ω), the next step is to show that ψ in (3.41) has a derivative with respect to
χ1 which converges in L2(Ω). We first prove the following lemma.

Lemma 3.22. Under assumption (3.30), we let

δφ := Φ(χδ1 + ηδχδ1)− Φ(χδ1). (3.58)

Then there exists Cδ > 0 such that

‖∇δφ‖L∞(Ω)

≤ Cδ
{
‖∇δφ‖L2(Ω) + η‖∇ · ((σk1 − σ2)δχδ1∇φ(χδ1 + ηδχδ1))‖H1(Ω)

}
,

(3.59)

for any η ∈ (0, τ), where τ is chosen according to Remark 3.4.

Proof. Set

δσk = Σk(χδ1 + ηδχδ1)− Σk(χδ1). (3.60)

Then δφ and δσ satisfy

∇ · (Σk(χδ1)∇(δφ)) = −∇ · (δσk∇Φ(χδ1 + ηδχδ1)) on Ω,

σ
∂(δφ)

∂n
= 0 on ∂Ω.

By assumption (3.30) and since δχδ1 is a mollification of δχ1, we deduce that ∇ ·
(δσk∇Φ(χδ1 + ηδχδ1)) ∈ H1(Ω). Because χδ1, σ

k
1 ∈ C∞(Ω̄), then Σk(χδ1) ∈ C∞(Ω̄).

Thus, σk(χδ1) ∈ C1(Ω̄). Using standard regularity estimate (see, e.g., [16]),

‖δφ‖H3(Ω) ≤ C1(‖δφ‖H1(Ω) + ‖∇ · (δσk∇Φ(χδ1 + ηδχδ1))‖H1(Ω)), (3.61)

for some C1 > 0. Furthermore, by the Sobolev imbedding theorem, we have

‖δφ‖C1,γ(Ω̄) ≤ C2‖δφ‖H3(Ω). (3.62)
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By the definition of ‖ · ‖Cl,γ(Ω̄), the embedding

C1,γ(Ω̄) ↪→ C1(Ω̄) (3.63)

is continuous (see, e.g., [18]). If we compare (3.61), (3.62), and (3.63), we can
deduce that ∃C̄ > 0 such that

‖∇δφ‖L∞(Ω) ≤ C2

(
‖δφ‖H1(Ω) + ‖∇ · (δσk∇Φ(χδ1 + ηδχδ1))‖H1(Ω)

)
. (3.64)

Observe that δσk = η(σk1 − σ2)δχδ1. Therefore,

‖∇ · (δσk∇Φ(χδ1 + ηδχδ1))‖H1(Ω)

= η‖∇ · ((σk1 − σ2)δχδ1∇Φ(χδ1 + ηδχδ1))‖H1(Ω).
(3.65)

Recall that all solutions of the forward problem have zero boundary integral. Thus,∫
∂Ω

δφ dS =

∫
∂Ω

Φ(χδ1 + ηδχδ1)− Φ(χδ1) dS = 0− 0 = 0.

Using this and the generalized Friedrich’s inequality, we obtain

‖∇δφ‖2L2(Ω) =
1

2
‖∇δφ‖2L2(Ω) +

1

2
‖∇δφ‖2L2(Ω)

≥ C3

2
‖δφ‖2L2(Ω) −

1

2

(∫
∂Ω

δφ dS
)2

+
1

2
‖∇δφ‖2L2(Ω)

=
C3

2
‖δφ‖2L2(Ω) +

1

2
‖∇δφ‖2L2(Ω)

≥ min
{C3

2
,

1

2

}
‖δφ‖2H1(Ω)

(3.66)

for some C3 > 0. Using (3.66) and (3.65), (3.64) becomes

‖∇δφ‖L∞(Ω) ≤ C2

{
‖δφ‖H1(Ω) + ‖∇ · (δσk∇Φ(χδ1 + ηδχδ1))‖H1(Ω)

}
≤ C2

{ 1√
min{C3

2 ,
1
2}
‖∇δφ‖L2(Ω)

+ η‖∇ · ((σk1 − σ2)δχδ1∇Φ(χδ1 + ηδχδ1))‖H1(Ω)

}
≤ 2C2 max

{ 1√
min{C3

2 ,
1
2}
, 1
}{
‖∇δφ‖L2(Ω)

+ η‖∇ · ((σk1 − σ2)δχδ1∇Φ(χδ1 + ηδχδ1))‖H1(Ω)

}
.

Because of (3.58) and (3.60), our claim immediately follows from the above inequal-
ity. �

Note that

∇Φ(χδ1) ∈ L∞(Ω̄),∇Φ∗(χδ1) ∈ L∞(Ω), ∇ δΦ

δχδ1
(χδ1; δχδ1),∇δΦ

∗

δχδ1
(χδ1; δχδ1) ∈ L2(Ω).

Therefore, ∇Φ(χδ1) · ∇ δΦ∗

δχ1
(χδ1; δχδ1) +∇ δΦ

δχ1
(χδ1; δχδ1) · ∇Φ∗(χδ1) ∈ L2(Ω). We show

in the next lemma that this is in fact the derivative of ψ defined in (3.41).
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Lemma 3.23. Under assumption (3.30), we have

lim
η→0
‖ψ(χδ1 + ηδχδ1)− ψ(χδ1)

η
− δψ

δχ1
(χδ1; δχδ1)‖L2(Ω) = 0 (3.67)

with

δψ

δχ1
(χδ1; δχδ1) := ∇Φ(χδ1) · ∇δΦ

∗

δχ1
(χδ1; δχδ1) +∇ δΦ

δχ1
(χδ1; δχδ1) · ∇Φ∗(χδ1).

