Electron. J. Differential Equations, Vol. 2021 (2021), No. 09, pp. 1-37.

Existence and global behavior of weak solutions to a doubly nonlinear evolution fractional p-Laplacian equation

Jacques Giacomoni, Abdelhamid Gouasmia, Abdelhafid Mokrane

Abstract:
In this article, we study a class of doubly nonlinear parabolic problems involving the fractional p-Laplace operator. For this problem, we discuss existence, uniqueness and regularity of the weak solutions by using the time-discretization method and monotone arguments. For global weak solutions, we also prove stabilization results by using the accretivity of a suitable associated operator. This property is strongly linked to the Picone identity that provides further a weak comparison principle, barrier estimates and uniqueness of the stationary positive weak solution.

Submitted June 6, 2020. Published February 23, 2021.
Math Subject Classifications: 35B40, 35K59, 35K55, 35K10, 35R11.
Key Words: Fractional p-Laplace equation; doubly nonlinear evolution equation; Picone identity; stabilization; nonlinear semi-group theory.
DOI: https://doi.org/10.58997/ejde.2021.09

Show me the PDF file (553 KB), TEX file for this article.

Jacques Giacomoni
Université de Pau et des Pays de l'Adour,
CNRS, E2S LMAP (UMR 5142), IPRA
Avenue de l'Université-F-64013 Pau, France
email: jacques.giacomoni@univ-pau.fr
Abdelhamid Gouasmia
Laboratoire d'équations aux dérivées partielles non linéaires et histoire des mathématiques
École Nationale Supérieure, B.P. 92
Vieux Kouba, 16050 Algiers, Algeria
email: gouasmia.abdelhamid@gmail.com
Abdelhafid Mokrane
Laboratoire d'équations aux dérivées partielles non linéaires et histoire des mathématiques
École Nationale Supérieure, B.P. 92
Vieux Kouba, 16050 Algiers, Algeria
email: abdelhafid.mokrane@ens-kouba.dz

Return to the EJDE web page