GROUND STATE AND MULTIPLE SOLUTIONS FOR CRITICAL FRACTIONAL SCHRÖDINGER-POISSON EQUATIONS WITH PERTURBATION TERMS

LINTAO LIU, KAIMIN TENG

Abstract. In this article, we study a class of critical fractional Schrödinger-Poisson system with two perturbation terms. By using variational methods and Lusternik-Schnirelman category theory, the existence of ground state and two nontrivial solutions are established.

1. Introduction

In this article, we consider the nonlinear fractional Schrödinger-Poisson system with critical nonlinearity

\begin{equation}
\begin{aligned}
(-\Delta)^s u + u + K(x)\phi u &= a(x)|u|^{p-2}u + \mu b(x)|u|^{q-2}u + |u|^{2^*_s-2}u, \quad \text{in } \mathbb{R}^3, \\
(-\Delta)^t \phi &= K(x)u^2, \quad \text{in } \mathbb{R}^3,
\end{aligned}
\end{equation}

where \((-\Delta)^\alpha\) is the fractional Laplacian operator for \(\alpha = s, t\), \(p, q \in (4, 2^*_s)\), \(s \in (\frac{3}{4}, 1)\), \(2s + 2t > 3\), \(\mu > 0\) is a parameter, \(K(x), a(x)\) and \(b(x)\) satisfy the following conditions:

(A1) \(K(x) \in C(\mathbb{R}^3), K(x) \geq 0\) and \(\lim_{|x| \to \infty} K(x) = K_\infty > 0\);

(A2) there exist \(C_0 > 0\) and \(k > 0\) such that \(K(x) \leq K_\infty - \frac{C_0}{(1+|x|)^k}\) for all \(x \in \mathbb{R}^3\);

(A3) there exist \(C_1 > 0\) and \(d > 0\) such that \(K(x) \leq K_\infty + \frac{C_1}{(1+|x|)^d}\) for all \(x \in \mathbb{R}^3\);

(A4) \(a(x) \in C(\mathbb{R}^3), a(x) \geq 0\) and \(\lim_{|x| \to \infty} a(x) = a_\infty > 0\);

(A5) there exist \(C_2 > 0\) and \(a > 0\) such that \(a(x) \geq a_\infty - \frac{C_2}{(1+|x|)^a}\) for all \(x \in \mathbb{R}^3\);

(A6) \(b(x) \in C(\mathbb{R}^3), b(x) \geq 0\) and \(\lim_{|x| \to \infty} b(x) = 0\);

(A7) there exist \(C_3 > 0\) and \(b > 0\) such that \(b(x) \geq \frac{C_3}{(1+|x|)^b}\) for all \(x \in \mathbb{R}^3\).

Since the first equation in (1.1) is of fractional Schrödinger equation with a potential \(\phi\) satisfying the fractional Poisson equation, we call system (1.1) a fractional Schrödinger-Poisson system. In recent years, equations or systems with fractional Laplace operators have been studied extensively because they are widely used in fractional quantum mechanics, physics, chemistry, obstacle problems, optimization and finance, we refer to see [12] [16] [20] [21] [23] and so on. It is also well applied in the mathematical theory of conformal geometry and minimal surface, see [9].
As far as we know, there are a few papers considering (1.1) after it was introduced in [15]. In [15], the author studied the local and global well-posedness of the Cauchy problem

\[i\partial_t \Psi + \frac{1}{2} \Delta_x \Psi = A_0 \Psi + \alpha |\Psi|^{\gamma-1} \Psi, \quad (t, x) \in \mathbb{R} \times \mathbb{R}, \]

\[(-\Delta)^{\sigma/2} A_0 = |\Psi|^2, \]

\[\Psi(\cdot, x) = f, \]

where \(\sigma \in (0, 1) \), \(\alpha = \pm 1 \), \(1 < \gamma \leq 5 \). Recently, Zhang, Do ño and Squassina [38] established the existence of radial ground state solution to the following fractional Schrödinger-Poisson system with a general subcritical or critical nonlinearity

\[(-\Delta)^s u + \lambda \phi u = f(u), \quad \text{in} \ \mathbb{R}^3, \]

\[(-\Delta)^t \phi = \lambda u^2, \quad \text{in} \ \mathbb{R}^3. \]

Teng [33] studied the existence of a nontrivial ground state solution through using the method of Pohozaev-Nehari manifold, the monotonic trick and global compactness Lemma for the system

\[(-\Delta)^s u + V(x)u + \phi u = |u|^{p-1}u, \quad \text{in} \ \mathbb{R}^3, \]

\[(-\Delta)^t \phi = u^2, \quad \text{in} \ \mathbb{R}^3. \]

Using a similar argument, Teng in [32] also studied the existence of ground state solutions for the critical problem with a perturbation term

\[(-\Delta)^s u + V(x)u + \phi u = \mu |u|^{q-1}u + |u|^{2^* - 2}u, \quad \text{in} \ \mathbb{R}^3, \]

\[(-\Delta)^t \phi = u^2, \quad \text{in} \ \mathbb{R}^3. \]

For other related works, see [22, 28] and their references.

On the other hand, when \(s = t = 1 \), system (1.1) reduces to classical Schrödinger-Poisson system written by a more general form

\[-\Delta u + V(x)u + K(x)\phi u = f(x, u), \quad \text{in} \ \mathbb{R}^3, \]

\[-\Delta \phi = K(x)u^2, \quad \text{in} \ \mathbb{R}^3. \]

This is called the system of Schrödinger-Poisson equations because it consists of a Schrödinger equation coupled with a Poisson term. In the previous decades, there has been a lot of work dealing with the system (1.2) under different assumptions on \(V, K \) and \(f \), see [2, 3, 8, 10, 11, 15, 17, 24, 27, 29, 35, 37, 39, 40] and the references therein. For example, in [3], the authors proved the existence of ground state solutions for the subcritical \(3 < p < 6 \) and the critical case \(f = |u|^{p-2}u + u^5 \) with \(4 < p < 6 \). For the case \(p \leq 2 \) or \(p \geq 6 \), the reader may see [11] and for the case \(2 < p < 6 \), see [2, 3, 8, 10, 24]. In the case of \(V \) being non-radial, \(K \equiv 1 \) and \(f = |u|^{p-2}u \), the existence of ground state solution for system (1.2) was obtained in [3, 40] for \(4 < p < 6 \) and \(3 < p \leq 4 \); In [8], the authors proved the existence of ground state and bound states for the case when \(V \equiv 1 \) and \(f = a(x)|u|^{p-2}u \) with \(4 < p < 6 \). In [37], the author considered a general critical situation with two perturbation term and obtained the existence and multiplicity of solutions via using Lusternik-Schnirelman category due to [11].
To the best of our knowledge, there are few papers on the multiplicity solutions for system (1.1). Inspired by [1 6 37], we construct two mappings:

\[F_R : S^2 = \{ y \in \mathbb{R}^3 : |y| = 1 \} \rightarrow \{ u \in M : I(u) \leq m_\infty - \varepsilon(R) \}, \]

\[G : \{ u \in M : I(u) < m_\infty \} \rightarrow S^2, \]

so that \(G \circ F_R \) homotopic to the identity. Using the theory of Lusternik-Schnirelman category, we will establish the existence of two nontrivial solutions for system (1.1).

Our main results are stated as follows.

Theorem 1.1. Assume that \(K, a \) and \(b \) satisfy (A1), (A2), (A4)–(A6) with \(0 < k < \alpha \), where \(\alpha = \min\{a, (3 + 2s)p\} \). Then problem (1.1) admits a positive ground state solution.

Theorem 1.2. Suppose that (A1), (A3)–(A7) hold with \(b < \min\{\alpha, \beta\} \), where \(\alpha = \min\{a, (3 + 2s)p\} \) and \(\beta = \min\{d, 6 + 4s\} \). Then problem (1.1) admits a positive ground state solution.

Theorem 1.3. Assume that \(K \in C^1(\mathbb{R}^3), a \in C^1(\mathbb{R}^3) \) and \(b(x) \) satisfy (A1), (A3)–(A7) with \(K(x) \geq K_\infty, a(x) \leq a_\infty \) and \(\text{meas}\{x \in \mathbb{R}^3 : K(x) \geq K_\infty \} > 0 \). Then there exists \(\mu_0 > 0 \) small such that for any \(\mu \in (0, \mu_0) \), problem (1.1) admits at least two nontrivial solutions.

The rest of the paper is organized as follows: In Section 2, we give some preliminaries. In Section 3, we prove Theorem 1.1 and Theorem 1.2 and Section 4 devotes to proving Theorem 1.3.

2. Preliminary lemmas

In the sequel, we use the following notation:

- \(H^s(\mathbb{R}^3) \) denotes the fractional sobolev space with norm

\[\|u\|^2 := \int_{\mathbb{R}^3} (|(-\Delta)^{\frac{s}{2}} u|^2 + u^2) dx \]

and

\[D^{s,2}(\mathbb{R}^3) := \{ u \in L^{2^*_s}(\mathbb{R}^3) : (-\Delta)^{\frac{s}{2}} u \in L^2(\mathbb{R}^3) \} \]

denotes the homogeneous fractional sobolev space with the norm

\[\|u\|_{D^{s,2}}^2 := \int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} u|^2 dx. \]

- \(C \) denotes a universal positive constant (possibly different).