Proof. For any perturbation δχ1 of χ1, we have

ψ(χδ1 + ηδχδ1)− ψ(χδ1)

η

=
∇Φ(χδ1 + ηδχδ1) · ∇Φ∗(χδ1 + ηδχδ1)

η
− ∇Φ(χδ1) · ∇Φ∗(χδ1)

η

= ∇Φ(χδ1 + ηδχδ1) · ∇Φ∗(χδ1 + ηδχδ1)−∇Φ∗(χδ1)

η

+
∇Φ(χδ1 + ηδχδ1)−∇Φ(χδ1)

η
· ∇Φ∗(χδ1).

(3.68)

To continue with our proof, we first perform some convenient calculations. By
adding and subtracting a term, the following is obtained:

∇Φ(χδ1 + ηδχδ1) · ∇Φ∗(χδ1 + ηδχδ1)−∇Φ∗(χδ1)

η

−∇Φ(χδ1) · ∇δΦ
∗

δχδ1
(χδ1; δχδ1) := A1 +A2,

(3.69)

where

A1 = ∇Φ(χδ1 + ηδχδ1) · ∇Φ∗(χδ1 + ηδχδ1)−∇Φ∗(χδ1)

η

−∇Φ(χδ1 + ηδχδ1) · ∇δΦ
∗

δχ1
(χδ1; δχδ1),

A2 = ∇Φ(χδ1 + ηδχδ1) · δ∇Φ∗

δχ1
(χδ1; δχδ1)−∇Φ(χδ1) · ∇δΦ

∗

δχ1
(χδ1; δχδ1).

Using the Hölder’s inequality and (3.37), we obtain

‖A1‖L2(Ω) ≤ C1‖f‖L̃2(∂Ω)‖
∇Φ∗(χ1 + ηδχ1)−∇Φ∗(χ1)

η
−∇δΦ

∗

δχ1
(χδ1; δχδ1)‖L2(Ω),

for some C1 > 0. Recall from (3.39) that

‖Φ(χδ1 + ηδχδ1)− Φ(χδ1)‖H1(Ω) ≤ C2η‖δχ1‖L2(Ω), (3.70)

for some C2 > 0. Using the Cauchy-Schwarz inequality, (3.48), and (3.59), we
obtain

‖A2‖L2(Ω) ≤ C3η
{
C4‖δχ1‖L2(Ω) + ‖∇ · ([σk1 − σ2]δχδ1∇Φ(χδ1 + ηδχδ1))‖H1(Ω)

}
× ‖∇δΦ

∗

δχ1
(χδ1; δχδ1)‖H1(Ω),

for some C3, C4 > 0. Define

A3 :=
∇Φ(χ1 + ηδχ1)−∇Φ(χ1)

η
· ∇Φ∗(χ1)−∇ δΦ

δχ1
(χ1; δχ1) · ∇Φ∗(χ1). (3.71)
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Hence,

ψ(χδ1 + ηδχδ1)− ψ(χδ1)

η
=

3∑
i=1

Ai.

Using Hölder’s inequality and (3.36),

‖A3‖L2(Ω)

≤ ‖∇Φ(χδ1 + ηδχδ1)−∇Φ(χδ1)

η
−∇ δΦ

δχ1
(χδ1; δχδ1)‖L2(Ω)‖∇Φ∗(χδ1)‖L∞(Ω).

Comparing (3.68), (3.69) and (3.71) we obtain

‖ψ(χδ1 + ηδχδ1)− ψ(χδ1)

η
− δψ

δχ1
(χδ1; δχδ1)‖L2(Ω) ≤

3∑
i=1

‖Ai‖,

using the triangle inequality. Now we only need to show that all the terms on the
right-hand side of this inequality converge to 0 as η goes to 0. From the estimate of
the L2-norm of A2 above, we can see that ‖A2‖L2(Ω) → 0. From (3.47) and (3.48),
we can deduce that

lim
η→0
‖∇Φ(χδ1 + ηδχδ1)−∇Φ(χδ1)

η
−∇ δΦ

δχδ1
(χδ1; δχδ1)‖L2(Ω) = 0,

lim
η→0
‖∇Φ∗(χδ1 + ηδχδ1)−∇∗Φ(χδ1)

η
−∇δΦ

∗

δχδ1
(χδ1; δχδ1)‖L2(Ω) = 0.

These imply that ‖A1‖L2(Ω), ‖A3‖L2(Ω) → 0. �

We now use our results on Φ and Φ∗ to study Σ1. We first show that under
assumption (3.30), (3.29) has a unique solution σk+1

1 . We then proceed with finding

the regularity of the said solution. Observe that σk+1
1 depends on φ and φ∗. Hence,

we can investigate how the mollification of χ1 affects σk+1
1 . We show that σk+1

1

continuously depends on χ1. Furthermore, we prove that δΣ1

δχ1
(χδ1; δχδ1) ∈ H1(Ω).

We start by equipping H1(Ω) with a suitable norm.

Proposition 3.24. Under assumption (3.30) we define

|v|2H1(Ω) := α

∫
Ω

(χ+ ε)|∇v|2 dV + θλ

∫
v2 dV,

where χ(x) ∈ [0, 1] for all x ∈ Ω, and let ‖ · ‖H1(Ω) be the standard H1(Ω) norm.
Then | · |H1(Ω) and ‖ · ‖H1(Ω) are equivalent.

Proof. Observe that

min{αε, λ}‖v‖2H1(Ω) ≤ α
∫

Ω

ε|∇v|2 dV + θ

∫
Ω

|v|2 dV

≤ α
∫

Ω

(χ+ ε)|∇v|2 dV + λ

∫
Ω

|v|2 dV = |v|2H1(Ω).

