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HADAMARD TYPE INEQUALITIES VIA FRACTIONAL

CALCULUS IN THE SPACE OF EXP-CONVEX FUNCTIONS

AND APPLICATIONS

LI MA, GUANGZHENGAO YANG

Abstract. In this article, we study basic properties of exp-convex functions
and establish the corresponding Hadamard type integral inequalities along

with fractional operators. A comparative analysis between the exp-convexity

and classic convexity is discussed. Furthermore, several related integral iden-
tities and estimation of upper bounds of inequalities involved with fractional

operators are proved. In addition, some indispensable propositions associated
with special means are allocated to illustrate the usefulness of our main re-

sults. Besides, Mittag-Leffler type convex functions with weaker convexity

than exp-convexity are also presented.

1. Introduction

In the past several decades, the role of elementary mathematical inequalities
have been rediscovered owing to their applications to different realms of mathe-
matics and applied science. As a matter of fact, the development of mathematical
inequalities is very closely related to the advances in the theory of convex function.
As we know, the origin of the theory of convex function could be traced back to the
literatures from many famous mathematicians, such as Jensen, Hardy, Hadamard.
Interesting discussions regarding to convex function have occupied researches in re-
cent decades. One of the most celebrated and sparkled results on convex function,
in some sense, is the Hermite-Hadamard integral inequality (or Hadamard type
integral inequality). Because of its geometrical significance, there exist an abun-
dance of related studies from a number of mathematicians who provide new proofs,
generalizations, extensions and refinements of Hadamard type integral inequality
[6, 12, 21, 25]. In addition, various generalized convex functions have sprung up
recently, such as quasi-convex function [1, 4, 24], log-convex function [3, 5, 15, 23],
s-convex function [2, 14, 28], m-convex function [22], h-convex function [33], (h, m)-
convex function[29], co-ordinated convex [16].

On the other hand, the theory of fractional calculus is nearly as old as the classical
calculus [8, 13, 37]. During the last few decades, both in mathematics and applied
sciences, fractional calculus is recognized as an excellent tool for describing complex
dynamic processes incorporating both long range memory effects and hereditary,
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such as physics [19, 31], mechanics [17, 38], engineering [30], biology [9], economy
[18, 20] and other branches of technical fields. Nevertheless, it has to be emphasized
that only sporadic works have been reported on generalized Hadamard type integral
inequalities in the framework of fractional calculus. In [26], the authors establish
Hadamard-type inequality via fractional integral operator in the sense of classic
convexity. In [35, 36], they present Hadamard-type inequalities associated with
Hadamard fractional settings in the presence of classic convexity. In [27], the author
identifies some new inequalities of Hermite-Hadamard-type for co-ordinated convex
functions on a rectangle of the real plane via Riemann-Liouville fractional integral
operator. In addition, more related publications could be found in [10, 11, 32, 34,
39].

It is not unexpected to find that there exist quantities of continuous functions
which do not satisfy the strict definition of conventional convex (or, concave) func-
tion. To reveal their fundamental properties better, such as geometric character-
istics and differentiability, it is reasonable to extend the original notion of convex
function to a broader one. It should be noted that Dragomir has proposed the con-
cept of exp-convex function in his letter [7]. In [40], the authors investigate novel
Hermite-Hadamard type inequalities for K-conformable fractional integral opera-
tor for exponentially convex functions in the classical sense. However, there are no
reports on Hadamard type integral inequalities in terms of Riemann-Liouville frac-
tional operators with exp-convexity. Naturally, we put forth two basic questions:
What is the essential difference between exp-convexity and ordinary convexity?
How to establish the corresponding (Hadamard type) integral inequalities via frac-
tional operators in the sense of exp-convexity? In this paper, we will supply definite
answers.

The rest of this paper is organized as follows: In Section 2, some preliminaries on
exp-convex function are introduced. Hadamard type integral inequalities/equalities
and their generalizations via fractional operators with regard to exp-convex function
are proved and discussed in Sections 3 and 4, respectively. Some applications of
exp-convex function dealing with special means are provided in Section 5, and
the standard definition of Mittag-Leffler type convex function is also posed as the
generalization of exp-convexity in the last section.

2. Preliminaries

To prove our main results, some mathematics preliminaries should be provided.
First we introduce the definition of exp-convex function as follows.

Definition 2.1 ([7]). A function f : [a, b] ⊂ R → R, is said to be exp-convex
function, if

ef(tx+(1−t)y) ≤ tef(x) + (1− t)ef(y), (2.1)

for all t ∈ [0, 1] and all x, y ∈ [a, b].