- It is well known that \(H^\alpha(\mathbb{R}^3) \) is continuously embedded into \(L^p(\mathbb{R}^3) \) for \(2 \leq p \leq 2^*_\alpha(2^*_\alpha = \frac{6}{3 - 2\alpha}) \), and for any \(\alpha \in (0, 1) \), there exists a best constant \(S_\alpha > 0 \) such that

\[S_\alpha = \inf_{u \in D^{s,2}} \frac{\int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} u|^2 dx}{(\int_{\mathbb{R}^3} |u(x)|^{2^*_s} dx)^{\frac{s}{2^*_s}}}. \]

- For simplicity, we assume \(K_\infty = 1 \) and \(a_\infty = 1 \). Denote \(H = H^s(\mathbb{R}^3) \) and \(D^{s,2} = D^{s,2}(\mathbb{R}^3) \).

In this section, we assume (A1), (A4) and (A6) hold. Similar to the argument in [24], we know the function \(\phi^t_a \) has the following properties.

Lemma 2.1. For any \(u \in H \), we have
Let m associated with (2.1):

To prove the compactness, we need to consider the following problem at infinity

By the Lax-Milgram theorem, there exists a unique $\phi'_u \in D^{1,2}(\mathbb{R}^3)$ such that

$$(-\Delta)^t \phi'_u = K(x)u^2.$$

To find weak solutions to (2.1), we look for critical points of the functional $I(u) : H \to \mathbb{R}$ associated with (2.1) which is defined by

$$I(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|(-\Delta)^{2}u|^2 + u^2)dx + \frac{1}{4} \int_{\mathbb{R}^3} K(x)\phi'_u u^2 dx$$

To prove the compactness, we need to consider the following problem at infinity associated with (2.1):

$$(-\Delta)^s u + u + K(x)\phi'_u u = |u|^{p-2} u + |u|^{2^*-2} u,$$

where $\phi'_u \in D^{1,2}(\mathbb{R}^3)$ is the unique solution to problem

$$(-\Delta)^t \phi = u^2.$$

The functional associated with (2.2) is

$$I_\infty(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|(-\Delta)^{2}u|^2 + u^2)dx + \frac{1}{4} \int_{\mathbb{R}^3} \phi'_u u^2 dx$$

Let

$$m = \inf_{u \in M} I(u), \quad m_\infty = \inf_{u \in M_\infty} I_\infty(u),$$

where

$$M = \{ u \in H^s(\mathbb{R}^3) \setminus \{0\} : [I'(u), u] = 0 \},$$

$$M_\infty = \{ u \in H^s(\mathbb{R}^3) \setminus \{0\} : [I'_\infty(u), u] = 0 \}$$

are Nehari manifolds corresponding to the functionals I and I_∞, respectively. Similar argument as [22] Proposition 3.4, we can obtain the following lemma.

Lemma 2.2. By using [22] Proposition 3.4, problem (2.2) has a positive ground state solution $u_\infty \in C^{1,2s+\sigma-1}(\mathbb{R}^3) \cap L^\infty(\mathbb{R}^3)$, where $\sigma \in (0,1)$ and $2s + \sigma > 1$.

From $u \in H \cap C^{1,2s+\sigma-1}(\mathbb{R}^3)$, we see that $\lim_{|x| \to \infty} u_\infty(x) = 0$. Similar as the proof of [22] Proposition 3.8, we conclude that there exists $C > 0$ such that

$$0 < u_\infty(x) \leq \frac{C}{1 + |x|^{2s}}, \quad \forall \, x \in \mathbb{R}^3.$$

Moreover, in [22], the authors showed that $m_\infty = c_\infty = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I_\infty(\gamma(t))$, where $\Gamma = \{ \gamma \in C([0,1],H) : \gamma(0) = 0, I_\infty(\gamma(1)) < 0 \}$ and

$$m_\infty = c_\infty = \inf_{u \in H \setminus \{0\}} \max_{t \geq 0} I_\infty(tu).$$

(2.3)
To prove the \((PS)_c\) condition, we need the following function and its estimates (see [32])

\[v_\varepsilon(x) = \psi(x)U_\varepsilon(x), \quad x \in \mathbb{R}^3, \]

where \(U_\varepsilon(x) = \varepsilon^{-\frac{3-2s}{2}}u^*(x/\varepsilon),\)

\[u^*(\frac{x}{\varepsilon}) = \frac{\tilde{u}(x/S_{\varepsilon}\varepsilon)}{\|\tilde{u}\|_{2^*}}, \]

\(\kappa \in \mathbb{R} \setminus \{0\}, \mu > 0, \) and \(x_0 \in \mathbb{R}^3\) are fixed constants, \(\tilde{u}(x) = \kappa(\mu^2 + |x - x_0|^2)^{-\frac{3-2s}{2}},\)

and \(\psi \in C^\infty(\mathbb{R}^3)\) such that \(0 \leq \psi \leq 1\) in \(\mathbb{R}^3, \psi(x) \equiv 1\) in \(B_3\) and \(\psi(x) \equiv 0\) in \(\mathbb{R}^3 \setminus B_{2\delta} \). We know that

\[
\int_{\mathbb{R}^3} \left| (-\Delta)^\frac{s}{2} v_\varepsilon(x) \right|^2 dx \leq S_{\varepsilon}^{\frac{2}{s}} + O(\varepsilon^{3-2s}), \quad (2.4)
\]

\[
\int_{\mathbb{R}^3} |v_\varepsilon(x)|^2 dx = S_{\varepsilon}^{\frac{2}{s}} + O(\varepsilon^3), \quad (2.5)
\]

\[
\int_{\mathbb{R}^3} |v_\varepsilon(x)|^p dx = \begin{cases} O(\varepsilon^{\frac{(2-p)(3+2s)}{2}}), & p > \frac{3}{3-2s}; \\
O(\varepsilon^{\frac{2-2s}{3-2s} \log \varepsilon}), & p = \frac{3}{3-2s}; \\
O(\varepsilon^{\frac{2-2sp}{3-2s}}), & p < \frac{3}{3-2s}. \end{cases} \quad (2.6)
\]

Lemma 2.3. Let \(\{u_n\} \subset H\) be a bounded sequence such that \(I(u_n) \to c \in (0, m_\infty)\) and \(I'(u_n) \to 0\). Then \(\{u_n\}\) admits a strongly convergent subsequence in \(H\).

Proof. First we show that \(m_\infty < \frac{4}{3} S_{\varepsilon}^{\frac{2}{s}}\). By (2.3), we see that \(c_\infty \leq \sup_{t \geq 0} I_\infty(tv_\varepsilon)\).

Thus we only need to prove \(\sup_{t \geq 0} I_\infty(tv_\varepsilon) < \frac{4}{3} S_{\varepsilon}^{\frac{2}{s}}\) for \(\varepsilon > 0\) small. By Lemma 2.1, we have

\[
I_\infty(t v_\varepsilon) \leq \frac{1}{2} t^2 \|v_\varepsilon\|^2 + C t^4 \|v_\varepsilon\|^4 - \frac{1}{2^*_s} t^{2^*_s} \|v_\varepsilon\|^{2^*_s}. \quad (2.7)
\]

Form (2.4)-(2.6), there exists \(\varepsilon_1 > 0\) small enough such that

\[
\|v_\varepsilon\|^2 := \int_{\mathbb{R}^3} \left| (-\Delta)^\frac{s}{2} v_\varepsilon^2 + v_\varepsilon^2 \right| dx \leq S_{\varepsilon}^{\frac{2}{s}} + O(\varepsilon^{3-2s}) + O(\varepsilon^{3-2s}) \leq \frac{3}{2} S_{\varepsilon}^{\frac{2}{s}}, \quad (2.8)
\]

\[
\|v_\varepsilon\|^{2^*_s} = S_{\varepsilon}^{\frac{2}{s}} + O(\varepsilon^3) \geq \frac{1}{2} S_{\varepsilon}^{\frac{2}{s}}, \quad (2.9)
\]

for \(\varepsilon \in (0, \varepsilon_1)\). Thus, from (2.7)-(2.9), we have

\[
I_\infty(tv_\varepsilon) \leq \frac{3}{4} t^2 S_{\varepsilon}^{\frac{2}{s}} + \frac{9}{4} t^4 S_{\varepsilon}^{\frac{2}{s}} - \frac{1}{2^*_s} t^{2^*_s} \frac{1}{2} S_{\varepsilon}^{\frac{2}{s}}. \quad (2.10)
\]

By \(2 < 4 < 2^*_s\), there exist a small \(t_1 > 0\) and a large \(t_2 > 0\) independent of \(\varepsilon \in (0, \varepsilon_1)\) such that

\[
\sup_{t \in [t_1, t_2]} I_\infty(tv_\varepsilon) < \frac{8}{3} S_{\varepsilon}^{\frac{2}{s}}. \quad (2.11)
\]

