Erika Diz-Pita, Jaume Llibre, M. Victoria Otero-Espinar
Abstract: Submitted June 1, 2020. Published May 3, 2021.
Show me the PDF file (862 KB),
TEX file for this article.
Return to the EJDE web page
We consider a general 3-dimensional Lotka-Volterra system with a rational first
integral of degree two of the form H=xI yjk.
The restriction of this Lotka-Volterra system to each surface H(x,y,z)=h varying
h in R provide Kolmogorov systems. With the additional assumption that
they have a Darboux invariant of the form x
We classify the phase portraits in the Poincare disc of all these Kolmogorov systems
which depend on six parameters.
Math Subject Classifications: 34C05.
Key Words: Kolmogorov system; Lotka-Volterra system; phase portrait; Poincare disc
DOI: https://doi.org/10.58997/ejde.2021.35
Érika Diz-Pita
Departamento de Estatística
Análise Matemática e Optimización
Universidade de Santiago de Compostela
15782 Santiago de Compostela, Spain
email: erikadiz.pita@usc.es
Jaume Llibre
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 Bellaterra, Barcelona, Spain
email: jllibre@mat.uab.cat
M. Victoria Otero-Espinar
Departamento de Estatística
Análise Matemática e Optimización
Universidade de Santiago de Compostela
15782 Santiago de Compostela, Spain
email: mvictoria.otero@usc.es