Remark 2.2. The definition of exp-convex indicates that f may not be convex
but exp(f) is convex. Furthermore, if f(x) is convex, then it must be exp-convex.
However, the converse is not true. For example, ln(x2) is non-convex on [1, 2] but
it is exp-convex. Accordingly, compared to the conventional convex function, the
exp-convex function has a lower requirement for the properties of function itself
and can characterize the geometric properties of a function better. Given that, it
has greater potential value and a broader application prospect.
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Definition 2.3. The logarithmic-exponential mean of a given function f(x) on
[a, b] is defined as

LE(x) = ln
[ef(x) + ef(a+b−x)

2

]
, x ∈ [a, b]. (2.2)

Definition 2.4. The logarithmic-type mean of a given positive function f(x) on
[a, b] is defined as

L̃E(x) = ln
[f(x) + f(a+ b− x)

2

]
, x ∈ [a, b]. (2.3)

Definition 2.5 ([13]). The Gauss hypergeometric function is defined as

2F1(a, b; c;x) =

∞∑
n=0

(a)n(b)n
(c)n

xn

n!
, (2.4)

where |x| < 1, and (q)0 = 1, (q)n = q(q + 1)(q + 2) · · · (q + n− 1), (n ∈ N∗).

Definition 2.6 ([13]). The left and right Riemann-Liouville fractional integrals
with order α > 0 of a given continuous function f(x), x ∈ [a, b] are defined as,
respectively,

D−αa+ f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a, (2.5)

D−αb− f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b, (2.6)

where Γ(·) is the Gamma function.

3. Hadamard type integral inequalities for exp-convex functions via
fractional operators

In this section, we propose several interesting interpolation inequalities as follows.
First, the Hadamard type integral inequality with fractional setting in the space of
exp-convex functions is established.

Theorem 3.1. For α > 0, if f(x) is an exp-convex function and continuous on
[a, b], then the following inequalities via fractional integral hold

f
(a+ b

2

)
≤ Γ(α+ 1)

(b− a)α
D−αa+ LE(b) ≤ ln

[ef(a) + ef(b)

2

]
, (3.1)

where D−αa+ LE(b) = D−αa+ LE(x)|x=b.

Proof. According to the definition of exp-convex function, we have

exp
(
f(
x+ y

2
)
)
≤ exp(f(x)) + exp(f(y))

2
. (3.2)

In this inequality let x = ta+ (1− t)b, y = tb+ (1− t)a. Then

exp
(
f(
a+ b

2
)
)
≤ exp(f(ta+ (1− t)b)) + exp(f(tb+ (1− t)a))

2
. (3.3)

After taking the logarithm on both sides, we obtain

f(
a+ b

2
) ≤ ln

[exp(f(ta+ (1− t)b)) + exp(f(tb+ (1− t)a))

2

]
. (3.4)
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By multiplying the factor tα−1 on both sides, and then integrating with respect to
t over [0, 1], we obtain∫ 1

0

tα−1f(
a+ b

2
)dt

≤
∫ 1

0

tα−1 ln
[exp(f(ta+ (1− t)b)) + exp(f(tb+ (1− t)a))

2

]
dt;

(3.5)

that is,

f(a+b2 )

α
≤
∫ 1

0

tα−1 ln
[exp(f(ta+ (1− t)b)) + exp(f(tb+ (1− t)a))

2

]
dt. (3.6)

Combining the inequality (3.6) and making the substitution t = b−x
b−a , we obtain

f(a+b2 )

α
≤
∫ a

b

(b− x
b− a

)α−1
ln
[exp(f(x)) + exp(f(a+ b− x))

2

]
d
( x

a− b

)
. (3.7)

Thus we have

f(
a+ b

2
) ≤ α

∫ b

a

(b− x)α−1

(b− a)α
ln
[exp(f(x)) + exp(f(a+ b− x))

2

]
dx

=
Γ(α+ 1)

(b− a)α
D−αa+ LE(x)|x=b.

(3.8)

For the right side of (3.1), note that

ln
[exp(f(ta+ (1− t)b)) + exp(f(tb+ (1− t)a))

2

]
≤ ln

[ef(a) + ef(b)

2

]
, (3.9)

where the exp-convexity of f(x) has been used.
On the other hand, by multiplying the factor tα−1 on both sides of (3.9) and

then integrating with respect to t over [0, 1], we have∫ 1

0

tα−1 ln
[exp(f(ta+ (1− t)b)) + exp(f(tb+ (1− t)a))

2

]
dt ≤ 1

α
ln
[ef(a) + ef(b)

2

]
,

which implies
Γ(α+ 1)

(b− a)α
D−αa+ LE(x)|x=b ≤ ln

[ef(a) + ef(b)

2

]
, (3.10)

where t = b−x
b−a has been utilized. The proof is complete. �

Now we have established the Hadamard type fractional integral inequalities as-
sociated with exp-convexity described by (3.1). In the sequel, we consider special
cases of Theorem 3.1.

Corollary 3.2. Under the conditions of Theorem 3.1, we have

f(
a+ b

2
) ≤ 1

b− a

∫ b

a

ln
[ef(x) + ef(a+b−x)

2

]
dx ≤ ln

[ef(a) + ef(b)

2

]
. (3.11)

The corollary mentioned above follows from Theorem 3.1 with α = 1. It is worth
noting that (3.11) could be called Hadamard type integral inequality in the space
of exp-convex functions (or, Hermite-Hadamard integral inequality for exp-convex
functions).