Form Lemma 2.1 and (2.4)-(2.6), we obtain

\[
\sup_{t \in [t_1, t_2]} I_\infty(tv_\varepsilon) \leq \sup_{t \geq 0} \frac{1}{2} t^2 \int_{\mathbb{R}^3} \left| (-\Delta)^\frac{s}{2} v_\varepsilon^2 \right| dx - \frac{1}{2^*_s} \int_{\mathbb{R}^3} |v_\varepsilon(x)|^{2^*_s} dx \\
+ C \|v_\varepsilon\|_2^2 + C \|v_\varepsilon\|_p^{\frac{12}{3+2p}} - C \|v_\varepsilon\|_p^p \\
= \frac{8}{3} S_{\varepsilon}^{\frac{2}{s}} + O(\varepsilon^{3-2s}) - C \varepsilon^{\frac{(2-p)(3+2s)}{2}}. \quad (2.12)
\]
In view of $p \in (4, 2^*_s)$, $s \in \left(\frac{3}{2}, 1\right)$, so we see that $\frac{(2-p)3+2sp}{2} < 3 - 2s$. By choosing $\varepsilon \in (0, \varepsilon_1)$ small, we obtain

$$\sup_{t \in [t_1, t_2]} I_{\infty}(tv_n) < \frac{8}{3} S_3^3. \quad (2.13)$$

By \ref{2.11} and \ref{2.13}, we have

$$m_{\infty} < \frac{8}{3} S_3^3. \quad (2.14)$$

Since \{u_n\} is bounded in H, up to a subsequence, we may assume that $u_n \rightharpoonup u$ weakly in H, $u_n \to u$ in $L_{loc}^r(\mathbb{R}^3)$ for $1 \leq r < 2^*_s$ and $u_n \to u$ a.e. \mathbb{R}^3. Thus by standard argument, we can show that $I'(u) = 0$. Set $v_n = u_n - u$. By the Brezis-Lieb Lemma in \cite{36}, we have that

$$\|v_n\|^2 = \|u_n\|^2 - \|u\|^2 + o(1),$$

$$\|v_n\|^2_{2^*_s} = \|u_n\|^2_{2^*_s} - \|u\|^2_{2^*_s} + o(1), \quad (2.15)$$

and

$$\int_{\mathbb{R}^3} a(x)|v_n|^p dx = \int_{\mathbb{R}^3} a(x)|u_n|^p - \int_{\mathbb{R}^3} a(x)|u|^p + o(1),$$

$$\int_{\mathbb{R}^3} b(x)|v_n|^q dx = \int_{\mathbb{R}^3} b(x)|u_n|^q - \int_{\mathbb{R}^3} b(x)|u|^q + o(1).$$

From $\lim_{|x| \to \infty} a(x) = 1$, $\lim_{|x| \to \infty} b(x) = 0$, and $v_n \to 0$ in $L_{loc}^r(\mathbb{R}^3)$ for any $r \in [1, 2^*_s)$, we deduce that

$$\int_{\mathbb{R}^3} a(x)|u_n|^p - \int_{\mathbb{R}^3} a(x)|u|^p = \int_{\mathbb{R}^3} |v_n|^p dx + o(1),$$

$$\int_{\mathbb{R}^3} b(x)|u_n|^q - \int_{\mathbb{R}^3} b(x)|u|^q = o(1). \quad (2.16)$$

By \cite{33} Lemma 2.5], we can see that

$$\int_{\mathbb{R}^3} K(x)\phi_{v_n}^t v_n^2 dx = \int_{\mathbb{R}^3} K(x)\phi_{u_n}^t u_n^2 dx - \int_{\mathbb{R}^3} K(x)\phi_{u}^t u^2 dx + o(1).$$

From $\lim_{|x| \to \infty} K(x) = 1$ and Hölder’s inequality, it is easy to deduce that

$$\int_{\mathbb{R}^3} \phi_{v_n}^t v_n^2 dx = \int_{\mathbb{R}^3} K(x)\phi_{u_n}^t u_n^2 dx - \int_{\mathbb{R}^3} K(x)\phi_{u}^t u^2 dx + o(1). \quad (2.17)$$

Thus, from \ref{2.15}-\ref{2.17}, it follows that

$$c - I(u) = I_{\infty}(v_n) + o(1). \quad (2.18)$$

By using \cite{13} Proposition 5.1.1, we see that $u \in L^\infty(\mathbb{R}^3)$. Then by \cite{36} Lemmas 8.1 and 8.9], we have that

$$|\int_{\mathbb{R}^3} (u_n^2 - u^2) \varphi dx| = o(1)\|\varphi\|, \quad \forall \varphi \in H,$$

$$|\int_{\mathbb{R}^3} a(x)(|u_n|^p - |u|^p)\varphi dx| = o(1)\|\varphi\|, \quad \forall \varphi \in H, \quad (2.19)$$

$$|\int_{\mathbb{R}^3} b(x)(|u_n|^q - |u|^q)\varphi dx| = o(1)\|\varphi\|, \quad \forall \varphi \in H.$$
Together with \(\lim_{|x| \to \infty} a(x) = 1, \lim_{|x| \to \infty} b(x) = 0 \), we deduce that
\[
\left| \int_{\mathbb{R}^3} [a(x)(|u_n|^{p-2}u_n - |u|^{p-2}u - |v_n|^{p-2}v_n)\varphi dx] \right| = o(1)\|\varphi\|, \quad \forall \varphi \in H,
\]
\[
\left| \int_{\mathbb{R}^3} b(x)(|u_n|^{q-2}u_n - |u|^{q-2}u)\varphi dx \right| = o(1)\|\varphi\|, \quad \forall \varphi \in H.
\] (2.20)

Using [33, Lemma 2.5], we have
\[
\left| \int_{\mathbb{R}^3} K(x)(\phi_{t_n}^L u_n - \phi_{t_n}^L u - \phi_{t_n}^L v_n)\varphi dx \right| = o(1)\|\varphi\|, \quad \forall \varphi \in H.
\]

From \(\lim_{|x| \to \infty} K(x) = 1 \), and similar to the of proof of (2.17), we obtain
\[
\left| \int_{\mathbb{R}^3} K(x)(\phi_{t_n}^L u_n - \phi_{t_n}^L u)\varphi dx - \int_{\mathbb{R}^3} \phi_{t_n}^L v_n \varphi dx \right| = o(1)\|\varphi\|, \quad \forall \varphi \in H.
\] (2.21)

Hence, by (2.19) and (2.21), it holds
\[
I_n'(v_n) = o(1).
\] (2.22)

We claim \(v_n \to 0 \) in \(H \). Two cases occur: either
\[
\lim_{n \to \infty} \sup_{y \in \mathbb{R}^3} \int_{B_1(y)} |v_n|^2 dx = 0,
\]
or there exists \(\gamma > 0 \) such that
\[
\lim_{n \to \infty} \sup_{y \in \mathbb{R}^3} \int_{B_1(y)} |v_n|^2 dx \geq \gamma.
\]

Thus, either \(\|v_n\|_\infty \to 0 \) for any \(r \in (2, 2^*_s) \) through using vanishing Lemma, or there \(y_n \in \mathbb{R}^3 \) with \(|y_n| \to \infty \) such that \(v_n(\cdot + y_n) \rightharpoonup v \neq 0 \) weakly in \(H \). If \(v_n(\cdot + y_n) \rightharpoonup v \neq 0 \) weakly in \(H \), from (2.18) and (2.22), it follows that \(c - I(u) = I_n(v_n(\cdot + y_n)) + o(1) \) and \(I_n'(v_n(\cdot + y_n)) = o(1) \). Thus \(I_n'(v) = 0 \) and
\[
c - I(u) = I_n(v_n(\cdot + y_n)) - \frac{1}{4} I_n'(v_n(\cdot + y_n), v_n(\cdot + y_n))
\]
\[
= \frac{1}{4} \|(v_n(\cdot + y_n))\|^2 + \left(\frac{1}{4} - \frac{1}{p} \right) \int_{\mathbb{R}^3} |(v_n(\cdot + y_n))|^p dx
\]
\[
+ \left(\frac{1}{4} - \frac{1}{2^*_s} \right) \int_{\mathbb{R}^3} |(v_n(\cdot + y_n))|^2^2 dx + o(1),
\]
form which we obtain
\[
c \geq I(u) + \frac{1}{4} \|v\|^2 + \left(\frac{1}{4} - \frac{1}{p} \right) \int_{\mathbb{R}^3} |v|^p dx + \left(\frac{1}{4} - \frac{1}{2^*_s} \right) \int_{\mathbb{R}^3} |v|^2^2 dx
\]
\[
= I(u) + I_\infty(v) - \frac{1}{4} [I_\infty'(v), v] = I(u) + I_\infty(v).
\]

By the definition of \(m_\infty \), we have \(I_\infty(v) \geq m_\infty \). Since \(I'(u) = 0 \), we have
\[
I(u) = I(u) - \frac{1}{4} [I'(u), u]
\]
\[
= \frac{1}{4} \|u\|^2 + \left(\frac{1}{4} - \frac{1}{p} \right) \int_{\mathbb{R}^3} a(x)|u|^p dx
\]
\[
+ \left(\frac{1}{4} - \frac{1}{q} \right) \int_{\mathbb{R}^3} b(x)|u|^q dx + \left(\frac{1}{4} - \frac{1}{2^*_s} \right) \int_{\mathbb{R}^3} |u|^2^2 dx \geq 0,
\]
which leads to a contradiction with \(c < m_\infty \). Thus \(\|v_n\|_{L^r} \to 0 \) for any \(r \in (2, 2^*_c) \).
By (2.18) and (2.22), we have
\[
c - I(u) = \frac{1}{2} \|v_n\|^2 - \frac{1}{2^{*}_c} \|v_n\|^{2^*_c} = o(1),
\]
\[
\|v_n\|^2 - \|v_n\|^{2^*_c} = o(1).
\]
Up to a subsequence, we may assume that \(\|v_n\|^2 \to l \). Thus \(\|v_n\|^{2^*_c} \to l \). If \(l > 0 \),
by the definition of \(S_s \), we obtain \(l \geq (S_s)^{\frac{3}{2}} \). Hence,
\[
c = I(u) + \frac{1}{2} \|v_n\|^2 - \frac{1}{2^{*}_c} \|v_n\|^{2^*_c} = I(u) + \left(\frac{1}{2} - \frac{1}{2^{*}_c} \right) l \geq \frac{8}{3} S_s^{\frac{3}{2}},
\]
which contradicts with \(c < m_\infty < \frac{8}{3} S_s^{\frac{3}{2}} \). Thus \(l = 0 \) and we complete the proof. \(\square \)

Lemma 2.4. Suppose that \(\alpha, \beta > n \), \(f, g \in L^\infty(\mathbb{R}^n) \) and
\[
f(x) \leq \frac{C_1}{(1 + |x|)^\alpha}, \quad g(x) \leq \frac{C_2}{(1 + |x|)^\beta}.
\]
Then there exists \(C > 0 \) such that
\[
|f \ast g(x)| \leq \frac{C}{(1 + |x|)^\gamma},
\]
where \(\gamma = \min\{\alpha, \beta\} \).