On the other hand,

|v|2H1(Ω) = α

∫
Ω

(χ+ ε)|∇v|2 dV + λ

∫
Ω

|v|2 dV

≤ α
∫

Ω

(1 + ε)|∇v|2 dV + λ

∫
Ω

|v|2 dV
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≤ max {α(1 + ε), λ} ‖v‖2H1(Ω).

�

We now establish the regularity of σk+1
1 .

Lemma 3.25. Under assumption (3.30), the variational formulation∫
Ω

α(χδ1 + ε)∇σk+1
1 · ∇v dV +

∫
Ω

λ(σk+1
1 − σk1 )v dV

=

∫
Ω

χδ1∇Φ(χδ1) · ∇Φ∗(χδ1)v dV

(3.72)

for all v ∈ H1(Ω), has a unique solution σk+1
1 ∈ H1(Ω). Furthermore,

‖σk+1
1 ‖H1(Ω) ≤

2
√
µ(Ω) max{Cδ1 , Cδ2}

min{αε, λ}
(3.73)

where Cδ1 = ‖∇Φ(χδ1)‖L∞(Ω)‖∇Φ∗(χδ1)‖L∞(Ω) and Cδ2 = λ‖σk1‖L∞(Ω).

Proof. Let u, v ∈ H1(Ω) and define a(u, v) =
∫

Ω
α(χδ1 + ε)∇u · ∇v dV +

∫
Ω
λuv dV

and b(v) =
∫

Ω
(χδ1)∇Φ(χδ1) · ∇Φ∗(χδ1)v dV +

∫
Ω
λσk1v dV . It is obvious that a is

bilinear and b is linear. Using the Cauchy-Schwarz inequality, one can prove that
a(u, v) is continuous. We can also easily show that a(u, v) is coercive using the
previous proposition:

|a(u, u)| =
∫

Ω

α(χδ1 + ε)|∇u|2V +

∫
Ω

λu2 dV

= |u|2H1(Ω) ≥ min{αε, θ}‖u‖2H1(Ω).

Furthermore, the continuity of b(v) can be proven using the Cauchy-Schwarz in-
equality, the bounds in (3.31), and (3.36). Hence, by Lax-Milgram Theorem there
is a unique σk1 ∈ H1(Ω) satisfying (3.72) for all v ∈ H1(Ω). The H1(Ω) bound for

σk+1
1 directly follows. �

Remark 3.26. Given any perturbation δχδ1 and η > 0, we have to make sure
that the quantity Σ1(χδ1 + ηδχδ1) is well-defined. As shown in the proof of Lemma
(3.25), replacing χδ1 with χδ1 + ηδχδ1 cannot be done with just any η. To make sure
that the bilinear functional a is coercive, χδ1 + ηδχδ1 + ε must be positive. Since
χδ1 + ε > 0, we can choose η small enough so that χδ1 + ηδχδ1 + ε > 0 is satisfied.
Hence, similar to Remark 3.4, we take η from the set (0, τ̄) for τ̄ sufficiently small
so that Σ1(χδ1 +ηδχδ1) makes sense. Therefore, combining (3.37), (3.38) and (3.73),
there exists C > 0 such that

‖Σ1(χδ1 + ηδχδ1)‖H1(Ω) <∞, (3.74)

for any η ∈ (0, τ̂), where τ̂ = min {τ, τ̄}.

Because χδ1 is a mollification of χ1, it is real analytic. Then χδ1 + ε ∈ C∞(Ω̄).
Moreover, from Lemma (3.15), ∇Φ(χδ1),∇Φ∗(χδ1) ∈ C∞(Ω̄). This means that
χδ1∇Φ(χδ1) · ∇Φ∗(χδ1), χδ1 + ε, λ are all in C∞(Ω̄). Then using standard regularity
estimates [16] on

−α∇ · [(χδ1 + ε)∇σk+1
1 ] + λ(σk+1

1 − σk1 ) = χδ1∇Φ(χδ1) · ∇Φ∗(χδ1) on Ω,

∂σk+1
1

∂n
= 0 on ∂Ω,

(3.75)
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gives us σk+1
1 ∈ C∞(Ω̄). Consequently, ‖∇Σ1(χδ1)‖L∞(Ω) <∞. Furthermore,

‖∇Σ1(χδ1 + ηδχδ1)‖L∞(Ω) <∞, (3.76)

for any η ∈ (0, τ̂), where τ̂ = min {τ, τ̄}, τ and τ̄ are chosen according to Remark
3.4 and Remark 3.26, respectively. Before we can show that δΣ1

δχ1
(χδ1; δχδ1) ∈ H1(Ω),

we first need to find a candidate derivative.

Lemma 3.27. Under assumption (3.30), there exists Dσ(χ1; δχ1) ∈ H1(Ω) such
that∫

Ω

α(χδ1 + ε)∇Dσ(χδ1; δχδ1) · ∇v dV +

∫
Ω

λDσ(χδ1; δχδ1)v dV

=

∫
Ω

χδ1
δψ

δχ1
(χδ1; δχδ1)v + δχδ1∇Φ(χδ1) · ∇Φ∗(χδ1)v − αδχδ1∇(Σ1(χδ1)) · ∇v dV,

(3.77)
for all v ∈ H1(Ω).

The proof of the above lemma is similar to that of Lemma 3.19; we omit it. We
now have all the necessary tools to show that δΣ1

δχ1
(χδ1; δχδ1) ∈ H1(Ω). We prove

that this is exactly Dσ(χδ1; δχδ1) computed in the previous lemma.