Remark 3.3. We consider several special cases for such Hermite-Hadamard inte-
gral inequality described by (3.11), where b > a.
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(1) If f(x) = x, then we have

a+ b

2
≤ 1

b− a

∫ b

a

ln
[ex + ea+b−x

2

]
dx ≤ ln

[ea + eb

2

]
. (3.12)

(2) If f(x) = ln(x), then above inequalities (3.11) degenerate into the same
value ln(a+b2 ), where b > a > 0.

(3) If f(x) = ln(x2), then(a+ b

2

)2
≤ exp

{ 1

b− a

∫ b

a

ln
x2 + (a+ b− x)2

2

]
dx
}
≤ a2 + b2

2
. (3.13)

In addition, for a monotonic, continuous, exp-convex function, we have the fol-
lowing corollary.

Corollary 3.4. Under the conditions of Theorem 3.1, if f(x) is a non-increasing
function, then

f
(

ln
[ea + eb

2

])
≤ Γ(α+ 1)

(b− a)α
D−αa+ LE(b) ≤ ln

[ef(a) + ef(b)

2

]
. (3.14)

Proof. Combining Theorem 3.1 and the inequality a+b
2 ≤ ln

[
ea+eb

2

]
from (3.12)

completes the proof. �

The following conclusion can be drawn for a positive and convex function.

Corollary 3.5. Under the conditions of Theorem 3.1, if f(x) is a positive convex
function, we have

f(
a+ b

2
) ≤ exp

[Γ(α+ 1)

(b− a)α
D−αa+ L̃E(b)

]
≤ Γ(α+ 1)

2(b− a)α
[D−αa+ f(b) + D−αb− f(a)] ≤ f(a) + f(b)

2
,

(3.15)

where D−αa+ L̃E(b) = D−αa+ L̃E(x)|x=b , D−αa+ f(b) = D−αa+ f(x)|x=b and D−αb− f(a) =

D−αb− f(x)|x=a.

Proof. Consider the positive definite and convex function f(x). It is logical to
conclude that g(x) = ln f(x) is an exp-convex function. Utilizing Theorem 3.1,
then we have

ln f(
a+ b

2
) ≤ Γ(α+ 1)

(b− a)α
D−αa+ L̃E(b) ≤ ln

f(a) + f(b)

2
. (3.16)

Taking exponential function on both sides, we obtain

f(
a+ b

2
) ≤ exp

[Γ(α+ 1)

(b− a)α
D−αa+ L̃E(b)

]
≤ f(a) + f(b)

2
. (3.17)

In fact,

exp
[Γ(α+ 1)

(b− a)α
D−αa+ L̃E(b)

]
= exp

[ ∫ 1

0

αtα−1L̃E(ta+ (1− t)b)dt
]

= exp
[∫ 1

0
αtα−1L̃E(ta+ (1− t)b)dt∫ 1

0
αtα−1dt

]
≤
∫ 1

0
αtα−1 exp(L̃E(ta+ (1− t)b))dt∫ 1

0
αtα−1dt
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=

∫ 1

0

αtα−1
[f(ta+ (1− t)b) + f(tb+ (1− t)a)

2

]
dt

=
1

2

∫ a

b

α

(
b− u
b− a

)α−1
f(u)

du

a− b

+
1

2

∫ b

a

α

(
v − a
b− a

)α−1
f(v)

dv

b− a

=
Γ(α+ 1)

2(b− a)α
[D−αa+ f(b) + D−αb− f(a)],

where Jensen’s integral inequality [34] has been used.
On the other hand, due to the convexity of f , we have

Γ(α+ 1)

2(b− a)α
[D−αa+ f(b) + D−αb− f(a)] =

∫ 1

0

αtα−1
[f(ta+ (1− t)b) + f(tb+ (1− t)a)

2

]
dt

≤
∫ 1

0

αtα−1
[ tf(a) + (1− t)f(b) + tf(b) + (1− t)f(a)

2

]
dt

=

∫ 1

0

αtα−1
f(a) + f(b)

2
dt

=
f(a) + f(b)

2
.

Consequently, we complete the proof. �

For a positive, convex and symmetric f , we have the following result.

Remark 3.6. If f(x) is symmetric with respect to the axis x = a+b
2 in Corollary

3.5, then we can conclude that

f(
a+ b

2
) ≤ exp

[Γ(α+ 1)

(b− a)α
D−αa+ L̃E(b)

]
≤ Γ(α+ 1)

(b− a)α
D−αa+ f(b) ≤ f(b). (3.18)

4. Estimation on bounds of fractional integral via Hadamard type
integral inequalities for exp-convex functions

In this section, we prove several explicit bounds in terms of Hadamard type
integral inequalities (3.1). First, the estimation on the bound of the right side of
(3.1) is proved based on the following integral identity.

Lemma 4.1. For α > 0, let f(x) be differentiable on [a, b], then the following
relation with fractional setting holds

ln
[ef(a) + ef(b)

2

]
− Γ(α+ 1)

(b− a)α
D−αa+ LE(b) = (b−a)

∫ 1

0

tα LE′(tb+ (1− t)a)dt. (4.1)

Proof. Let I be the right side of (4.1). Then we have

I =

∫ 1

0

tαd[LE(tb+ (1− t)a)]

= tα LE(tb+ (1− t)a)|10 −
∫ 1

0

αtα−1 LE(tb+ (1− t)a)dt

= ln
[ef(a) + ef(b)

2

]
−
∫ 1

0

αtα−1 LE(tb+ (1− t)a)dt.