Proof. By direct computations,
\[
|f \ast g(x)| = \left| \int_{\mathbb{R}^n} \frac{C_1}{(1 + |x - y|)^\alpha} \frac{C_2}{(1 + |y|)^\beta} \, dy \right|
\]
\[
= \int_{|x - y| \geq \frac{|x|}{2}} \frac{C_1}{(1 + |x - y|)^\alpha} \frac{C_2}{(1 + |y|)^\beta} \, dy + \int_{|x - y| < \frac{|x|}{2}} \frac{C_1}{(1 + |x - y|)^\alpha} \frac{C_2}{(1 + |y|)^\beta} \, dy
\]
\[
\leq \frac{C_1}{(1 + \frac{|x|}{2})^\alpha} \int_{|x - y| \geq \frac{|x|}{2}} \frac{C_2}{(1 + |y|)^\beta} \, dy + \int_{\frac{|x|}{2} < |y| < \frac{2}{3}|x|} \frac{C_1}{(1 + |x - y|)^\alpha} \frac{C_2}{(1 + |y|)^\beta} \, dy
\]
\[
\leq \frac{C_1 C_2 2^\alpha}{(2 + |x|)^\alpha} \int_{\mathbb{R}^n} \frac{1}{(1 + |y|)^\beta} \, dy + \frac{C_1 C_2 2^\beta}{(2 + |x|)^\beta} \int_{\frac{x}{2} < |y| < \frac{2}{3}|x|} \frac{1}{(1 + |x - y|)^\alpha} \, dy
\]
\[
\leq \frac{C_1 C_2 2^\alpha}{(2 + |x|)^\alpha} \int_{\mathbb{R}^n} \frac{1}{(1 + |y|)^\beta} \, dy + \frac{C_1 C_2 2^\beta}{(2 + |x|)^\beta} \int_{\mathbb{R}^n} \frac{1}{(1 + |x - y|)^\alpha} \, dy
\]
\[
\leq C \left(\frac{1}{(2 + |x|)^\alpha} + \frac{1}{(2 + |x|)^\beta} \right)
\]
\[
\leq \frac{C}{(1 + |x|)^\gamma},
\]
where \(\gamma = \min\{\alpha, \beta\} \). \(\square \)

Now we recall the definition of Lusternik-Schnirelman category.
Definition 2.5. (i) For a topological space X, we say a non-empty, closed subset $A \subset X$ is contractible to a point in X if and only if there exist a continuous mapping $\eta : [0, 1] \times A \to X$ such that for some $x_0 \in X$,

(a) $\eta(0, x) = x$ for all $x \in A$,
(b) $\eta(1, x) = x_0$ for all $x \in A$.

(ii) We define

\[
\text{cat}(X) = \min \left\{ k \in \mathbb{N} : \text{there exist closed subsets } A_1, \ldots, A_k \subset X \text{ such that } A_i \text{ is contractible to a point in } X \text{ for all } i \text{ and } \bigcup_{i=1}^k A_i = X \right\}.
\]

We say $\text{cat}(X) = \infty$ if do not exist finitely many closed subsets $A_1, \ldots, A_k \subset X$ such that A_i is contractible to a point in X for all i and $\bigcup_{i=1}^k A_i = X$.

We need the following two important lemmas. See [7 Proposition 2.4 and Lemma 2.5].

Lemma 2.6. Suppose that \mathcal{M} is a Hilbert manifold and $\Psi \in C^1(\mathcal{M}, \mathbb{R})$. Assume that there exist $c_0 \in \mathbb{R}$ and $k \in \mathbb{N}$ such that $\Psi(u)$ satisfies the Palais-Smale condition for $c \leq c_0$ and $\text{cat}\{ u \in \mathcal{M} : \Psi(u) \leq c_0 \} \geq k$. Then $\Psi(u)$ has at least k critical points in $\{ u \in \mathcal{M} : \Psi(u) \leq c_0 \}$.

Lemma 2.7. Let X be a topological space. Suppose that there exist two continuous mappings $F : S^2 = \{ y \in \mathbb{R}^3 : |y| = 1 \} \to X$ and $G : X \to S^2$, such that $G \circ F$ is homotopic to identity $\text{id} : S^2 \to S^2$, that is, there is a continuous mapping $\zeta : [0, 1] \times S^2 \to S^2$ such that $\zeta(0, x) = (G \circ F)(x)$ for all $x \in S^2$ and $\zeta(1, x) = x$ for all $x \in S^2$. Then $\text{cat}(X) \geq 2$.

3. Proof of main results

Proof of Theorem 1.1. Let $\{ u_n \} \subset M$ be a minimizing sequence for functional I, that is, $\{ u_n \} \subset M$ and $I(u_n) \to m$, where

\[
M = \{ u \in H \setminus \{0\} : G(u) = |I'(u), u| = 0 \}.
\]

We claim $I'(u_n) \to 0$. By the Lagrange multiplier Theorem, there exists $\lambda_n \in \mathbb{R}$ such that

\[
I'(u_n) - \lambda_n G'(u_n) \to 0.
\]

Since $u_n \subset M$, we have

\[
m + o(1) = I(u_n) - \frac{1}{4}(I'(u_n), u_n) \geq \frac{1}{4} ||u_n||^2,
\]

which implies that $\{ u_n \}$ is bounded in H. Hence

\[
\lambda_n G'(u_n), u_n \to 0.
\]

By (A4) and (A6), for any $\varepsilon > 0$, there exists $C_\varepsilon > 0$ such that

\[
a(x)|u|^p + b(x)|u|^q + |u|^{2^*_s} \leq \varepsilon |u|^2 + C_\varepsilon |u|^{2^*_s}.
\]

Taking $\varepsilon = 1/2$ and recalling the definition of S_s, we have

\[
||u_n||^2 \leq \int_{\mathbb{R}^3} a(x)|u_n|^p dx + \int_{\mathbb{R}^3} \mu b(x)|u_n|^q dx + \int_{\mathbb{R}^3} |u_n|^{2^*_s} dx
\]
which implies that
\[
\|u_n\|^2 \geq \frac{S_n^{\frac{2}{s}}}{(2C_{1/2})^{\frac{2}{2-\gamma}}}.
\] (3.2)

By (3.2), we obtain
\[
\begin{align*}
&\{G'(u_n), u_n\} \\
&= \{G'(u_n), u_n\} - 4\{I'(u_n), u_n\} \\
&= 2\|u_n\|^2 + 4 \int_{\mathbb{R}^3} K(x)\phi'_{u_n} u_n^2 dx - p \int_{\mathbb{R}^3} a(x)|u_n|^p dx - q \int_{\mathbb{R}^3} \mu b(x)|u_n|^q dx \\
&\quad - 2s^* \int_{\mathbb{R}^3} |u_n|^2 dx - 4\|u_n\|^2 + \int_{\mathbb{R}^3} K(x)\phi'_{u_n} u_n^2 dx - \int_{\mathbb{R}^3} a(x)|u_n|^p dx \\
&\quad - \int_{\mathbb{R}^3} \mu b(x)|u_n|^q dx - \int_{\mathbb{R}^3} |u_n|^2 dx \\
&= -2\|u_n\|^2 + (4 - q) \int_{\mathbb{R}^3} \mu b(x)|u_n|^q dx + (4 - 2s^*) \int_{\mathbb{R}^3} |u_n|^2 dx \\
&\leq -2\|u_n\|^2 \leq -2 \frac{S_n^{\frac{2}{s}}}{(2C_{1/2})^{\frac{2}{2-\gamma}}}.
\end{align*}
\]

From (3.1), we have \(\lambda_n \to 0\). Thus \(I'(u_n) \to 0\). This means that \(\{u_n\}\) is a \((PS)_m\) sequence for \(I\), that is, \(I(u_n) \to m\) and \(I'(u_n) \to 0\). By Lemma 2.2 if \(m \in (0, m_{\infty})\), then \(u_n \to u\) in \(H\) and thus \(I(u) = m\) and \(I'(u) = 0\). Hence, \(m\) is attained by \(u \in H\setminus\{0\}\). For this purpose, it is sufficient to prove \(m < m_{\infty}\).

