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AGE-DEPENDENT BRANCHING PROCESSES AND

APPLICATIONS TO THE LURIA-DELBRÜCK EXPERIMENT

STEPHEN J. MONTGOMERY-SMITH, HESAM OVEYS

Abstract. Microbial populations adapt to their environment by acquiring

advantageous mutations, but in the early twentieth century, questions about
how these organisms acquire mutations arose. The experiment of Salvador

Luria and Max Delbrück that won them a Nobel Prize in 1969 confirmed that
mutations don’t occur out of necessity, but instead can occur many generations

before there is a selective advantage, and thus organisms follow Darwinian

evolution instead of Lamarckian. Since then, new areas of research involving
microbial evolution have spawned as a result of their experiment. Determining

the mutation rate of a cell is one such area. Probability distributions that

determine the number of mutants in a large population have been derived by
Lea, Coulson, and Haldane. However, not much work has been done when

time of cell division is dependent on the cell age, and even less so when cell

division is asymmetric, which is the case in most microbial populations. Using
probability generating function methods, we rigorously construct a probability

distribution for the cell population size given a life-span distribution for both

mother and daughter cells, and then determine its asymptotic growth rate. We
use this to construct a probability distribution for the number of mutants in a

large cell population, which can be used with likelihood methods to estimate
the cell mutation rate.

1. Introduction

1.1. Luria-Delbrück experiment. In the early twentieth century, questions about
how microorganisms acquire advantageous mutations arose. In 1943, biologists Sal-
vador Luria and Max Delbrück conducted an experiment in order to determine
whether mutations occurred out of necessity or could occur many generations be-
fore there was a selective advantage. This experiment, dubbed the “Luria-Delbrück
Experiment,” helped them win a Nobel Prize in 1969 (see [6] and [12]).

In their experiment, Luria and Delbrück grew bacteria in a non-selective medium
in multiple tubes for a period of time until they all reached a certain cell density.
Then, they plated the cells from each tube on different plates of a selective-medium
containing a bacterial virus. Cells that showed resistance to the virus had acquired
a virus-resistant mutation. If cells evolved according to a post-exposure hypotheses
such as Lamarckian evolution, where cells acquire mutations in response to their
environment, then the number of mutants in each plate would follow a Poisson
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process where the mean is equal to the variance, making plates with a large number
of mutants highly unlikely. But in the experiment of Luria and Delbrück, there were
“jackpots,” meaning there were plates with an unusually large number of surviving
cells. The only conclusion they could make was that mutation occurred before the
cells were plated on the selective medium containing the virus, and thus Charles
Darwin’s theory of natural selection applied to microorganisms.

Since then, new areas of research involving microbial evolution have spawned
from the Luria-Delbrück Experiment which are still being studied today. Since
cells can acquire mutations before there is a selective advantage in their environ-
ment, questions about their mutation rate have risen. However, traditional methods
involving significance tests can not be used due to the high variability of the data.
Instead, we can use likelihood methods, but in order to do so, we need a probabil-
ity distribution for the mutant cell population size as a function of the unknown
mutation rate.

Though unpublished originally, a probability distribution for the number of mu-
tants was presented by Haldane (see [11]). However, Haldane’s model had two
major issues: it assumed all cells divide synchronously, and the distribution was
computationally inefficient. In 1949, Lea and Coulson constructed a generating
function for the number of mutants in a large population that had a closed-form
solution, so computing the probability coefficients was much more efficient. How-
ever, they assumed that all cells grow symmetrically with a life-span distribution
that was exponential, which is a very broad assumption for how cells grow (see [5]).

In this paper, we look to extend on the ideas of Haldane, Lea, and Coulson and
develop a probability distribution for the mutant cell population size where we have
control of a cell’s life-span distribution. In addition, we develop a distribution for
asymmetric cell division, where a cell divides into a mother and daughter cell with
different life-span distributions.

1.2. The problem. Suppose you start with a single cell, and this cell undergoes
binary division and divides into two cells. As time passes, the total cell population
will grow, but depending on when each cell divides, the population will vary. If
a cell divides into two cells identical to itself (symmetrical cell division), then the
two children cells will divide similarly to its parent. On the other hand, how will
the cell population grow if a cell divides into two cells, where one is identical to
itself, but the other is not (asymmetrical cell division)? In addition, suppose during
any cell division, a mutation can occur. If this mutation is passed through all the
children spawned from the mutated cell, what can we say about the distribution of
the mutant cell population size in a sufficiently large cell population?