Theorem 3.28. Under assumption (3.30), there exists Cδ > 0 such that

‖Σ1(χδ1 + ηδχδ1)− Σ1(χδ1)‖H1(Ω) ≤ Cδη‖δχ1‖L2(Ω) (3.78)

for any η ∈ (0, τ̂), where τ̂ = min {τ, τ̄}, τ and τ̄ are both chosen according to
Remark 3.4 and Remark 3.26, respectively. Also,

lim
η→0
‖Σ1(χδ1 + ηδχδ1)− Σ1(χδ1)

η
−Dσ(χδ1; δχδ1)‖ = 0. (3.79)

Furthermore, we make the identification δΣ1

δχ1
(χδ1; δχδ1) = Dσ(χδ1; δχδ1) ∈ H1(Ω).

Proof. Let v ∈ H1(Ω) and η > 0. From (3.72), we have∫
Ω

α(χδ1 + ε)∇Σ1(χδ1) · ∇v + λ(Σ1(χδ1)− σk1 )v dV

=

∫
Ω

χδ1∇Φ(χδ1) · ∇Φ∗(χδ1)v dV.

(3.80)

Similarly, if we replace χδ1 in (3.72) with χδ1 + ηδχδ1, we have∫
Ω

α(χδ1 + ηδχδ1 + ε)∇(Σ1(χδ1 + ηδχδ1)) · ∇v dV

+

∫
Ω

λ(Σ1(χδ1 + ηδχδ1)− σk1 )v dV =: A(v),

(3.81)

where

A(v) =

∫
Ω

(χδ1 + ηδχδ1)∇Φ(χδ1 + ηδχδ1) · ∇Φ∗(χδ1 + δχδ1)v dV.

Subtracting (3.80) from (3.81), we obtain

A1(v) +A2(v) = B1(v) +B2(v) +B3(v), (3.82)

where

A1(v) :=

∫
Ω

α(χδ1 + ε)∇[Σ1(χδ1 + ηδχδ1)− Σ1(χδ1)] · ∇v dV,
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A2(v) :=

∫
Ω

λ(Σ1(χδ1 + ηδχδ1)− Σ1(χδ1))v dV,

B1(v) :=

∫
Ω

χδ1[∇Φ(χδ1 + ηδχδ1) · ∇Φ∗(χδ1 + ηδχδ1)−∇Φ(χδ1) · ∇Φ∗(χδ1)]v dV,

B2(v) :=

∫
Ω

ηδχδ1∇Φ(χδ1 + ηδχδ1) · ∇Φ∗(χδ1 + ηδχδ1)v dV,

B3(v) := −
∫

Ω

αηδχδ1∇(Σ1(χδ1 + ηδχδ1)) · ∇v dV,

for all v ∈ H1(Ω). We define a(Σ1(χδ1 + ηδχδ1) − Σ1(χδ1), v) := A1(v) + A2(v) and
b(v) := B1(v) +B2(v) +B3(v), for all v ∈ H1(Ω). In Lemma (3.25), we have shown
already that a is bilinear, coercive, and continuous. Clearly, b is linear. Now we only
need to show that b is continuous. So we need to estimate B1(v), B2(v), and B3(v).
For all these, we use the Cauchy-Schwarz inequality. To show continuity of B1(v),
we also use (3.43). For B2(v) and B3(v), one uses the Cauchy-Schwarz inequality,
Hölder’s inequality, and Young’s inequality for convolutions to show continuity.
It is worth noting that ‖∇Φ(χδ1 + ηδχδ1)‖L∞(Ω), ‖∇Φ∗(χδ1 + ηδχδ1)‖L∞(Ω), and the

quantity ‖Σ1(χδ1 +ηδχδ1)‖H1(Ω) are independent of η as shown in (3.37), (3.38), and
(3.74). Combining these implies that b(v) is bounded.

We make the substitution u = v = Σ1(χδ1 + ηδχδ1)−Σ1(χδ1). Furthermore, using
the coercivity of a and the boundedness of b, we conclude that

‖Σ1(χδ1 + ηδχδ1)− Σ1(χδ1)‖H1(Ω) ≤ Cη‖δχ1‖L2(Ω). (3.83)

Hence, the proof of our first statement is complete.
Subtracting (3.77) from (3.82), we obtain

D1(v) +D2(v) = E1(v) + E2(v) + E3(v), (3.84)

where

D1(v) =

∫
Ω

α(χδ1 + ε)∇
[Σ1(χδ1 + ηδχδ1)− Σ1(χδ1)

η
−Dσ(χδ1; δχδ1)

]
· ∇v dV,

D2(v) =

∫
Ω

λ
[Σ1(χδ1 + ηδχδ1)− Σ1(χδ1)

η
−Dσ(χδ1; δχδ1)

]
v dV,

E1(v) =

∫
Ω

χδ1
[ψ(χδ1 + ηδχδ1)− ψ(χδ1)

η
− δψ

δχδ1
(χδ1; δχδ1)

]
v dV,

E2(v) =

∫
Ω

δχδ1
[
ψ(χδ1 + ηδχδ1)− ψ(χδ1)

]
v dV,

E3(v) = −
∫

Ω

αδχδ1∇
[
Σ1(χδ1 + ηδχδ1)− Σ1(χδ1)

]
· ∇v dV,

and ψ is the function defined in (3.41).
Using the Cauchy-Schwarz inequality, Hölder’s inequality, (3.43), and (3.83), we

can estimate E1(v), E2(v), and E3(v). Indeed,

|E1(v)| ≤ ‖ψ(χδ1 + ηδχδ1)− ψ(χδ1)

η
− δψ

δχ1
(χδ1; δχδ1)‖L2(Ω)‖v‖L2(Ω).

