Pablo Alvarez-Caudevilla, Eduardo Colorado, Alejandro Ortega
Abstract:
This article concerns the existence of positive solutions for the
second order equation involving a nonlocal term
under Dirichlet boundary conditions. We prove the existence of
positive solutions depending on the positive real parameter
γ>0, and up to the critical value of the exponent p, i.e. when
1<p<q; 2*-1, where 2*=(2N)/(N-2) is the critical Sobolev
exponent. For p=2*-1, this leads us to a Brezis-Nirenberg type
problem, cf. [5], but, in our particular case, the linear term
is a nonlocal term. The effect that this nonlocal term has on the
equation changes the dimensions for which the classical technique
based on the minimizers of the Sobolev constant, that ensures the
existence of positive solution, going from dimensions N≥4 in
the classical Brezis-Nirenberg problem, to dimensions N≥7 for
this nonlocal problem.
Submitted November 3, 2020. Published June 14, 2021.
Math Subject Classifications: 35G20, 35A15, 35J50, 35B38, 35J91.
Key Words: Critical point; concentration compactness principle;
mountain pass theorem.
DOI: https://doi.org/10.58997/ejde.2021.52
Show me the PDF file (418 KB), TEX file for this article.
Pablo Álvarez-Caudevilla Departamento de Matemáticas Universidad Carlos III de Madrid Av. Universidad 30, 28911, Leganés, Madrid, Spain email: pacaudev@math.uc3m.es | |
Eduardo Colorado Departamento de Matemáticas Universidad Carlos III de Madrid Av. Universidad 30, 28911, Leganés, Madrid, Spain email: ecolorad@math.uc3m.es | |
Alejandro Ortega Departamento de Matemáticas Universidad Carlos III de Madrid Av. Universidad 30, 28911, Leganés, Madrid, Spain email: alortega@math.uc3m.es |
Return to the EJDE web page