The solution to this problem is given in Theorems 5.8 and 5.9, in the form of
probability generating functions. In Section 6 we show how to explicitly compute
these probabilities.

2. Probability generating functions

A very brief overview of probability generating functions is given to ensure the
reader is familiar with the basic properties. The first thing to note is that a prob-
ability generating function can only be constructed for discrete random variables
outputting non-negative integers.
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Definition 2.1. Let X be a discrete random variable outputting non-negative
integer values. The probability generating function (or simply generating function)
of X is the function

GX(z) := E
[
zX
]

=

∞∑
k=0

Pr(X = k)zk. (2.1)

Probability generating functions are power series with non-negative coefficients
such that their sum is 1, so their radius of convergence is always at least 1.

Proposition 2.2. If X is a discrete random variable outputting non-negative in-
teger values with generating function GX(z), then

E[X] = G′X(1). (2.2)

Below, we define joint probability generating functions, since we will use them
in Section 3.

Definition 2.3. Let X and Y be jointly distributed discrete random variables out-
putting non-negative integer values. Then the joint probability generating function
is

GX,Y (x, y) := E[xXyY ] =

∞∑
k=0

∞∑
j=0

Pr(X = k, Y = j)xkyj . (2.3)

Proposition 2.4. If X and Y are independent random variables, both outputting
non-negative integer values, then the generating function of X + Y is

GX+Y (z) = GX(z)GY (z). (2.4)

The following two propositions will be used extensively in Section 5 when con-
structing the generating function for the mutant cell population.

Proposition 2.5. If X = Xk are independent and identically distributed random
variables outputting non-negative integer values, and

Z =

N∑
k=0

Xk, (2.5)

where N is an independent random variable outputting non-negative integer values,
then the generating function of Z is

GZ(z) = GN (GX(z)). (2.6)

Proposition 2.6. If X is a Poisson random variable with parameter λ, then the
generating function for X is

GX(z) = eλ(z−1). (2.7)

For a more in-depth look at generating functions, one can refer to almost any
book on probability theory, though we only use the above definitions and properties
in this paper.
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3. Cell growth under asymmetric division

It is of great interest to biologists to model the growth of a cell under asymmetric
division; that is, when it divides into two types: a mother cell and a daughter cell.
The mother cell is a copy of the parent cell, while the daughter cell typically takes
time to grow into a mother cell. Therefore, the life-span distribution for mother
cells is different, and often their life-span is shorter than daughter cells.

In this section, we will construct time-dependent generating functions (3.3) for
the mother and daughter cell population sizes when we start with exactly one
mother cell and when we start with exactly one daughter cell. These generating
functions will be in the solution of an integral equation, so we will proceed to show
existence and uniqueness of solutions in Section 3.3. We conclude the section with
some examples of generating functions using different life-span distributions.

In [9], the symmetric case is expounded in full detail before the asymmetric
case is described. In this paper, in the interests of brevity, we only explain the
asymmetric case, since the symmetric case follows as a special case.

3.1. Preliminaries and assumptions. We will start by stating our assumptions
about asymmetric cell division.

Assumption 3.1. Cells have the following properties:

(1) there are exactly two types of cells: mother cells and daughter cells;
(2) all cells are independent of each other, mother cells are identical to other

mother cells, and daughter cells are identical to other daughter cells;
(3) cell life-span for mother cells and daughter cells are strictly positive, real-

valued random variables Tx and Ty, respectively, with distributions

P (t) = Pr(Tx ≤ t)
Q(t) = Pr(Ty ≤ t)

(3.1)

respectively;
(4) at the end of a cell’s life, both mother cells and daughter cells will divide

into one mother cell and one daughter cell.

Let Xt and Yt be random variables representing the mother and daughter cell
populations at time t ≥ 0, respectively. When we start with exactly one mother
cell and no daughter cells, which is the main case of interest, we will have X0 = 1
and Y0 = 0. On the other hand, when we start with exactly one daughter cell and
no mother cells, we will have X0 = 0 and Y0 = 1. Note that Xt and Yt are not
independent processes.

3.2. Constructing the generating function. To derive the generating function
for the cell population at any time t ≥ 0, we will first construct a model in discrete-
time, then divide our time increments infinitesimally small, and finally take limits
to derive a continuous-time model.