Similar argument as (2.3), we can obtain the equivalent characterization of the least energy \(m\):
\[
m = \inf_{u \in H \setminus \{0\}} \sup_{t \geq 0} I(tu_{\infty}(x - R\gamma)).
\] (3.3)

Let \(R > 0\) and \(\gamma \in \mathbb{R}^3\) with \(|\gamma| = 1\). By (3.3), clearly, we have
\[
m \leq \sup_{t \geq 0} I(tu_{\infty}(x - R\gamma)),
\]
where \(u_{\infty}\) is a positive ground state solution for limit problem (2.2). Since
\[
I(tu_{\infty}(x - R\gamma))
\]
\[
\leq \frac{t^2}{2} \|u_{\infty}(x - R\gamma)\|^2 + Ct^4 \|u_{\infty}(x - R\gamma)\|^4 - \frac{t^{2s^*}}{2s^*} \|u_{\infty}(x - R\gamma)\|^{2s^*}/2s^*.
\]
\[
= \frac{t^2}{2} \|u_{\infty}\|^2 + Ct^4 \|u_{\infty}\|^4 - \frac{t^{2s^*}}{2s^*} \|u_{\infty}\|^{2s^*}/2s^*,
\]
there exist a small \(t' > 0\) and a large \(t'' > 0\) independent of \(R\) and \(\gamma\) such that
\[
\sup_{t \in [0, t' \cup [t'', +\infty)} I(tu_{\infty}(x - R\gamma)) < m_{\infty}.
\] (3.4)
On the other hand, by (A6), for any \(u \in H \), we have

\[
I(tu) \leq I_\infty(tu) + \frac{t^4}{4} \int_{\mathbb{R}^3} (K(x) - 1) \phi^\prime u^2 \, dx - \frac{1}{p} t^p \int_{\mathbb{R}^3} (a(x) - 1)|u|^p \, dx
+ \frac{t^4}{4} \int_{\mathbb{R}^3} (\phi^\prime - \phi^\prime t) u^2 \, dx
= I_\infty(tu) + \frac{t^4}{4} \int_{\mathbb{R}^3} (K(x) - 1) \phi^\prime u^2 \, dx + \frac{t^4}{4} \int_{\mathbb{R}^3} (K(x) - 1) \phi^\prime u^2 \, dx
- \frac{1}{p} t^p \int_{\mathbb{R}^3} (a(x) - 1)|u|^p \, dx.
\]

Thus, choosing \(u = u_\infty(x - R\gamma) \) in the inequality above and using (K2), (a1), we obtain

\[
I(tu_\infty(x - R\gamma))
\leq I_\infty(tu_\infty) - \frac{t^4}{4} C_0 \int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^{\frac{k}{2}}} \int_{\mathbb{R}^3} K(y + R\gamma) u_\infty^2(y) \frac{|x - y|^{3-2\alpha}}{|x - y|^{3-2\alpha}} \, dy |u_\infty(x)|^2 \, dx \, dy
- \frac{1}{p} t^p C_2 \int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^{\frac{k}{2}}} |u_\infty(x)|^p \, dx
\leq I_\infty(tu_\infty) - \frac{t^4}{4} C_0 \int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^{\frac{k}{2}}} \int_{\mathbb{R}^3} K(y + R\gamma) u_\infty^2(y) \frac{|x - y|^{3-2\alpha}}{|x - y|^{3-2\alpha}} |u_\infty(x)|^2 \, dx \, dy
- \frac{1}{p} t^p C_2 C_p \int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^{\frac{k}{2}}} \int_{\mathbb{R}^3} \frac{1}{(1 + |x|)^{(3+2\alpha)p}} \, dx
\leq I_\infty(tu_\infty) - \frac{t^4}{4} C_0 \int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^{\frac{k}{2}}} \int_{\mathbb{R}^3} \frac{1}{(1 + |x|)^{(3+2\alpha)p}} \, dx
+ \frac{1}{p} t^p C_2 C_p \int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^{\frac{k}{2}}} \int_{\mathbb{R}^3} \frac{1}{(1 + |x|)^{(3+2\alpha)p}} \, dx.
\]

Set \(l(t) = I_\infty(tu_\infty) \), \(t \in (0, \infty) \). It is easy to verify that \(\sup_{t \geq 0} l(t) = I_\infty(u_\infty) = m_\infty \). Moreover, we have

\[
\int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^{\frac{k}{2}}} |u_\infty(x)|^2 \, dx \geq \int_{|x| \leq 1} \frac{1}{(1 + |x + R\gamma|)^{\frac{k}{2}}} \phi^\prime u_\infty(x) |u_\infty(x)|^2 \, dx
\geq C \int_{|x| \leq 1} \frac{1}{(2 + R)^{\frac{k}{2}}} \phi^\prime u_\infty(x) |u_\infty(x)|^2 \, dx
\geq \frac{C}{(2 + R)^{\frac{k}{2}}}.
\]

By Lemma 2.4, we have

\[
\int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^{\frac{k}{2}}} \frac{1}{(1 + |x|)^{(3+2\alpha)p}} \, dx \leq \frac{C}{(1 + R)^{\alpha}}.
\]
where \(\alpha = \min\{a, (3 + 2s)p\} \). Thus

\[
\sup_{t' \leq t \leq t''} I(tu_\infty(x - R\gamma)) \leq m_\infty - \frac{(t')^4}{4} C_0 \tilde{C} - \frac{1}{(2 + R)^k} + \frac{1}{p} (t'')^p C_\sigma p C \frac{1}{(1 + R)^\alpha}.
\]

By 0 < \(k < \alpha \), there exists \(\hat{R} > 0 \) large such that for \(R > \hat{R} \),

\[
\sup_{t' \leq t \leq t''} I(tu_\infty(x - R\gamma)) < m_\infty, \quad \forall |\gamma| = 1.
\]

Thus, combining with (3.4), for \(R > \hat{R} \), we have

\[
\sup_{t \geq 0} I(tu_\infty(x - R\gamma)) < m_\infty, \quad \forall |\gamma| = 1,
\]

which yields \(m < m_\infty \). The remaining of the proof of Theorem 1.1 is to show that the solution \(u \in H \) is positive. \(\square \)

Proof of Theorem 1.2. The argument is similar to the one in Theorem 1.1; we only need to prove for \(\hat{R} > 0 \) large, \(\sup_{t \geq 0} I(tu_\infty(x - R\gamma)) < m_\infty \) uniformly in \(\gamma \). Clearly, there exist 0 < \(t' < t'' \) independent of \(R \) and \(\gamma \) such that

\[
\sup_{t \in [0, t'/\gamma(t'')]} I(tu_\infty(x - R\gamma)) < m_\infty.
\]

On the other hand, by (A3), (A5), (A7), and we have for any \(\sigma > 0 \), there exist \(C_\sigma > 0 \) such that

\[
\sup_{t \leq t'} I(tu_\infty(x - R\gamma))
\]

\[
\leq \sup_{t \geq 0} I(tu_\infty) + C_1 (t'')^4 \int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^d} \int_{\mathbb{R}^3} K(y + R\gamma) u_\infty^2(y) \left| \frac{\partial u_\infty}{\partial x}(y) \right|^2 dy \left| u_\infty(x) \right|^2 dx
\]

\[
\quad + \frac{C_1 (t'')^4}{4} \int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^d} |\hat{u}_\infty(x)|^2 \left| u_\infty(x) \right|^2 dx
\]

\[
\quad + \frac{1}{p} (t'')^p C_\sigma p C
\]

\[
\quad \int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^a} \left| \frac{1}{1 + |x|} \right|^{3 + 2s} F \left| u_\infty(x) \right|^q dx
\]

\[
\quad - \frac{\mu}{q} \int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^k} \left| u_\infty(x) \right|^q dx.
\]

By calculations, we have

\[
\int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^k} \left| u_\infty(x) \right|^q dx
\]

\[
\geq \int_{|x| \leq 1} \frac{1}{(1 + |x + R\gamma|)^k} \left| u_\infty(x) \right|^q dx
\]

\[
\geq \int_{|x| \leq 1} \frac{1}{2 + R^p} \left| u_\infty(x) \right|^q dx \geq C \frac{1}{(2 + R)^p}.
\]

From Lemma 2.4, we obtain

\[
\int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^a} \left| \frac{1}{1 + |x|} \right|^{3 + 2s} \left| u_\infty(x) \right|^q dx \leq \frac{\alpha}{(1 + R)^\alpha}.
\]

where \(\alpha = \min\{a, (3 + 2s)p\} \).
By Hölder’s inequality, (A3) and (3.6), we have
\[
\int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^d} \int_{\mathbb{R}^3} K(y + R\gamma) u^2_\infty(y) \frac{dy}{|x-y|^{3-2t}} |u_\infty(x)|^2 \, dx \\
\leq (1 + C_1) \int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^d} \int_{\mathbb{R}^3} \frac{u^2_\infty(y)}{|x-y|^{3-2t}} |u_\infty(x)|^2 \, dx \\
= (1 + C_1) \int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^d} \hat{\phi}^t u_\infty(x) |u_\infty(x)|^2 \, dx \\
\leq C \|\hat{\phi}^t u_\infty(x)\|_{L^2} \left[\int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^d (1 + |x|)^{3-2t}} \right]^{\frac{6}{3-2t}} \leq C \frac{1}{(1 + R)^\beta},
\tag{3.7}
\]
where \(m = \min\{\frac{6d}{3-2t}, 12\}\). Similar as the above argument, we obtain
\[
\int_{\mathbb{R}^3} \frac{1}{(1 + |x + R\gamma|)^d} \hat{\phi}^t u_\infty(x) |u_\infty(x)|^2 \, dx \leq C \frac{1}{(1 + R)^\beta},
\tag{3.8}
\]
where \(\beta = \min\{d, 6 + 4s\}\). By (3.5)-(3.8), we have
\[
\sup_{t \in [\gamma, \nu]} I(\hat{u}_\infty(x-R\gamma)) \leq m_\infty - C_1 \frac{1}{(2 + R)^b} + C_2 \frac{1}{(1 + R)^\alpha} + C_3 \frac{1}{(1 + R)^\beta},
\]
where \(C_1, C_2, C_3\) are positive constants. Since \(b < \min\{\alpha, \beta\}\), we obtain that there exists \(R_0 > 0\) such that for \(R > R_0\), \(\sup_{t \geq 0} I(\hat{u}_\infty(x-R\gamma)) < m_\infty\) uniformly in \(\gamma\). The proof is complete.

