Jacques Giacomoni, Abdelhamid Gouasmia, Abdelhafid Mokrane
Abstract:
In this article, we study a class of doubly nonlinear parabolic problems involving
the fractional p-Laplace operator. For this problem, we discuss existence, uniqueness
and regularity of the weak solutions by using the time-discretization method and
monotone arguments. For global weak solutions, we also prove stabilization results
by using the accretivity of a suitable associated operator. This property is strongly
linked to the Picone identity that provides further a weak comparison principle,
barrier estimates and uniqueness of the stationary positive weak solution.
Submitted June 6, 2020. Published February 23, 2021.
Math Subject Classifications: 35B40, 35K59, 35K55, 35K10, 35R11.
Key Words: Fractional p-Laplace equation; doubly nonlinear evolution equation;
Picone identity; stabilization; nonlinear semi-group theory.
DOI: https://doi.org/10.58997/ejde.2021.09
Show me the PDF file (553 KB), TEX file for this article.
Jacques Giacomoni Université de Pau et des Pays de l'Adour, CNRS, E2S LMAP (UMR 5142), IPRA Avenue de l'Université-F-64013 Pau, France email: jacques.giacomoni@univ-pau.fr | |
Abdelhamid Gouasmia Laboratoire d'équations aux dérivées partielles non linéaires et histoire des mathématiques École Nationale Supérieure, B.P. 92 Vieux Kouba, 16050 Algiers, Algeria email: gouasmia.abdelhamid@gmail.com | |
Abdelhafid Mokrane Laboratoire d'équations aux dérivées partielles non linéaires et histoire des mathématiques École Nationale Supérieure, B.P. 92 Vieux Kouba, 16050 Algiers, Algeria email: abdelhafid.mokrane@ens-kouba.dz |
Return to the EJDE web page