Suppose first that time is discrete and the life-span random variables for mother
and daughter cells, Tx and Ty, only output positive integer values. For clarity, when
we say a cell divides at time t, we mean the cell population has increased by one
at time t+ 1.

Define
f(t, x, y) := E[xXtyYt | X0 = 1, Y0 = 0]

g(t, x, y) := E[xXtyYt | X0 = 0, Y0 = 1]
(3.2)
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to be the joint generating functions of Xt and Yt, with different initial values. Then
it can easily be shown that

f(t, x, y) = xPr(Tx > t) +

t∑
k=1

f(t− (k + 1), x, y)g(t− (k + 1), x, y) Pr(Tx = k)

g(t, x, y) = yPr(Ty > t) +

t∑
j=1

f(t− (j + 1), x, y)g(t− (j + 1), x, y) Pr(Ty = j).

Now, to get the formulas in continuous time, we take a limit of the discrete time
formula as the discrete-time increments converge to zero, and we obtain

f(t, x, y) = x(1− P (t)) +

∫ t

0

f(t− τ, x, y)g(t− τ, x, y) dP (τ)

g(t, x, y) = y(1−Q(t)) +

∫ t

0

f(t− τ, x, y)g(t− τ, x, y) dQ(τ).

(3.3)

Since the integrals are Lebesgue-Steiltjes integrals, it is important to emphasize

that
∫ t
0

denotes integration over the closed interval [0, t].

3.3. Existence and uniqueness. A variant of arguments given in [4], Chapter VI,
§9 will also work, but we present a slightly different approach.

Showing that there exists two unique generating functions f and g that satisfy
(3.3) given any life-span distributions P for mother cells and Q for daughter cells
will follow by constructing suitable functions spaces and a map so we can use the
Banach Fixed-Point Theorem. In the proceeding sections, we will always assume
0 < r < 1.

LetH∞(B(0, r)2) represent the space of all holomorphic functions of two complex
variables bounded on ∂B(0, r)2 with the usual norm

‖ · ‖H∞ := sup
(z1,z2)∈B(0,r)2

|(·)(z1, z2)|. (3.4)

Definition 3.2. Define the subset Hr of H∞(B(0, r)2) such that for each g ∈ Hr,
(1) ck,j(g) ≥ 0 for integers k, j ≥ 0 and
(2)

∞∑
k=0

∞∑
j=0

ck,j(g) ≤ 1, (3.5)

where

ck,j(g) =
1

k!j!

∂k+jg

∂xk∂yj
(0, 0) =

1

(2πi)2

∫
z1∈C(0,r)

∫
z2∈C(0,r)

g(z1, z2)

zk+1
1 zj+1

2

dz2 dz1, (3.6)

is the coefficient of xkyj of g in its power series expansion centered at 0, where x
and y are the function parameters. Here C(0, r) represents the path in C along a
circle centered at the origin of radius r traversed once counter-clockwise.

Proposition 3.3. Hr is a separable, complete metric space with respect to the
norm ‖ · ‖H∞ .

Proof. To show completeness, we need prove is that Hr is closed in H∞(B(0, r)2).
By equation (3.6) it follows that the functions cj,k are continuous on H∞, and hence
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the only difficulty is to show Definition 3.2, Part (3.5) is preserved by convergent
sequences in H∞. But this follows by noting that it is equivalent to

M∑
k,j=0

ck,j(g) ≤ 1 for all M ∈ N (3.7)

Separability follows from part (3.5) since it follows that the set of polynomials in
Hr is dense in Hr. �

Definition 3.4. Define P[0,∞) to be the set of all partitions of [0,∞). We say a

function f : [0,∞)→ H∞(B(0, r)2) has bounded variation on [0,∞) if

V (f) := sup
S∈P[0,∞)

M∑
k=1

‖f(tk)− f(tk−1)‖H∞ (3.8)

is finite, where S is a partition 0 ≤ t0 ≤ t1 ≤ · · · ≤ tM <∞.

For a function f : [0,∞) → H∞(B(0, r)2) we define the usual norm using the
essential supremum,

‖f‖L∞(H∞) := ess sup
t∈[0,∞)

‖f(t)‖H∞ . (3.9)

Definition 3.5. Define BV ([0,∞), H∞(B(0, r)2)) to be the space of all functions
mapping from [0,∞) to H∞(B(0, r)2) with bounded variation on [0,∞) with norm

‖ · ‖BV (H∞) := ‖ · ‖L∞(H∞) + V (·). (3.10)

The following result can be proved using standard techniques (see [9]).