(4.2)
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Noticing that
LE(tb+ (1− t)a) = LE(ta+ (1− t)b), (4.3)

we obtain

I = ln
[ef(a) + ef(b)

2

]
−
∫ 1

0

αtα−1 LE(ta+ (1− t)b)dt

= ln
[ef(a) + ef(b)

2

]
− Γ(α+ 1)

(b− a)α
D−αa+ LE(b),

(4.4)

where the substitution x = ta+ (1− t)b has been used. The proof is complete. �

In the light of Lemma above, we can further derive the following conclusion.

Theorem 4.2. For α > 0, let f(x) be differentiable on [a, b] and |LE′(x)| be convex,
then∣∣∣ ln [ef(a) + ef(b)

2

]
− Γ(α+ 1)

(b− a)α
D−αa+ LE(b)

∣∣∣ ≤ (b− a)
∣∣f ′(b)ef(b) − f ′(a)ef(a)

∣∣
(α+ 1)(ef(a) + ef(b))

.

Proof. It suffices to note that

|LE′(x)| = |f
′(x)ef(x) − f ′(a+ b− x)ef(a+b−x)|

ef(x) + ef(a+b−x)
, (4.5)

and according to the convexity and symmetry of |LE′(x)|, we obtain

|LE′(tb+ (1− t)a)| = |LE′(ta+ (1− t)b)|
≤ t|LE′(a)|+ (1− t)|LE′(b)|

= t
|f ′(a)ef(a) − f ′(b)ef(b)|

ef(a) + ef(b)
+ (1− t) |f

′(b)ef(b) − f ′(a)ef(a)|
ef(a) + ef(b)

=
|f ′(b)ef(b) − f ′(a)ef(a)|

ef(a) + ef(b)
,

(4.6)

where t ∈ [0, 1] and substitution x = tb+ (1− t)a has been used.
Hence, on account of Lemma 4.1 and (4.6), we obtain∣∣∣ ln [ef(a) + ef(b)

2

]
− Γ(α+ 1)

(b− a)α
D−αa+ LE(b)

∣∣∣
= (b− a)

∣∣ ∫ 1

0

tα LE′(tb+ (1− t)a)dt
∣∣

= (b− a)
∣∣ ∫ 1

0

tα LE′(ta+ (1− t)b)dt
∣∣

≤ (b− a)

∫ 1

0

|tα LE′(ta+ (1− t)b)|dt

≤ (b− a)

∫ 1

0

tαdt
|f ′(b)ef(b) − f ′(a)ef(a)|

ef(a) + ef(b)

=
(b− a)|f ′(b)ef(b) − f ′(a)ef(a)|

(α+ 1)(ef(a) + ef(b))
.

(4.7)

The proof is complete. �

Next, we present special cases of Theorem 4.2.
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Corollary 4.3. Under the assumptions of Theorem 4.2, we obtain

∣∣∣ ln [ef(a) + ef(b)

2

]
− 1

b− a

∫ b

a

LE(x)dx
∣∣∣ ≤ (b− a)|f ′(b)ef(b) − f ′(a)ef(a)|

2(ef(a) + ef(b))
. (4.8)

The corollary above follows from Theorem 4.2 with α = 1.

Corollary 4.4. Under the assumptions of Theorem 4.2, if f(x) is symmetric with
respect to the axis x = a+b

2 , then

∣∣f(b)− Γ(α+ 1)

(b− a)α
D−αa+ LE(b)

∣∣ ≤ (b− a)|f ′(b)|
α+ 1

. (4.9)

Proof. Obviously, f(x) = f(a+ b− x) implies

LE(x) = ln
[ef(x) + ef(a+b−x)

2

]
= f(x). (4.10)

Hence, f ′(x) = −f ′(a+ b− x), f(a) = f(b) and f ′(a) = −f ′(b). Now by Theorem
4.2, we obtain

∣∣f(b)− Γ(α+ 1)

(b− a)α
D−αa+ LE(b)

∣∣ ≤ (b− a)|f ′(b)ef(b) − f ′(a)ef(a)|
2(α+ 1)ef(b)

≤ (b− a)|f ′(b)ef(b) + f ′(b)ef(b)|
2(α+ 1)ef(b)

=
(b− a)|f ′(b)|

α+ 1
.

(4.11)

Now we complete the proof. �

Next, we provide the estimation on the bound of the left side of (3.1). Before
that, we need the following integral identity.