4. PROOF OF THEOREM 1.3

Let \(h(t) = I(\hat{u}_\infty(x-R\gamma))\), \(t \in (0, \infty)\), \(\gamma \in \mathbb{R}^3\) with \(|\gamma| = 1\). Form the proof of Theorem 1.2, we know there exists \(R_0 > 0\) such that for \(R > R_0\), there exists \(\varepsilon(R) > 0\) satisfying
\[
\sup_{t \geq 0} h(t) \leq m_\infty - \varepsilon(R) < m_\infty \quad \text{uniformly in } \gamma.
\]

For any fixing \(R\) and \(\gamma\), it is easy to check that \(h(t)\) attains its maximum at a unique point \(t = t_\infty\). Hence, we define a mapping \(F_R : S^2 \to \{\gamma \in \mathbb{R}^3 : |\gamma| = 1\} \to M\) by
\[
F_R(\gamma) = t_\infty u_\infty(x-R\gamma).
\]

Immediately we have the following Lemma.

Lemma 4.1. There exists \(R_0 > 0\) such that for \(R > R_0\), there exists \(\varepsilon(R) > 0\) satisfying \(F_R(S^2) \subset \{u \in M : I(u) \leq m_\infty - \varepsilon(R)\}\) uniformly in \(\gamma \in S^2\).

For \(u \in H\), we define a map \(\Phi : H \to H\) by
\[
\Phi(u)(x) := \frac{1}{|B_1(x)|} \int_{B_1(x)} |u(y)| \, dy, \quad \forall x \in \mathbb{R}^3,
\]
where \(|B_1(x)|\) is the Lebesgue measure of \(B_1(x)\). Let
\[
\check{u}(x) = \Phi(u)(x) - \frac{1}{2} \max_{x \in \mathbb{R}^3} \Phi(u)(x)^+,
\]
and $\beta : H \setminus \{0\} \to \mathbb{R}^3$ given by
\[
\beta(u) = \frac{1}{\|u_1\|} \int_{\mathbb{R}^3} x \hat{u}(x) dx.
\]
Obviously, $\beta(u)$ is well defined for all $u \in H \setminus \{0\}$ and $\beta(u)$ has a compact support in \mathbb{R}^3. Moreover, $\beta(u)$ is continuous in $H \setminus \{0\}$ and satisfies the following properties.

Lemma 4.2. (i) For any $t \neq 0$ and $u \in H \setminus \{0\}$, $\beta(tu) = \beta(u)$.
(ii) For any $z \in \mathbb{R}^3$ and $u \in H \setminus \{0\}$, $\beta(u(x - z)) = \beta(u) + z$.

Define a functional $J : H \to \mathbb{R}$ given as follows
\[
J(u) = \frac{1}{2} \|u\|^2 + \frac{1}{4} \int_{\mathbb{R}^3} K(x) \phi^t_0 u^2 dx - \frac{1}{p} \int_{\mathbb{R}^3} a(x) |u|^p dx - \frac{1}{2s} \int_{\mathbb{R}^3} |u|^{2s} dx,
\]
$u \in H$.

Lemma 4.3. $m_0 := \inf_{M_0} J(u) = m_\infty$ is not attained, where
\[M_0 = \{u \in H \setminus \{0\} : [J'(u), u] = 0\}.
\]

Proof. First, we show that for any $u \in M_0$, there exists a unique $0 < \tau_1 \leq 1$ such that $\tau u \in M_\infty$. Indeed, by $u \in M_0$ and $\tau u \in M_\infty$, we have
\[
\|u\|^2 + \int_{\mathbb{R}^3} K(x) \phi^t_0 u^2 dx = \int_{\mathbb{R}^3} a(x) |u|^p dx + \int_{\mathbb{R}^3} |u|^{2s} dx, \quad (4.1)
\]
and then
\[
\tau^p \int_{\mathbb{R}^3} a(x) |u|^p dx + \tau^{2s} \int_{\mathbb{R}^3} |u|^{2s} dx \leq \tau^p \int_{\mathbb{R}^3} |u|^p dx + \tau^{2s} \int_{\mathbb{R}^3} |u|^{2s} dx \quad (4.2)
\]
From (A3) and $K(x) \geq 1$ for any $x \in \mathbb{R}^3$, it follows that
\[
\int_{\mathbb{R}^3} \phi^t_0 u^2 dx \leq \int_{\mathbb{R}^3} K(x) \phi^t_0 u^2 dx \leq \int_{\mathbb{R}^3} K(x) \phi^t_0 u^2 dx. \quad (4.3)
\]
If $\tau > 1$, by (4.1), (4.2) and (4.3), we deduce that
\[
\tau^4 (\|u\|^2 + \int_{\mathbb{R}^3} K(x) \phi^t_0 u^2 dx) \geq \tau^4 (\|u\|^2 + \int_{\mathbb{R}^3} \phi^t_0 u^2 dx)
\]
\[
\geq \tau^p (\int_{\mathbb{R}^3} a(x) |u|^p dx + \int_{\mathbb{R}^3} |u|^{2s} dx)
\]
\[
= \tau^p (\|u\|^2 + \int_{\mathbb{R}^3} K(x) \phi^t_0 u^2 dx),
\]
which yields $\tau \leq 1$, this achieves a contradiction. Hence $\tau \leq 1$ and the claim is true.

For $u \in M_0$, using (4.3), we have
\[
J(u) = J(u) - \frac{1}{p} [J'(u), u]
\]
\[
= \left(\frac{1}{2} - \frac{1}{p}\right) \|u\|^2 + \left(\frac{1}{4} - \frac{1}{p}\right) \int_{\mathbb{R}^3} K(x) \phi^t_0 u^2 dx + \left(\frac{1}{p} - \frac{1}{2s}\right) \int_{\mathbb{R}^3} |u|^{2s} dx
\]
\[
\geq \left(\frac{1}{2} - \frac{1}{p}\right) \|\tau u\|^2 + \left(\frac{1}{4} - \frac{1}{p}\right) \tau^4 \int_{\mathbb{R}^3} \phi^t_0 u^2 dx + \left(\frac{1}{p} - \frac{1}{2s}\right) \int_{\mathbb{R}^3} |\tau u|^{2s} dx
\]
\[
= I_\infty(\tau u) - \frac{1}{p} [J'_\infty(\tau u), \tau u]
\]
which implies that \(m_0 \geq m_\infty \).

Next we prove \(m_0 \leq m_\infty \). Let \(w_n = u_\infty (-z_n) \), where \(z_n \in \mathbb{R}^3 \) with \(|z_n| \to \infty \). We claim that for \(w_n \in \mathcal{M}_\infty \), there exists \(\tau_n \geq 1 \) such that \(\tau_n w_n \in \mathcal{M}_0 \). In fact, from \(w_n \in \mathcal{M}_\infty \) and \(\tau_n w_n \in \mathcal{M}_0 \), it holds

\[
\|w_n\|^2 + \int_{\mathbb{R}^3} \phi_{w_n}^2 \, dx = \int_{\mathbb{R}^3} |w_n|^p \, dx + \int_{\mathbb{R}^3} |w_n|^{2^*} \, dx,
\]

and then

\[
\tau_n^p \int_{\mathbb{R}^3} |w_n|^p \, dx + \tau_n^{2^*} \int_{\mathbb{R}^3} |w_n|^{2^*} \, dx \\
\geq \tau_n^p \int_{\mathbb{R}^3} a(x) |w_n|^p \, dx + \tau_n^{2^*} \int_{\mathbb{R}^3} |w_n|^{2^*} \, dx \\
= \tau_n^2 \|w_n\|^2 + \tau_n^4 \int_{\mathbb{R}^3} K(x) \phi_{w_n}^4 \, w_n^2 \, dx.
\]

If \(\tau_n < 1 \), then

\[
\tau_n^p \left(\int_{\mathbb{R}^3} |w_n|^p \, dx + \int_{\mathbb{R}^3} |w_n|^{2^*} \, dx \right) \geq \tau_n^4 \left(\|w_n\|^2 + \int_{\mathbb{R}^3} K(x) \phi_{w_n}^4 \, w_n^2 \, dx \right) \\
\geq \tau_n^4 \left(\|w_n\|^2 + \int_{\mathbb{R}^3} \phi_{w_n}^4 \, w_n^2 \, dx \right) \\
= \tau_n^4 \left(\int_{\mathbb{R}^3} |w_n|^p \, dx + \int_{\mathbb{R}^3} |w_n|^{2^*} \, dx \right),
\]

which leads to a contradiction with \(\tau_n < 1 \). Hence \(\tau_n \geq 1 \) and the claim holds.