Proposition 3.6. BV ([0,∞), H∞(B(0, r)2)) is a separable Banach space, consist-
ing of bounded Borel measurable functions from [0,∞) to H∞(B(0, r)2).

Thus for any distribution P , we can define integration for a measurable function
f : [0,∞) → H∞(B(0, r)2) using the Bochner integral on the space
L1(([0,∞), dP ), H∞(B(0, r)2)) [2].

Definition 3.7. Define Br,m to be the subspace of BV ([0,∞), H∞(B(0, r)2)) such
that for all f ∈ Br,m,

(1) f(t) ∈ Hr for all t ∈ [0,∞),
(2) c0,0(f(t)) = 0 for all t ∈ [0,∞), and
(3) V (f) ≤ m.

Proposition 3.8. Br,m is a complete metric space with the norm ‖ · ‖BV (H∞), and

thus the product space (Br,m)
2

is a complete metric space with product norm

‖ ((·)1, (·)2) ‖BV 2(H∞) := ‖(·)1‖BV (H∞) + ‖(·)2‖BV (H∞). (3.11)

Definition 3.9. Define

T : (Br,m)
2 → (BV ([0,∞), H∞(B(0, r))))

2
(3.12)

to be a map such that for (f, g) ∈ (Br,m)2,

(T (f, g))(t, s) :=
(

(·)1(1− P (t)) +

∫ t

0

f(t− τ)g(t− τ) dP (τ),

(·)2(1−Q(s)) +

∫ s

0

f(s− τ)g(s− τ) dQ(τ)
) (3.13)
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for all (t, s) ∈ [0,∞)2, where (·)1 and (·)2 represent the first and second parameters
of functions in H∞(B(0, r)2), respectively.

Theorem 3.10 (Banach Fixed-Point Theorem). Suppose X is a complete metric
space with distance function d(·, ·) and T : X → X is a map such that there exists
a constant 0 ≤ γ < 1 where d(T (x), T (y)) ≤ γd(x, y) for all x, y ∈ X. Then T has
a unique fixed-point.

Theorem 3.11. If 0 < m < 1
2 and 0 < r < min

(
1−2m

4 , m
2(1+m)

)
, then T is a

contraction mapping of
(
Br,m

)2
to itself, and hence T has a unique fixed point.

Remark 3.12. Since analytic functions are uniquely determined, as long as r > 0,
we can extend our fixed point to converge on B(0, 1)2.

Theorem 3.13. Let (f, g) be the fixed point of T . Then f(t, 1, 1) = g(t, 1, 1) = 1,
and hence f and g are generating functions that solve equation (3.3).

Proof. Clearly f(t, 1, 1), g(t, 1, 1) ≤ 1. Next, since P (0) = Q(0) = 0, we see that

f(0, 1, 1) = g(0, 1, 1) = 1. (3.14)

Let

t∗ = inf{t ≥ 0 : f(t, 1, 1) 6= 1 or g(t, 1, 1) 6= 1}. (3.15)

Pick 0 < ε < 1. There exists δ > 0 such that P (δ), Q(δ) < ε. Let

f0 = inf{f(t, 1, 1), g(t, 1, 1) : t ∈ [t∗, t∗ + δ)}. (3.16)

From equation (3.3), we obtain that for t ∈ [t∗, t∗ + δ)

f(t, 1, 1) = 1− P (t) +

∫
t−t∗<τ≤t

f(t− τ, 1, 1)g(t− τ, 1, 1) dP (τ)

+

∫ t−t∗

0

f(t− τ, 1, 1)g(t− τ, 1, 1) dP (τ)

≥ 1− P (t− t∗) + P (t− t∗)f20

(3.17)

and similarly

g(t, 1, 1) ≥ 1−Q(t− t∗) +Q(t− t∗)f20 . (3.18)

Hence

f0 ≥ 1− ε+ εf20 ⇒ (f0 − 1)(εf0 − 1 + ε) ≤ 0 (3.19)

from which it follows that f0 ≥ 1. �

3.4. Series solutions to the generating function equation. If we are only con-
cerned about the total cell population and not specifically the mother and daughter
cell populations, we can write our generating functions f(t, x, y) and g(t, x, y) as
simply f(t, x) = f(t, x, x) and g(t, x) = g(t, x, x).