Similarly,

|E2(v)| ≤ C2η‖δχδ1‖L∞(Ω)‖δχ1‖L2(Ω)‖v‖H1(Ω),
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for some C2 > 0. Finally,

|E3(v)| ≤ α‖δχδ1‖L∞(Ω)‖∇[Σ1(χδ1 + ηδχδ1)− Σ1(χδ1)]‖L2(Ω)‖∇v‖L2(Ω)

≤ Cη‖δχδ1‖L∞(Ω)‖δχ1‖L2(Ω)‖v‖H1(Ω).

If we make the substitution

v =
Σ1(χδ1 + ηδχδ1)− Σ1(χδ1)

η
−Dσ(χδ1; δχδ1),

then by Proposition 3.24, we obtain

|D1(v) +D2(v)| =
∣∣Σ1(χδ1 + ηδχδ1)− Σ1(χδ1)

η
−Dσ(χδ1; δχδ1)

∣∣2
H1(Ω)

≥ min{αε, λ}‖Σ1(χδ1 + ηδχδ1)− Σ1(χδ1)

η
−Dσ(χδ1; δχδ1)‖2H1(Ω).

Hence, the above inequality and (3.84) imply

min{αε, λ}‖Σ1(χδ1 + ηδχδ1)− Σ1(χδ1)

η
−Dσ(χδ1; δχδ1)‖H1(Ω)

≤ |E1(v)|+ |E2(v)|+ |E3(v)|.

Taking the limit as η → 0, it is clear that |E2(v)|+ |E3(v)| → 0.
Lastly, from (3.67), we have |E1(v)| → 0, which then implies our second state-

ment. The last statement follows immediately from the previous lemma. �

Now that we have established that δΣ1

δχ1
(χδ1; δχδ1) ∈ H1(Ω), the gradient of the

functional J shown in (2.14) is justified.

4. Existence of a fixed point

In (3.28), the update for χ1 was introduced. In this section, we show that this
update has a fixed point. In other words, we show that

Υ(χ1) := (Tδ ◦M ◦H ◦Θ ◦G ◦ Tδ)(χ1) (4.1)

has a fixed point on some suitable space. We use the following fixed point theorem
to prove this.

Theorem 4.1 (Schauder fixed point). Let K be a convex subset of L2(Ω) and
suppose Υ : K → L2(Ω) is continuous. Suppose Υ(K) is a compact subset of K.
Then Υ has a fixed point in K (see [15]).

Thus, it is necessary to show that Υ is continuous on a convex subset K of
L2(Ω) and that Υ(K) is compact in K. The previous section justified the calculated
formulation of the function G defined in (2.14). We now show that

G(χ1) = χ1 − ω[−2(Σ1(χ1)− σ2)ψ(χ1) + α|∇Σ1(χ1)|2] (4.2)

is continuous.

Lemma 4.2. Under assumption (3.30),

lim
η→0
‖G(χδ1 + ηδχδ1)−G(χδ1)‖L2(Ω) = 0. (4.3)



EJDE-2020/93 IMPEDANCE TOMOGRAPHY PROBLEM 23

Proof. Denote

A1(χδ1) := 2ω[Σ1(χδ1 + ηδχδ1)− σ2]ψ(χδ1),

A2(χδ1) := −αω|∇Σ1(χδ1)|2.

Thus, using (4.2), the triangle inequality, and Young’s inequality for a convolution,
we obtain

‖G(χδ1 + ηδχδ1)−G(χδ1)‖L2(Ω)

≤ η‖ξδ‖L1(Ω)‖δχ1‖L2(Ω) + ‖A1(χδ1 + ηδχδ1)−A1(χδ1)‖L2(Ω)

+ ‖A2(χδ1 + ηδχδ1)−A2(χδ1)‖L2(Ω).

(4.4)

Adding and subtracting 2ω[Σ1(χδ1 + ηδχδ1) − σ2]ψ(χδ1) to A1(χδ1 + ηδχδ1) − A1(χδ1)
and using the triangle inequality, we obtain

‖A1(χδ1 + ηδχδ1)−A1(χδ1)‖L2(Ω) ≤ ‖B1(χ1; δχ1)‖L2(Ω) + ‖B2(χ1; δχ1)‖L2(Ω),

where

B1(χδ1; δχδ1) = −2ω[Σ1(χδ1 + ηδχδ1)− σ2]ψ(χδ1 + ηδχδ1)

+ 2ω[Σ1(χδ1 + ηδχδ1)− σ2]ψ(χδ1),

B2(χδ1; δχδ1) = −2ω[Σ1(χδ1 + ηδχδ1)− σ2]ψ(χδ1) + 2ω[Σ1(χδ1)− σ2]ψ(χδ1).