By the definition of \(m_0 \) and \(\tau_n u_n \in \mathcal{M}_0 \), we have

\[
m_0 \leq J(\tau_n u_n) = \frac{1}{2} \tau_n^2 \|u_\infty\|^2 + \frac{1}{4} \tau_n^4 \int_{\mathbb{R}^3} K(x) \phi_{w_n}^4 \, w_n^2 \, dx \\
- \frac{1}{p} \tau_n^p \int_{\mathbb{R}^3} a(x) |w_n|^p \, dx - \frac{1}{2^*} \tau_n^{2^*} \int_{\mathbb{R}^3} |u_\infty(x)|^{2^*} \, dx.
\]

By Lebesgue dominated convergence Theorem, we deduce that

\[
\lim_{n \to \infty} \int_{\mathbb{R}^3} K(x) \phi_{w_n}^4 \, w_n^2 \, dx \\
= \int_{\mathbb{R}^3} \phi_{u_\infty}^4 (x) |u_\infty(x)|^2 \, dx \\
= \lim_{n \to \infty} \int_{\mathbb{R}^3} a(x) |w_n|^p \, dx = \lim_{n \to \infty} \int_{\mathbb{R}^3} a(x + z_n) |u_\infty(x)|^p \, dx \\
= \int_{\mathbb{R}^3} |u_\infty(x)|^p \, dx.
\]

If \(\tau_n \to 1 \), we obtain \(m_0 \leq \lim_{n \to \infty} J(\tau_n u_n) = I_\infty(u_\infty) = m_\infty \), form which we see that \(m_0 = m_\infty \). Thus we only need to prove \(\tau_n \to 1 \). By \(\tau_n u_n \in \mathcal{M}_0 \), with \(\tau_n \geq 1 \), we have

\[
\tau_n^4 \|w_n\|^2 + \int_{\mathbb{R}^3} K(x) \phi_{w_n}^4 \, w_n^2 \, dx
\]
Assume that there exists \(\sigma \) such that \((\cdot - c) \) such that \(|u(x)|^2 + \tau_n^2 I_\mathbb{R}^3 a(x)|w_n|^p dx + \tau_n^2 I_\mathbb{R}^3 |w_n|^2 dx \)
\[\geq \tau_n^2 I_\mathbb{R}^3 a(x)|w_n|^p dx + \tau_n^2 I_\mathbb{R}^3 |w_n|^2 dx \]

Thus, by (4.4), we deduce that
\[1 \leq \tau_n^{p-4} \leq \frac{\|w_n\|^2 + I_\mathbb{R}^3 K(x)|w_n|^p dx + I_\mathbb{R}^3 |w_n|^2 dx}{I_\mathbb{R}^3 a(x)|w_n|^p dx + I_\mathbb{R}^3 |w_n|^2 dx} \]
which yields \(\tau_n \to 1 \) by using \(u_\infty \in M_\infty \).

Next we prove \(m_0 \) is not attained. Assume by contradiction that there exists \(u_0 \in M_0 \) such that \(m_0 = J(u_0) \). We claim \(J'(u_0) = 0 \). Set \(\hat{G}(u) = [J'(u), u] \). By the Lagrange multipliers Theorem, we obtain \(\lambda \in \mathbb{R} \) such that \(J'(u_0) - \lambda \hat{G}'(u_0) = 0 \). Similar to the of proof of Theorem 1.1, we have \(J'(u_0) = 0 \). Note that if \(u_0 \) is single-changing, by Remark 5.6 in [34], we see that \(J(u_0) \geq 2m_0 \), a contradiction. Thus we may assume that \(u_0 \geq 0 \) in \(H \) and \(u_0 \neq 0 \), we claim \(u_0 > 0 \), by the definition of \(\phi^t_{u_0}(x) \), there exists \(C > 0 \) such that
\[\phi^t_{u_0}(x) = \int_{|x-y| \geq 1} K(y)u_0^2(y) \frac{1}{|x-y|^{3+2s}} dy + \int_{|x-y| < 1} K(y)u_0^2(y) \frac{1}{|x-y|^{3+2s}} dy \]
\[\leq C\|u_0\|_2^2 + C \int_{|x-y| < 1} \frac{1}{|x-y|^{3+2s}} dy < +\infty, \]
and \(|g| \leq C\|u_0\| + |u_0|^{q-1} \), where \(g(x) = a(x)|u_0(x)|^{p-2}u_0(x) + |u_0(x)|^{2^*} - 2u_0(x) - K(x)\phi^t_{u_0}(x)u_0(x) \). Then it follows from Proposition 3.4 that there exists \(\sigma \in (0, 1) \) such that \(u_0 \in C^{0, \sigma} \). Let \(\omega \) satisfy \(-\Delta \omega = -u_0 - K(x)\phi^t_{u_0} u_0 + a(x)|u_0|^{p-2}u_0 + |u_0|^{2^*} - 2u_0 \in C^{0, \sigma} \). By the Hölder regularity theory for the Laplacian, we have \(\omega \in C^{2, \sigma} \). It follows from \(2s + \sigma > 1 \) that \((-\Delta)^{1-s} \omega \in C^{1, 2s+\sigma-1} \).
Then, since \((-\Delta)^{1-s} u_0 = (-\Delta)^{1-s} \omega = 0 \), the function \(u = (-\Delta)^{1-s} \omega \) is harmonic and we obtain \(u_0 \) has the same regularity as \((-\Delta)^{1-s} \omega \). That is, \(u_0 \in C^{1, 2s+\sigma-1} \). The regularity obtained above implies that
\[(-\Delta)^s u_0 = -\int_{\mathbb{R}^3} u_0(x+y) + u_0(x-y) - 2u_0(x) \frac{dy}{|y|^{3+2s}}. \]
Assume that there exists \(x_0 \in \mathbb{R}^3 \) such that \(u_0(x_0) = 0 \), then by \(u_0 \neq 0 \) and \(u_0 \geq 0 \),
\[(-\Delta)^s u_0(x_0) = -\int_{\mathbb{R}^3} \frac{u_0(x+y) + u_0(x-y)}{|y|^{3+2s}} \frac{dy}{|y|^{3+2s}} < 0. \]
However, noting that \(-\Delta u_0 = -u_0 - K(x)\phi^t_{u_0} u_0 + a(x)|u_0|^{p-2}u_0 + |u_0|^{2^*} - 2u_0 \) we obtain \(-\Delta u_0(x_0) = 0 \), which is a contradiction. Therefore, \(u_0 > 0 \).

From the above proof, we see that for \(u_0 \in M_0 \), there exists a unique \(\tau_0 \leq 1 \) such that \(\tau_0 u_0 \in M_\infty \). Thus,
\[m_\infty \leq I_\infty(\tau_0 u_0) \]
\[= I_\infty(\tau_0 u_0) - \frac{1}{p}[I_\infty(\tau_0 u_0), \tau_0 u_0] \]
\[
\|u_0\|_p = \left\{ \begin{array}{ll}
\frac{n}{2} - 1 & \text{if } p > 2,
2 - \frac{2}{n} & \text{if } p = 2,
\frac{n}{2} + 1 & \text{if } p < 2.
\end{array} \right.
\]

Thus, \(u \) is a critical point of \(\mathcal{J} \) in \(M_0 \) and \(\mathcal{J}(u) \leq \mathcal{J}(u_0) = J(u_0) = m_0 \).

From \(m_0 = m_\infty \), it follows that
\[
(\frac{1}{2} - \frac{1}{p})\|u_0\|_p^2 + \int_{\mathbb{R}^3} (\mathcal{K}(x) - 1)\phi_{u_0}^2dx + \int_{\mathbb{R}^3} \phi_{u_0}^4dx = (\frac{1}{2} - \frac{1}{p})\|u_0\|_p^2 + \int_{\mathbb{R}^3} (\mathcal{K}(x) - 1)\phi_{u_0}^2dx + \int_{\mathbb{R}^3} \phi_{u_0}^4dx.
\]

Thus
\[
\|u_0\|_p^2 + \int_{\mathbb{R}^3} (\mathcal{K}(x) - 1)\phi_{u_0}^2dx + \int_{\mathbb{R}^3} \phi_{u_0}^4dx = \|u_0\|_p^2 + \int_{\mathbb{R}^3} (\mathcal{K}(x) - 1)\phi_{u_0}^2dx + \int_{\mathbb{R}^3} \phi_{u_0}^4dx = 0,
\]
by \(\tau_0 \leq 1 \), so
\[
\int_{\mathbb{R}^3} (\mathcal{K}(x) - 1)(\phi_{u_0}^2 + \phi_{u_0}^4)dx = 0,
\]
this contradicts \(u_0 \) being positive, \(\mathcal{K}(x) \geq 1 \) and \(\text{meas}\{x \in \mathbb{R}^3 : \mathcal{K}(x) > 1\} > 0 \).

Lemma 4.4. There exists \(\rho_0 > 0 \) such that for \(u \in M_0 \) satisfying \(\mathcal{J}(u) \leq m_\infty + \rho_0 \), it holds \(|\beta(u)| > 0 \).

Proof. Assume by the contrary that there exists \(\{u_n\} \subset M_0 \) such that \(\mathcal{J}(u_n) \to m_\infty = m_0 \) and \(|\beta(u)| = 0 \). Similar to the proof of Theorem 1.1, we can derive by the Lagrange multipliers Theorem that \(\mathcal{J}'(u_n) \to 0 \). We omit the proof here. Similar to the proof Lemma 2.3, we obtain \(u_n \rightharpoonup u \) weakly in \(H \), \(\mathcal{J}'(u) = 0 \), and
\[
m_\infty - \mathcal{J}(u) = I_\infty(v_n) + o(1) \text{ and } I_\infty'(v_n) = o(1),
\]
where \(v_n = u_n - u \).

For the sequence \(\{v_n\} \), two cases may occur: \(\|v_n\|_p \to 0 \) for any \(p \in (2, 2^*_n) \), or there \(y_n \in \mathbb{R}^3 \) with \(|y_n| \to \infty \) such that \(v_n(\cdot + y_n) \rightharpoonup v \neq 0 \) weakly in \(H \). By virtue of \(\mathcal{J}'(u) = 0 \), we can deduce that \(\mathcal{J}(u) \geq 0 \). From Lemma 2.3, we see that
\[
m_\infty < \frac{\gamma}{2} S^{\frac{2^*_n}{\gamma}}. \quad \text{Thus } m_\infty - \mathcal{J}(u) < \frac{\gamma}{2} S^{\frac{2^*_n}{\gamma}}.
\]
If \(\|v_n\|_p \to 0 \) for any \(p \in (2, 2^*_n) \), by (4.6), we have
\[
m_\infty - \mathcal{J}(u) = \frac{1}{2} \|v_n\|_p^2 - \frac{1}{2^*_n} \|v_n\|_2^2 + o(1) \text{ and } \|v_n\|_2^2 - \|v_n\|_p^2 = o(1).
\]
Up to a subsequence, we may assume
that \(\|v_n\|^2 \to l \) and then \(\|v_n\|^2 \to l \). If \(l > 0 \), by the definition of \(S^4 \), we obtain \(l \geq S^4 \). So \(m_\infty - J(u) = \frac{1}{2} \|v_n\|^2 - \frac{1}{2} \|v_n\|^2 = \frac{3}{4} l \geq \frac{3}{4} S^4 \), a contradiction with \(m_\infty - J(u) < \frac{3}{4} S^4 \). Thus, \(l = 0 \) and then \(u_n \to u \) in \(H \), we obtain \(m_0 = J(u) \), a contradiction with \(m_0 \) is not attained. Therefore, \(v_n(\cdot + y_n) \to v \neq 0 \) weakly in \(H \).