So, we can express our generating functions f(t, x) and g(t, x) as series

f(t, x) =

∞∑
k=0

ck(t)xk, g(t, x) =

∞∑
k=0

bk(t)xk, (3.20)

which are necessarily convergent for all t ≥ 0 when x ∈ B(0, 1). If f(t, x) and
g(t, x) satisfy our integral equations (3.3), then by matching up coefficients and
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noting c0(t) = b0(t) = 0 for all t ≥ 0, we obtain

ck(t) =

{
1− P (t) k = 1∫ t
0

∑k−1
j=1 cj(t− τ)bk−j(t− τ) dP (τ) k ≥ 2

bk(t) =

{
1−Q(t) k = 1∫ t
0

∑k−1
j=1 cj(t− τ)bk−j(t− τ) dQ(τ) k ≥ 2

.

(3.21)

In Section 6, we will use these formulas to determine the distribution of the
mutant cell population when P and Q are multi-phase distributions.

4. Asymptotics of cell growth

Definition 4.1. A probability distribution P is a δ-lattice distribution if P is
constant except at jumps at multiples of some δ > 0.

Define the following integrals for s ∈ C:

p∗(s) :=

∫ ∞
0

e−st dP (t), q∗(s) :=

∫ ∞
0

e−st dQ(t), ψ(s) := 1− p∗(s)− q∗(s).

Note that

ψ′(s) =

∫ ∞
0

te−st d(P (t) +Q(t)), (4.1)

is positive when s ≥ 0 is real.

Proposition 4.2. ψ has a unique real root, α ∈ (0,∞).

Proof. This follows since ψ(0) = −1, lims→+∞ ψ(s) = 1, and ψ′(s) > 0 for s in
[0,∞). �

Remark 4.3. In the rest of this paper, unless otherwise stated, α will always refer
to the unique real root of ψ.

The goal of Section 4 is to prove the following result.

Theorem 4.4. If for any δ > 0 we have that either P or Q is not a δ-lattice
distribution, then there exists a non-negative random variable V such that

Xte
−αt → p∗(α)V, Yte

−αt → q∗(α)V (4.2)

where the convergence is in L2.

4.1. The expectations E[Xt] and E[Yt]. Define the following expectations:

mf (t) := E [Xt | X0 = 1, Y0 = 0] = fx(t, 1, 1);

mg(t) := E [Xt | X0 = 0, Y0 = 1] = gx(t, 1, 1);

nf (t) := E [Yt | X0 = 1, Y0 = 0] = fy(t, 1, 1);

ng(t) := E [Yt | X0 = 0, Y0 = 1] = gy(t, 1, 1).

(4.3)
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Proposition 4.5. Expectations mf (t), mg(t), nf (t), and ng(t) satisfy the system

mf (t) = 1− P (t) +

∫ t

0

mf (t− τ) +mg(t− τ) dP (τ)

mg(t) =

∫ t

0

mf (t− τ) +mg(t− τ) dQ(τ)

nf (t) =

∫ t

0

nf (t− τ) + ng(t− τ) dP (τ)

ng(t) = 1−Q(t) +

∫ t

0

nf (t− τ) + ng(t− τ) dQ(τ).

(4.4)

Proof. Suppose x, y ∈ B(0, 1). We can differentiate with respect to x and y, both
sides of both equations in (3.3). It is straightforward to bring the derivatives under
the integral sign using the Cauchy integral formula and Fubini’s Theorem. Since
these generating functions and their derivatives have positive coefficients and are
increasing in both the x and y parameters, we can let x, y → 1−. �

Proposition 4.6. Expectations mf (t), mg(t), nf (t), and ng(t) are non-decreasing
and finite for t ≥ 0.

Proof. Since no cells can die, mf , mg, nf , and ng must be non-decreasing. Since
P and Q are life-span distributions with P (0) = Q(0) = 0 and P and Q are right
continuous, then for ε > 0, there exists a δ > 0 such that P (δ) < ε and Q(δ) < ε.
Now, rewriting and bounding system (4.4), we obtain

mf (t) ≤ 1 + εmf (t) +mf (t− δ) + εmg(t) +mg(t− δ)
mg(t) ≤ εmf (t) +mf (t− δ) + εmg(t) +mg(t− δ).