By using Hölder’s inequality, (3.76), (3.43), (3.31), (3.36), and (3.78), we can esti-
mate B1(χδ1; δχδ1) and B2(χδ1; δχδ1) as follows:

‖B1(χδ1; δχδ1)‖L2(Ω) ≤ 2C1ωη‖[Σ1(χδ1 + ηδχδ1)− σ2]‖L∞(Ω)‖δχ1‖L2(Ω), (4.5)

for some C1 > 0 and

‖B2(χδ1; δχδ1)‖L1(Ω) ≤ C2η‖δχ1‖L2(Ω)‖∇Φ(χδ1)‖L∞(Ω)‖∇Φ∗(χδ1)‖L2(Ω), (4.6)

for some C2 > 0. Also, A2(χδ1 + ηδχδ1)−A2(χδ1) can be estimated using (3.76) and
(3.78):

‖A2(χδ1 + ηδχδ1)−A2(χδ1)‖L2(Ω)

≤ αωC3η‖δχ1‖L2(Ω)

{
‖Σ1(χδ1ηδχ

δ
1)‖L∞(Ω) + ‖Σ1(χδ1)‖L∞(Ω)

}
,

(4.7)

for some C3 > 0. Comparing (4.4), (4.5), (4.6), and (4.7) implies the existence of a
C > 0 such that

‖G(χδ1 + ηδχδ1)−G(χδ1)‖L2(Ω) ≤ Cη‖δχ1‖L2(Ω),

for any η ∈ (0, τ̂), where τ̂ = min {τ, τ̄}, τ and τ̄ are both chosen according to
Remark 3.4 and Remark 3.26, respectively. Taking the limit of the above inequality
as η → 0 gives us our desired result. �

Now that we have shown the continuity of the function G, we prove the continuity
of the operator Θ (see Definition 2.6). Before proving continuity, we first show that
given χδ1, (2.16) has a solution in H1(Ω). Note that because χδ1 ∈ C∞(Ω), ∇χδ1 is
bounded in Ω for a fixed δ. Hence,√

|∇χδ1|2 + β2 ≤
√
‖∇χδ1‖2L∞(Ω) + β2 =: K̄ <∞.

Or equivalently,
1√

|∇χδ1|2 + β2
≥ 1

K̄
. (4.8)
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Obviously, for any β > 0,
√
|∇χδ1|2 + β2 ≥ β, which can be expressed as

1√
|∇χδ1|2 + β2

≤ 1

β
. (4.9)

For u, v ∈ H1(Ω), we define

a(u, v) =

∫
Ω

ωγ
∇u · ∇v√
|∇χδ1|2 + β2

+ uv dV, (4.10)

b(v) =

∫
Ω

G(χδ1)v dV.

Clearly, a and b are bilinear and linear, respectively. Observe that using the Cauchy-
Schwarz inequality and (4.9), we obtain

|a(u, v)| ≤ 2 max{ωγ
β
, 1}‖u‖H1(Ω)‖v‖H1(Ω),

for all v ∈ H1(Ω), which makes a continuous. It can also be shown using the
Cauchy-Schwarz inequality that b(v) is also continuous. Using (4.9), a can be
proven to be coercive. Therefore, using the Lax-Milgram theorem, there exists a
unique θ ∈ H1(Ω) satisfying a(θ, v) = b(v)] for all v ∈ H1(Ω).

Lemma 4.3. Under assumption (3.30), there exists a unique θ ∈ H1(Ω) satisfying∫
Ω

ωγ
∇θ · ∇v√
|∇χδ1|2 + β2

+ θv dV =

∫
Ω

G(χδ1)v dV, (4.11)

for any v ∈ H1(Ω) provided that ∂v
∂n = 0 on ∂Ω. Furthermore, there exists C > 0

such that

‖θ‖H1(Ω) ≤
1

min{ωγ
K̄
, 1}
‖G(χδ1)‖L2(Ω).

The above lemma tells us that given χ1, a mollification can be performed to
obtain a unique solution θ ∈ H1(Ω) to (4.11). Hence, we can think of Θ(χδ1) as a
function that maps an element χ1 ∈ L2(Ω) to an element θ ∈ H1(Ω). Note that
given a perturbation δχδ1 of χδ1, Θ(χδ1 + ηδχδ1) is well-defined for any 0 < η < ∞
because for coercivity we just need

√
‖∇(χδ1 + ηδχδ1)‖2L∞(Ω) + β2 to be finite. Since

χδ1 + ηδχδ1 ∈ C∞(Ω̄), this is not a problem. From the definition of G and the
inequalities (3.37), (3.38), and (3.76), we can infer that

‖Θ(χδ1 + ηδχδ1)‖H1(Ω) ≤ C‖G(χδ1 + ηδχδ1)‖L2(Ω) <∞, (4.12)

for some C > 0. We now prove that this map is continuous.

Lemma 4.4. Under assumption (3.30),

lim
η→0
‖Θ(χδ1 + ηδχδ1)−Θ(χδ1)‖H1(Ω) = 0.

Proof. By the previous lemma, note that Θ(χδ1) satisfies∫
Ω

ωγ
∇Θ(χδ1) · ∇v√
|∇χδ1|2 + β2

+ Θ(χδ1)v dV =

∫
Ω

G(χδ1)v dV. (4.13)
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Similarly, Θ(χδ1 + ηδχδ1) satisfies∫
Ω

ωγ
∇Θ(χδ1 + ηδχδ1) · ∇v√
|∇(χδ1 + ηδχδ1)|2 + β2

+ Θ(χδ1 + ηδχδ1)v dV

=

∫
Ω

G(χδ1 + ηδχδ1)v dV.

(4.14)

Subtracting (4.13) from (4.14), we obtain

A1(v) +A2(v) = B(v), (4.15)

with

A1(v) :=

∫
Ω

ωγ
[ ∇Θ(χδ1 + ηδχδ1) · ∇v√
|∇χδ1 + ηδχδ1|2 + β2

− ∇Θ(χδ1) · ∇v√
|∇χδ1|2 + β2

]
dV,

A2(v) :=

∫
Ω

[Θ(χδ1 + ηδχδ1)−Θ(χδ1)]v dV,

B(v) :=

∫
Ω

[G(χδ1 + ηδχδ1)−G(χδ1)]v dV.