Similar to the proof Lemma 2.3, we can deduce that

\[
J(u) = I_\infty(v_n(\cdot + y_n)) + o(1),
\]

\[
I'_\infty(v_n(\cdot + y_n)) = o(1).
\]

Hence, \(I'_\infty(v) = 0 \) and by using Fatou’s Lemma, we have

\[
m_\infty - J(u) = I_\infty(v_n(\cdot + y_n)) - \frac{1}{4} [I'_\infty(v_n(\cdot + y_n)), v_n(\cdot + y_n)] + o(1)
\]

\[
= \frac{1}{4} \|(v_n(\cdot + y_n))\|^2 + (1 - \frac{1}{2}) \int R^3 |(v_n(\cdot + y_n))|^2 \, dx + o(1)
\]

\[
\geq \frac{1}{4} \|v\|^2 + (1 - \frac{1}{2}) \int R^3 |v|^2 \, dx + \frac{1}{2} \int R^3 |v|^2 \, dx
\]

\[
= I_\infty(v) - \frac{1}{4} (I'_\infty(v), v)) = I_\infty(v) \geq m_\infty.
\]

Combining with \(J(u) \geq 0 \), we obtain \(J(u) = 0 \) and then \(v_n(\cdot + y_n) = u_n(\cdot + y_n) \to v \) in \(H \). By Lemma 4.2, we have

\[
\beta(v(x)) + o(1) = \beta(u_n(x + y_n)) = \beta(u_n) - y_n = -y_n.
\]

Which yields \(|\beta(v(x))| = \infty \), this leads to a contradiction. \(\square \)

Lemma 4.5. There exists \(\mu_0 > 0 \) small such that for \(\mu \in (0, \mu_0) \), we have \(|\beta(u)| > 0 \) for \(u \in \{ u \in M : I(u) < m_\infty \} \).

Proof. Let \(u \in M \) be such that \(I(u) < m_\infty \), then we have

\[
m_\infty > I(u) = I(u) - \frac{1}{4} [I'(u), u] \geq \frac{1}{4} \|u\|^2.
\]

Using the conditions (A4), (A6) and \(u \in M \), we obtain for any \(\varepsilon > 0 \), there exists \(C_\varepsilon > 0 \) such that

\[
\|u\|^2 \leq \int R^3 a(x)|u|^2 \, dx + \mu \int R^3 b(x)|u|^3 \, dx + \int R^3 |u|^2 \, dx
\]

\[
\leq (1 + \mu) \left[\varepsilon \int R^3 |u|^2 \, dx + C_\varepsilon \int R^3 |u|^2 \, dx \right].
\]

(4.7)

Choose \(\varepsilon \in (0, 1/4) \), we have \(\frac{1}{2} \|u\|^2 \leq (1 + \mu) C_\varepsilon \int R^3 |u|^2 \, dx \) for \(\mu \in (0, 1) \). In fact, if \(\varepsilon \in (0, 1/4) \) and \(\mu \in (0, 1) \), we obtain \(0 < (1 + \mu) \varepsilon < 1/2 \), and then \(1/2 - (1 + \mu) \varepsilon > 0 \). Thus, it holds

\[
\frac{1}{2} \int R^3 |\nabla u|^2 \, dx + (\frac{1}{2} - (1 + \mu) \varepsilon) \int R^3 |u|^2 \, dx \geq 0,
\]

that is

\[
\frac{1}{2} \|u\|^2 \leq \|u\|^2 - (1 + \mu) \varepsilon \int R^3 |u|^2 \, dx,
\]
by (4.7), we have
\[\|u\|^2 - (1 + \mu)\varepsilon \int_{\mathbb{R}^3} |u|^2 dx \leq (1 + \mu)C_\varepsilon \int_{\mathbb{R}^3} |u|^{2^*} dx, \]
so
\[\frac{1}{2}\|u\|^2 \leq (1 + \mu)C_\varepsilon \int_{\mathbb{R}^3} |u|^{2^*} dx. \]
Thus, by the definition of S_ε, there exists $L_0 > 0$ independent of $\mu \in (0, 1)$ such that
\[\int_{\mathbb{R}^3} |u|^{2^*} dx \geq \frac{L_0}{(1 + \mu)^{\frac{2}{2^*}}}. \tag{4.8} \]
Similar to the argument of Lemma 4.3, we can deduce that for any $u \in M$, there exists a unique $\tau(u) \geq 1$ such that $\tau(u)u \in M_0$. Then
\[
\tau^4(u)(\|u\|^2 + \int_{\mathbb{R}^3} K(x)\phi_u^0 u^2 dx) \geq \tau^2(u)\|u\|^2 + \tau^4(u) \int_{\mathbb{R}^3} K(x)\phi_u^0 u^2 dx = \tau^p(u) \int_{\mathbb{R}^3} a(x)|u|^p dx + \tau^{2^*_u}(u) \int_{\mathbb{R}^3} |u|^{2^*_u} dx \geq \tau^{2^*_u}(u) \int_{\mathbb{R}^3} |u|^{2^*_u} dx,
\]
which implies that
\[\tau^{2^*_u - 4}(u) \leq \frac{\|u\|^2 + \int_{\mathbb{R}^3} K(x)\phi_u^0 u^2 dx}{\int_{\mathbb{R}^3} |u|^{2^*_u} dx}. \]
Together with (4.6) and (4.8), we derive there exists $\bar{C} > 0$ independent of $\mu \in (0, 1)$ such that
\[1 \leq \tau^{2^*_u - 4}(u) \leq \bar{C}(1 + \mu)^{\frac{2}{2^*_u}}. \tag{4.9} \]
Note that for $u \in M$ with $I(u) < m_\infty$, thus
\[m_\infty > I(u) = \sup_{t \geq 0} I(tu) \geq I(t(u))u = J(t(u))u - \mu \frac{t^3(u)}{q} \int_{\mathbb{R}^3} b(x)|u|^q dx. \]
By (4.6) and (4.9), there exists a small $\mu_0 \in (0, 1)$ such that $\mu \in (0, \mu_0)$,
\[J(t(u))u < m_\infty + \mu \frac{t^3(u)}{q} \int_{\mathbb{R}^3} b(x)|u|^q dx \leq m_\infty + \rho_0. \]
Form Lemma 4.4, we have $|\beta(t(u))| > 0$. Hence, Lemma 4.2 implies $|\beta(u)| > 0$. \hfill \Box

Lemma 4.6. For $\mu \in (0, \mu_0)$, define $G : \{u \in M : I(u) < m_\infty\} \to S^2$ by $G(u) = \frac{\beta(u)}{|\beta(u)|}$. Then for $R > R_0$ and $\mu \in (0, \mu_0)$, the map
\[G \circ F_R : S^2 \to S^2 ; y \to G(F_R(y)) \]
is homotopic to the identity.

Proof. Similar to the argument of [37, Proposition 2.9], we define the map $\zeta(\theta, y) : [0, 1] \times S^2 \to S^2$ by
\[
\zeta(\theta, y) = \begin{cases}
G((1 - 2\theta)F_R(y) + 2\theta u_\infty(x - R\overline{y})), & \theta \in [0, 1/2), \\
G(u_\infty(x - \frac{R}{\tau(\chi)^2}y)), & \theta \in [1/2, 1), \\
y, & \theta = 1.
\end{cases}
\]
By the definition of \(G \) and Lemma 2.7, it is not difficult to check that \(\zeta(\theta, y) \in C([0,1] \times S^2, S^2) \), \(\zeta(0, y) = G \circ (F_R(y)) \) for \(y \in S^2 \) and \(\zeta(1, y) = y \) for \(y \in S^2 \). The proof is complete. □

Proof of Theorem 1.3. From Lemma 2.7,Lemma 4.1 and Lemma 4.6, we have that for \(R > R_0 \) and \(\mu \in (0, \mu_0) \), it holds

\[
\text{cat}(\{ u \in M : I(u) \leq m_\infty - \varepsilon(R) \}) \geq 2.
\]

Then by Lemma 2.3 and Lemma 2.6, we see that \(I \) admits at least two nontrivial critical point in \(\{ u \in M : I(u) < m_\infty \} \). □

Acknowledgments. This work is supported by NSFC grant 11501403 and fund program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (2018), and by the Natural Science Foundation of Shanxi Province (No. 201901D111085).

References

Lintao Liu
DEPARTMENT OF MATHEMATICS, TAIYUAN UNIVERSITY OF TECHNOLOGY, TAIYUAN, SHANXI 030024, CHINA
Email address: 956484600@qq.com

Kaimin Teng
DEPARTMENT OF MATHEMATICS, TAIYUAN UNIVERSITY OF TECHNOLOGY, TAIYUAN, SHANXI 030024, CHINA
Email address: tengkaimin2013@163.com