Lemma 4.5. For α > 0, let f(x) be differentiable on [a, b]. Then the following
relation described by fractional setting holds

Γ(α+ 1)

(b− a)α
D−αa+ LE(b)− f(

a+ b

2
)

=
b− a

2

∫ 1

0

[ξ + (1− t)α − tα] LE′(tb+ (1− t)a)dt,

(4.12)

where

ξ =

{
−1, 0 ≤ t ≤ 1/2,

1, 1/2 < t ≤ 1.
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Proof. We start our proof from the right side of (4.12),

I =
b− a

2

∫ 1

0

[ξ + (1− t)α − tα] LE′(tb+ (1− t)a)dt

=
1

2

∫ 1

0

[ξ + (1− t)α − tα]d[LE(tb+ (1− t)a)]

=
1

2

∫ 1/2

0

[−1 + (1− t)α − tα]d[LE(tb+ (1− t)a)]

+
1

2

∫ 1

1/2

[1 + (1− t)α − tα]d[LE(tb+ (1− t)a)]

=
1

2
[−1 + (1− t)α − tα] LE(tb+ (1− t)a)|1/20

− 1

2

∫ 1/2

0

[−α(1− t)α−1 − αtα−1] LE(tb+ (1− t)a)dt

+
1

2
[1 + (1− t)α − tα] LE(tb+ (1− t)a)|11/2

− 1

2

∫ 1

1/2

[−α(1− t)α−1 − αtα−1] LE(tb+ (1− t)a)dt

= −f
(a+ b

2

)
+

1

2

∫ 1

0

[α(1− t)α−1 + αtα−1] LE(tb+ (1− t)a)dt.

(4.13)

Using the inequalities∫ 1

0

α(1− t)α−1 LE(tb+ (1− t)a)dt =

∫ 1

0

αtα−1 LE(ta+ (1− t)b)dt, (4.14)∫ 1

0

αtα−1 LE(tb+ (1− t)a)dt =

∫ 1

0

αtα−1 LE(ta+ (1− t)b)dt, (4.15)

and (4.13), we have

I = −f(
a+ b

2
) +

1

2

∫ 1

0

[α(1− t)α−1 + αtα−1] LE(tb+ (1− t)a)dt

=

∫ 1

0

αtα−1 LE(ta+ (1− t)b)dt− f(
a+ b

2
)

=
Γ(α+ 1)

(b− a)α
D−αa+ LE(b)− f(

a+ b

2
).

(4.16)

The proof is complete. �

Theorem 4.6. For α > 0, suppose that f(x) is differentiable on [a, b] and
∣∣LE′(x)

∣∣
is a convex function. Then∣∣f(

a+ b

2
)− Γ(α+ 1)

(b− a)α
D−αa+ LE(b)

∣∣
≤
(1

2
+

1

2α(α+ 1)
− 1

α+ 1

) (b− a)|f ′(b)ef(b) − f ′(a)ef(a)|
ef(a) + ef(b)

.

(4.17)
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Proof. Based on the proof of Theorem 4.2, we know that if
∣∣LE′(x)

∣∣ is a convex
function, then ∣∣LE′(tb+ (1− t)a)

∣∣ ≤ ∣∣f ′(b)ef(b) − f ′(a)ef(a)
∣∣

ef(a) + ef(b)
. (4.18)

In view of Lemma 4.5, we have∣∣f(
a+ b

2
)− Γ(α+ 1)

(b− a)α
D−αa+ LE(b)

∣∣
=
b− a

2

∣∣∣ ∫ 1

0

[
ξ + (1− t)α − tα

]
LE′(tb+ (1− t)a)dt

∣∣∣
=
b− a

2

∣∣∣ ∫ 1/2

0

[−1 + (1− t)α − tα] LE′(tb+ (1− t)a)dt

+

∫ 1

1/2

[1 + (1− t)α − tα] LE′(tb+ (1− t)a)dt
∣∣∣

≤
(b− a)

∣∣f ′(b)ef(b) − f ′(a)ef(a)
∣∣

2(ef(a) + ef(b))

[ ∫ 1/2

0

[
1− (1− t)α + tα

]
dt

+

∫ 1

1/2

[
1 + (1− t)α − tα

]
dt
]

=
(b− a)

∣∣f ′(b)ef(b) − f ′(a)ef(a)
∣∣

2(ef(a) + ef(b))

[
1 +

2

2α(α+ 1)
− 2

α+ 1

]
.

(4.19)

So we complete the proof. �

Corollary 4.7. Under the conditions of Theorem 4.6, we conclude that∣∣∣f(
a+ b

2
)− 1

b− a

∫ b

a

LE(x)dx
∣∣∣ ≤ (b− a)|f ′(b)ef(b) − f ′(a)ef(a)|

4(ef(a) + ef(b))
. (4.20)

The above corollary follows from Theorem 4.6 with α = 1. If f(x) has a sym-
metry, we have the following corollary.

Corollary 4.8. If f(x) is symmetric with respect to the axis x = a+b
2 and other

conditions of Theorem 4.6 hold, then∣∣∣f(
a+ b

2
)− Γ(α+ 1)

(b− a)α
D−αa+ f(b)

∣∣∣ ≤ (1

2
+

1

2α(α+ 1)
− 1

α+ 1

)
(b− a)|f ′(b)|. (4.21)

The proof of the corollary above is almost identical to that of Corollary 4.4, so
we omit it. As a by-product, we estimate the bound of fractional integral for given
exp-convex function.