We subtract and add the term∫
Ω

ωγ
∇Θ(χδ1 + ηδχδ1) · ∇v√

|∇χδ1|2 + β2
dV

to A1(v) to obtain

A1(v) = A3(v) +A4(v), (4.16)

with

A4(v) :=

∫
Ω

ωγD(η)
∇Θ(χδ1 + ηδχδ1) · ∇v√
|∇(χδ1)|2 + β2

,

A3(v) :=

∫
Ω

ωγ
[∇Θ(χδ1 + ηδχδ1)−∇Θ(χδ1)] · ∇v√

|∇χδ1|2 + β2
dV,

D(η) :=
1√

|∇(χδ1 + ηδχδ1)|2 + β2
− 1√

|∇χδ1|2 + β2
.

From (4.15) and (4.16), we have

A3(v) +A2(v) = B(v)−A4(v). (4.17)

From the definition of the bilinear functional a in (4.10), we deduce that

A3(v) +A2(v) = a(Θ(χδ1 + ηδχδ1)−Θ(χδ1), v).

From the coercivity of a we can show that

|(A3 +A2)(Θ(χδ1 + ηδχδ1)−Θ(χδ1))|

≥ min(
ωγ

K̄
, 1)‖Θ(χδ1 + ηδχδ1)−Θ(χδ1)‖2H1(Ω).

(4.18)

On the other hand, using the Cauchy-Schwarz inequality, we obtain

|B(v)| ≤ ‖G(χδ1 + ηδχδ1)−G(χδ1)‖L2(Ω)‖v‖H1(Ω). (4.19)

Moreover, using the Cauchy-Schwarz inequality, Hölder’s inequality, and (4.9), we
have

|A4(v)| ≤ ωγ

β
‖D(η)‖L∞(Ω)‖Θ(χδ1 + ηδχδ1)‖H1(Ω)‖v‖H1(Ω). (4.20)
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Comparing (4.17), (4.18), (4.19), and (4.20), we obtain

min{ωγ
K̄
, 1}‖Θ(χδ1 + ηδχδ1)−Θ(χδ1)‖2H1(Ω)

≤ ‖G(χδ1 + ηδχδ1)−G(χδ1)‖L2(Ω) +
ωγ

β
‖D(η)‖L∞(Ω)‖Θ(χδ1 + ηδχδ1)‖H1(Ω).

From (4.12), the right-hand side of the above inequality is bounded for any
η ∈ (0, τ̂), where τ̂ = min {τ, τ̄}, τ and τ̄ are both chosen according to Remark 3.4
and Remark 3.26, respectively. Obviously, limη→0 ‖D(η)‖L∞(Ω) = 0. The above
inequality, together with (4.3), establishes our claim. �

We now establish that the function H defined in (3.25) is continuous. The details
of the proof can be found in [15].

Lemma 4.5. Let z ∈ L2(Ω)\H1(Ω) and suppose {gn}∞n=1 ⊂ L2(Ω) converge to g
in L2(Ω). Then

lim
n→∞

µ(H(g)4H(gn)) = 0, (4.21)

where

H(g) = {x ∈ Ω : ((gδ − ζ + δz) ∗ ξδ)(x) ≥ 0},
for some ζ ∈ (0, 1) and gδ = g ∗ ξδ. In other words, H is continuous in L2(Ω) (see
[15]).

In our next computations, we prove the continuity of the function M defined in
(3.26). Recall that M maps elements ofM(Ω) to their corresponding characteristic
functions. We now try to find a suitable space for these characteristic functions.
Intuitively, convergence of these characteristic functions is dependent upon the
convergence of their associated supports. We choose L2(Ω) to be the space of
the characteristic functions and select M(Ω) to be the space of their associated
supports. Recall that M(Ω) is a metric space equipped with the measure of the
symmetric difference. The following lemma proves how these two spaces are related.

Lemma 4.6. Let χ̂ and χ be characteristic functions on Ω whose supports are given
by Ωχ̂ and Ωχ, respectively. Then

µ(Ωχ̂ 4 Ωχ) = ‖χ̂− χ‖2L2(Ω).

Proof. Because χ and χ̂ are characteristic functions, we have

Ωχ̂\Ωχ = {x : x ∈ Ωχ̂ ∧ x /∈ Ωχ} = {x : χ̂(x) = 1 ∧ χ(x) = 0}.

Similarly,

Ωχ\Ωχ̂ = {x : χ(x) = 1 ∧ χ̂(x) = 0}.
Thus, from the definition of symmetric difference and the fact that Ωχ̂\Ωχ and

Ωχ\Ωχ̂ are disjoint sets, we obtain

µ(Ωχ̂ 4 Ωχ) = µ((Ωχ̂\Ωχ) ∪ (Ωχ\Ωχ̂))

= µ({x : χ̂(x) = 1 ∧ χ(x) = 0}) + µ({x : χ(x) = 1 ∧ χ̂(x) = 0})

=

∫
Ω

χ̂(1− χ) dV +

∫
Ω

χ(1− χ̂) dV

= ‖χ̂− χ‖2L2(Ω).

�
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Now that we have established a mode of convergence for the characteristic func-
tions and their associated sets, we can prove that M is continuous.

Lemma 4.7. Suppose {ωn}∞n=1 ⊂ M(Ω) such that ωn → ω in M(Ω), that is,
limn→∞ µ(ωn 4 ω) = 0. Then

lim
n→∞

‖M(ωn)−M(ω)‖L2(Ω) = 0,

where M :M(Ω) → L2(Ω) is a function that maps ω to its corresponding charac-
teristic function, that is, M(ω) = χω. In other words, M is continuous on M(Ω).

Proof. We denote
M(ωn) =: χn and M(ω) := χω.

Then by Lemma (4.6),

lim
n→∞

‖M(ωn)−M(ω)‖2L2(Ω) = lim
n→∞

‖χn − χω‖2L2(Ω) = lim
n→∞

µ(ωn 4 ω) = 0.

�

We have shown continuity of G, Θ, H and M . Finally, we can prove that Υ has
a fixed point.

Theorem 4.8. Under assumption (3.30) we let z ∈ L2(Ω)\H1(Ω). Then the
function Υ : L2(Ω)→ L2(Ω) defined by

Υ(χ1) := (Tδ ◦M ◦H ◦Θ ◦G ◦ Tδ)(χ1)

has a fixed point in the set

K := {χ1 ∈ L2(Ω) : 0 ≤ χ1 ≤ 1 a.e. Ω}. (4.22)

Proof. We employ the Schauder Fixed Point Theorem. We first need to show thatK
is a convex set in L2(Ω). Let χ1, χ̄1 ∈ K and λ ∈ (0, 1). Obviously, λχ1+(1−λ)χ̄1 ∈
L2(Ω). We only need to show that 0 ≤ λχ1 + (1− λ)χ̄1 ≤ 1. Because λ, 1− λ > 0
then λχ1 + (1 − λ)χ̄1 ≥ 0. Furthermore, λχ1 + (1 − λ)χ̄1 ≤ λ + 1 − λ = 1. Thus,
λχ1 + (1− λ)χ̄1 ∈ K and K is convex in L2(Ω).

We show next that Υ is continuous. The functions G, Θ, H, and M are continu-
ous as proven in Lemma 4.2, Lemma 4.4, Lemma 4.5, and Lemma 4.7, respectively.
From Lemma 3.8, Tδ is continuous as well by choosing p = 2, r = 2, and q = 1.
Because composition of continuous functions is continuous, Υ is continuous.

We only need to show that Υ(K) ⊂ K and that Υ(K) is compact in K. Recall
that (M ◦H ◦Θ ◦G)(χδ1) is a characteristic function. Thus,

0 ≤ (M ◦H ◦Θ ◦G)(χδ1) ≤ 1.

By Theorem 2.5,
0 ≤ (Tδ ◦M ◦H ◦Θ ◦G)(χδ1) ≤ 1,

and so Υ(χ1) ∈ K. Let χ̄1 be an arbitrary element of K. Let us denote ω :=
(H◦Θ◦G)(χ̄δ1), χω := M(ω), and χωδ := Tδ(χ

ω). By Lemma 3.9, Hölder’s inequality,
and the Cauchy-Schwarz inequality, we obtain

|∇χωδ (x)| = |
∫

Ω

∇ξδ(x− y)χω(y)dy|

≤ ‖χω‖L∞(Ω)

∫
Ω

|∇ξδ(x− y)|dy

≤
√
µ(Ω)‖∇ξδ‖L2(Ω).
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Hence,

‖∇χωδ ‖2L2(Ω) =

∫
Ω

|
∫

Ω

∇ξδ(x− y)χω(y)dy|2dx ≤ µ(Ω)2‖∇ξδ‖2L2(Ω).

From Lemma 2.5, χωδ is real analytic and so χωδ ∈ H1(Ω). For a fixed δ, we compute
the H1(Ω) norm of χωδ using Young’s inequality for convolutions and the Hölder’s
inequality:

‖Υ(χ̄1)‖2H1(Ω) = ‖χωδ ‖2H1(Ω)

= ‖χωδ ‖2L2(Ω) + ‖∇χωδ ‖2L2(Ω)

≤ ‖χω ∗ ξδ‖2L2(Ω) + µ(Ω)2‖∇ξδ‖2L2(Ω)

≤ ‖χω‖2L1(Ω)‖ξδ‖
2
L2(Ω) + µ(Ω)2‖∇ξδ‖2L2(Ω)

≤ ‖χω‖2L∞(Ω)µ(Ω)2‖ξδ‖2L2(Ω) + µ(Ω)2‖∇ξδ‖2L2(Ω)

≤ µ(Ω)2
(
‖ξδ‖2L2(Ω) + ‖∇ξδ‖2L2(Ω)

)
.

Since χ̄1 is arbitrary, any sequence {Υ(χn1 )}∞n=1 is bounded in the H1(Ω) norm
for a fixed δ. Because Ω is bounded, H1(Ω) is compactly embedded in L2(Ω) and
{Υ(χn1 )}∞n=1 has a convergent subsequence [1]. Therefore Υ(K) is compact. Using
Schauder Fixed Point theorem, Υ1 has a fixed point on K. �

The fixed point is attained given any arbitrary χ1 ∈ L2(Ω) such that 0 ≤ χ1 ≤ 1
and σ̄1 in C∞(Ω), which can be chosen to be a constant. The introduction of a
mollifier was used to guarantee the existence of the fixed point. Note that a fixed
point is guaranteed for any arbitrary δ > 0.

5. Conclusion

The EIT problem is the image reconstruction of the conductivity distribution of
a body Ω given current and electrical potential data on the boundary ∂Ω. In [27],
a two-phase segmentation algorithm was proposed in reconstructing conductivity
distribution in EIT. The algorithm arised from the minimization of a functional
which depends on the conductivity distribution σ = σ1χ1 + σ2(1− χ1). The value
of σ2 is fixed and known while σ1 is expressed in terms of χ1. Hence, the functional
depends on χ1 alone. An iterative algorithm using the method of steepest descent
is then explored. Moreover, the algorithm is summarized using a composition of
several functions of χ1. By introducing a mollification on χ1, continuity of these
functions was shown. Finally, the existence of a fixed point of the proposed method
was proved using the Schauder Fixed Point theorem.
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