Theorem 4.9. If f(x) is continuous and exp-convex on [a, b], then

Γ(α+ 1)

(b− a)α
D−αb− f(a) ≤ f(b) +

1

α

[
2F1(1, α;α+ 1; 1− ef(b)

ef(a)
)− 1

]
, (4.22)

where f(b)− f(a) < ln 2 and α > 0.

Proof. (i) For f(a) 6= f(b), based on the definition of exp-convex function, we obtain

f(tb+ (1− t)a) ≤ ln
[
t(ef(b) − ef(a)) + ef(a)

]
= ln

∣∣ef(b) − ef(a)∣∣+ ln(ηt+m),
(4.23)
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where m = ef(a)/|ef(b) − ef(a)| ∈ (1, +∞), and

η =
ef(b) − ef(a)

|ef(b) − ef(a)|
=

{
−1, f(a) > f(b),

1, f(a) < f(b).

By multiplying the factor αtα−1 on both sides, and integrating with respect to t
over [0, 1], it follows that∫ 1

0

αtα−1f(tb+ (1− t)a)dt

≤
∫ 1

0

αtα−1 ln(ηt+m)dt+

∫ 1

0

αtα−1 ln
∣∣ef(b) − ef(a)∣∣dt

=

∫ 1

0

αtα−1 ln(ηt+m)dt+ ln
∣∣ef(b) − ef(a)∣∣.

(4.24)

For the integral on the right side, we have∫ 1

0

αtα−1 ln(ηt+m)dt =

∫ 1

0

αtα−1
[

lnm+

∞∑
n=1

(−1)n−1(ηt)n

nmn

]
dt

= lnm+ α

∞∑
n=1

(−1)n−1ηn

nmn(α+ n)

= lnm−
∞∑
n=1

α

n(α+ n)

(−η
m

)n
.

(4.25)

Furthermore, the series in (4.25) can be formulated as

∞∑
n=1

α

n(α+ n)

(−η
m

)n
=

∞∑
n=1

( 1

n
− 1

α+ n

)(−η
m

)n
= − ln(1 +

η

m
)−

∞∑
n=1

1

(α+ n)

(−η
m

)n
= − ln(1 +

η

m
)− 1

α

[
2F1(1, α; α+ 1; − η

m
)− 1

]
.

(4.26)

Combining (4.24), (4.25) and (4.26), we obtain∫ 1

0

αtα−1 ln(ηt+m)dt = lnm+ ln(1 +
η

m
) +

1

α

[
2F1(1, α; α+ 1; − η

m
)− 1

]
= ln(m+ η) +

1

α

[
2F1(1, α; α+ 1; − η

m
)− 1

]
.

Consequently,

Γ(α+ 1)

(b− a)α
D−αb− f(a) =

∫ 1

0

αtα−1f(tb+ (1− t)a)dt

≤
∫ 1

0

αtα−1 ln(ηt+m)dt+ ln |ef(b) − ef(a)|

= f(b) +
1

α

[
2F1(1, α;α+ 1; 1− ef(b)

ef(a)
)− 1

]
,

(4.27)

where −η/m = 1− ef (b)/ef (a) has been used.
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(ii) For f(a) = f(b), in view of the definition of exp-convex function, we have

f(tb+ (1− t)a) ≤ ln
[
t(ef(b) − ef(a)) + ef(a)

]
= f(a) = f(b).

(4.28)

So, we get

Γ(α+ 1)

(b− a)α
D−αb− f(a) =

∫ 1

0

αtα−1f(tb+ (1− t)a)dt

≤
∫ 1

0

αtα−1f(b)dt

= f(b) +
1

α

[
2F1(1, α;α+ 1; 0)− 1

]
.

(4.29)

Therefore, we have completed the proof. �

Remark 4.10. The constraint condition f(b)− f(a) < ln 2 is required in Theorem
4.9 which is depended greatly both on the series expansion approach and the region
of convergence of Gauss hypergeometric function. However, we conjecture that
(4.22) will also be valid on a more wider real region in view of other sophisticated
techniques/algorithms associated with some special functions.

With α = 1 in the theorem above, we can establish another interesting estimating
value theorem for exp-convex functions.

Corollary 4.11. For an exp-convex f(x) defined on [a, b], we have

1

b− a

∫ b

a

f(x)dx ≤ f(b) +
f(b)− f(a)

ef(b)−f(a) − 1
− 1. (4.30)

Proof. As a matter of fact, (4.30) can be obtained after integrating and derivation
directly without utilizing series expansion technique. Because of the exp-convexity
of f , we have

f(tb+ (1− t)a) ≤ ln
[
tef(b) + (1− t)ef(a)

]
. (4.31)

Integrating t over [0, 1], we have∫ 1

0

f(tb+ (1− t)a)dt ≤
∫ 1

0

ln
[
tef(b) + (1− t)ef(a)

]
dt

=

∫ 1

0

ln
[
t(ef(b) − ef(a)) + ef(a)

]
dt

= f(b)− 1 +

∫ 1

0

ef(a)

t(ef(b) − ef(a)) + ef(a)
dt

= f(b) +
f(b)− f(a)

ef(b)−f(a) − 1
− 1.

(4.32)

Let x = tb+ (1− t)a, then we conclude that

1

b− a

∫ b

a

f(x)dx =

∫ 1

0

f(tb+ (1− t)a)dt. (4.33)

Combining (4.32) and (4.33), we complete the proof. �

Moreover, as α = 2 in Theorem 4.9, we have the following estimation.
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Corollary 4.12. For an exp-convex f(x) defined on [a, b], we have

2

(b− a)2

∫ b

a

(x− a)f(x)dx ≤ f(b) +m−m2(f(b)− f(a))− 1

2
, (4.34)

where m = ef(a)/(ef(b) − ef(a)).

Proof. The idea is almost identical with Corollary 4.11, so we only present an
outline of the proof. For an exp-convex f(x), we have

2

(b− a)2

∫ b

a

(x− a)f(x)dx = 2

∫ 1

0

tf(tb+ (1− t)a)dt

≤ 2

∫ 1

0

t ln
[
tef(b) + (1− t)ef(a)

]
dt

= f(b)−
∫ 1

0

t2

t+m
dt,

(4.35)

where m = ef(a)/(ef(b) − ef(a)).
Therefore, the result will be obtained immediately after integration by parts. �

5. Applications to special means

We consider the following special means for b > a > 0:

A(a, b) =
a+ b

2
, G(a, b) =

√
ab, H(a, b) =

2

1/a+ 1/b
,

L(a, b) =
b− a

ln b− ln a
, LP (a, b) =

b ln b− a ln a

b− a
.

Now according to the results obtained in previous sections, we can obtain some
interesting assertions with these special means.

Proposition 5.1. Let a, b ∈ R+, b > a and p ≥ 1. Then

pa

L(a, b)
− ap

L(ap, bp)
≤ p− 1. (5.1)

Proof. Let f(x) = p lnx, (p ≥ 1). Obviously, f(x) is exp-convex, in terms of
Corollary 4.11, then we obtain

1

b− a

∫ b

a

p lnxdx ≤ p ln b+
p ln b− p ln a

ep ln b−p ln a − 1
− 1. (5.2)

Hence this suffices to show that

p(b ln b− a ln a− b+ a)

b− a
≤ p ln b+

(p ln b− p ln a

bp − ap
)
ap − 1, (5.3)

which can be rewritten as

p(b ln b− a ln a− b ln b+ a ln b− b+ a)

b− a
≤ ap

L(ap, bp)
− 1. (5.4)

We immediately obtain

pa(ln b− ln a)

b− a
− p ≤ ap

L(ap, bp)
− 1. (5.5)

The proof is complete. �
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Proposition 5.2. Let a, b ∈ R+ with b > a. Then

| lnG(a, b)− LP (a, b) + 1| ≤ (b− a)2

4ab
, (5.6)

| lnA(a, b)− LP (a, b) + 1| ≤ (b− a)2

8ab
. (5.7)

Proof. Let f(x) = − lnx = ln(1/x), from Corollary 3.2, we have

− ln
a+ b

2
≤ 1

b− a

∫ b

a

ln
( 1
x + 1

a+b−x
2

)
dx ≤ ln

( 1
a + 1

b

2

)
. (5.8)

Noticing that

1

b− a

∫ b

a

ln
( 1
x + 1

a+b−x
2

)
dx =

1

b− a

∫ b

a

ln
a+ b

2
− 2 lnxdx

= ln
a+ b

2
− 2 (b ln b− a ln a− b+ a)

b− a

= ln
a+ b

2
− 2 (b ln b− a ln a)

b− a
+ 2,

(5.9)

we obtain

− ln
a+ b

2
≤ ln

a+ b

2
− 2 (b ln b− a ln a)

b− a
+ 2 ≤ ln

( 1
a + 1

b

2

)
. (5.10)

Equivalently,

ln
1

A(a, b)
≤ lnA(a, b)− 2LP (a, b) + 2 ≤ ln

1

H(a, b)
. (5.11)

In the sequel, we should prove that |LE′(x)| is convex. For f(x) = ln(1/x), we
obtain

LE(x) = ln
[ef(x) + ef(a+b−x)

2

]
= ln

[ 1
x + 1

a+b−x
2

]
= ln

a+ b

2
− lnx− ln(a+ b− x), x ∈ [a, b].

(5.12)

So,

LE′(x) = − 1

x
+

1

a+ b− x
. (5.13)

Hence, we have

|LE′(x)| =

{
1
x −

1
a+b−x , a ≤ x ≤ a+b

2 ,

− 1
x + 1

a+b−x ,
a+b
2 ≤ x ≤ b.

(5.14)

As a ≤ x ≤ a+b
2 , we define g(x) = 1

x −
1

a+b−x , so g′′(x) = 2
[x−(a+b)]3 + 2

x3 is non-

increasing. Thus, g′′(x) ≥ g′′(a+b2 ) = 0, so g(x) is convex. On the other hand,

when a+b
2 ≤ x ≤ b, we set h(x) = − 1

x + 1
a+b−x , so h′′(x) = − 2

[x−(a+b)]3 −
2
x3

is nondecreasing. That is, h′′(x) ≥ h′′(a+b2 ) = 0, so h(x) is convex. Now from
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Corollary 4.3, we have∣∣ lnA(a, b)− ln
1

H(a, b)
− 2LP (a, b) + 2

∣∣ = |2 lnG(a, b)− 2LP (a, b) + 2|

≤
(b− a)( 1

−b2 + 1
a2 )

2( 1
a + 1

b )

=
(b− a)2

2ab
.

(5.15)

So

| lnG(a, b)− LP (a, b) + 1| ≤ (b− a)2

4ab
. (5.16)

On the other hand, from Corollary 4.7, we obtain∣∣ lnA(a, b)− ln
1

A(a, b)
− 2LP (a, b) + 2

∣∣
= 2| lnA(a, b)− LP (a, b) + 1| ≤ (b− a)2

4ab
.

(5.17)

Combining (5.16) and (5.17), we obtain the conclusion. �

Proposition 5.3. If a, b ∈ R+, p ≥ 1 and b > a, then

pa

b− a

(
1− a

L(a, b)

)
− ap

bp − ap
(

1− ap

L(ap, bp)

)
≤ p− 1

2
. (5.18)

Proof. Let f(x) = p lnx, (p ≥ 1) be exp-convex. By Corollary 4.12, we have

2p

(b− a)2

∫ b

a

(x− a) lnxdx ≤ p ln b+m−m2(p ln b− p ln a)− 1

2
, (5.19)

where m = ef(a)/(ef(b) − ef(a)) = ap

bp−ap . Denoting

I =
2p

(b− a)2

∫ b

a

(x− a) lnxdx,

we have

I =
2p

(b− a)2

[ (x− a)2

2
lnx
∣∣∣b
a
− 1

2

∫ b

a

(x− a)2

x
dx
]

= p
[

ln b+
3a− b

2(b− a)
− a2

(b− a)2
(ln b− ln a)

]
.

So, we obtain

p
[

ln b+
3a− b

2(b− a)
− a2

(b− a)2
(ln b− ln a)

]
≤ p ln b+m−m2(p ln b− p ln a)− 1

2

= p ln b+
ap

bp − ap
− a2p

(bp − ap)2
(p ln b− p ln a)− 1

2

= p ln b+
3ap − bp

2(bp − ap)
− a2p

(bp − ap)2
(p ln b− p ln a).
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Further simplification indicates that

p(3a− b)
2(b− a)

− 3ap − bp

2(bp − ap)
≤ pa2

(b− a)2
(ln b− ln a)− a2p

(bp − ap)2
(p ln b− p ln a), (5.20)

or, it can be rewritten as

pa

b− a
− pa2

(b− a)2
(ln b− ln a)+

a2p

(bp − ap)2
(p ln b−p ln a)− ap

bp − ap
≤ 1

2
p− 1

2
. (5.21)

Thus, we finish this proof. �

6. Conclusions and future work

To enrich geometric properties of common continuous functions, the exp-convexity
is studied in this article. Furthermore, some significant integral identities, Hadamard
type integral inequalities in the framework of fractional operators including their
estimation of the upper bounds are established and clarified in the presence of exp-
convexity criterion. Besides, a conjecture about validation of Theorem 4.9 is also
posed.

As we know, Mittag-Leffler function is the eigenfunction for fractional order
system and plays a leading role in the basic theory of fractional calculus. The
standard definition of Mittag-Leffler function is given as follows.

Definition 6.1 ([13]). The single-parameter Mittag-Leffler function and the two-
parameter Mittag-Leffler function are defined as

Eα(x) =

∞∑
k=0

xk

Γ(αk + 1)
, α > 0, (6.1)

Eα,β(x) =

∞∑
k=0

xk

Γ(αk + β)
, α > 0, β > 0, (6.2)

respectively.

Compared to exp-convexity, we propose standard Mittag-Leffler type convex-
ity for its better compatibility with fractional order system as well as its weaker
convexity than exp-convexity.

Definition 6.2. A function f : [a, b] ⊂ R → R, is said to be single-parameter
Mittag-Leffler type convex function, if the following inequality holds

Eα(f(tx+ (1− t)y)) ≤ tEα(f(x)) + (1− t)Eα(f(y)), (6.3)

for all t ∈ [0, 1] and x, y ∈ [a, b].

Definition 6.3. A function f : [a, b] ⊂ R→ R, is said to be two-parameter Mittag-
Leffler type convex function, if the following inequality holds

Eα,β(f(tx+ (1− t)y)) ≤ tEα,β(f(x)) + (1− t)Eα,β(f(y)), (6.4)

for all t ∈ [0, 1] and x, y ∈ [a, b].

Obviously, as α = β = 1, the Mittag-Leffler type convex functions above will
degenerate into the classic exp-convex function consistently. Such novel Mittag-
Leffler type convexity owns special geometric significance and the corresponding
researches will be reported in our subsequent works.
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