(4.5)

So,

mf (t) +mg(t) ≤ 1 + 2ε(mf (t) +mg(t)) + 2(mf (t− δ) +mg(t− δ)), (4.6)

and

mf (t) +mg(t) ≤
1 + 2(mf (t− δ) +mg(t− δ))

1− 2ε
, (4.7)

that is, if mf (t− δ) and mg(t− δ) are finite, then mf (t) and mg(t) are finite. Since
mf (0) +mg(0) = 1, we can inductively conclude mf (t) and mg(t) are finite for all
t ≥ 0, and the result is proven for mf and mg. nf and ng are similar. �

4.2. Convergence of E[Xt]e
−αt and E[Yt]e

−αt. We will compute Laplace trans-
forms, and then analyze their poles. We need to first review some properties of the
Laplace transform.

Definition 4.7. Let h : [0,∞)→ R. The Laplace transform of h is

(Lh)(s) :=

∫ ∞
0

e−sth(t) dt, s ∈ C. (4.8)

We will often write h∗ := Lh to represent the Laplace transform of h.

Proposition 4.8 (see [13, page 92]). If f, g ∈ L1([0, R)) for all R > 0, then

L(f ∗ g) := (Lf)(Lg), (4.9)

provided all three transforms exist.

Similarly we also have the following result.
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Proposition 4.9. Let ϕ : [0,∞) → R be a function and G be a probability distri-
bution on [0,∞). Define

(ϕ ∗ dG)(t) :=

∫ t

0

ϕ(t− τ) dG(τ), (4.10)

g∗(s) :=

∫ ∞
0

e−st dG(t). (4.11)

Then

L(ϕ ∗ dG) = (Lϕ)g∗ (4.12)

when all integrals converge.

Let s ∈ C with Re(s) > 0. Then

m∗f (s) := (Lmf )(s) =
1

s
− 1

s
p∗(s) +m∗f (s)p∗(s) +m∗g(s)p

∗(s),

m∗g(s) := (Lmg)(s) = m∗f (s)q∗(s) +m∗g(s)q
∗(s),

(4.13)

Solving for m∗f (s) and m∗g(s), we obtain

m∗f (s) =
1− p∗(s)− q∗(s) + p∗(s)q∗(s)

s(1− p∗(s)− q∗(s))
,

m∗g(s) =
(1− p∗(s))q∗(s)

s(1− p∗(s)− q∗(s))
.

(4.14)

Similarly,

n∗f (s) =
(1− q∗(s))p∗(s)

s(1− p∗(s)− q∗(s))
,

n∗g(s) =
1− p∗(s)− q∗(s) + p∗(s)q∗(s)

s(1− p∗(s)− q∗(s))
.

(4.15)

If P and Q are lattice distributions, then it can be shown that there are infinitely
many zeros of ψ with Re(s) = α, but if P or Q is not a lattice distribution, then
the following hold.

Proposition 4.10. If P and Q are not both δ-lattice distributions, and α + iτ is
a zero of ψ, then τ = 0. Hence m∗f , m∗g, n∗f , and n∗g are analytic at α + iτ when
τ 6= 0.

Proof. Since α and α+ iτ are zeros, we have

Re (ψ(α)− ψ(α+ iτ)) =

∫ ∞
0

e−αt(cos(τt)− 1) d(P (t) +Q(t)) = 0, (4.16)

So, ∫ ∞
0

e−αt(cos(τt)− 1) d(P (t) +Q(t)) = 0, (4.17)

and since

e−αt(cos(τt)− 1) ≤ 0 (4.18)

for all t ≥ 0, we can conclude that

cos(τt)− 1 = 0, P +Q-a.e., (4.19)

which requires τ = 0 or t ∈ 2π
τ Z. But if it’s the latter, then P +Q, and hence P and

Q, are necessarily 2π
τ -lattice distributions, which is a contradiction. So τ = 0. �
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Define the following constants:

c1 =
p∗(α)q∗(α)

αψ′(α)
, c2 =

[q∗(α)]2

αψ′(α)
, d1 =

[p∗(α)]2

αψ′(α)
. (4.20)

Proposition 4.11. m∗f , m∗g, n∗f , and n∗g have a poles at α of order 1 with residues
c1, c2, d1, c1 respectively.

Now, we use the Wiener-Ikehara Tauberian Proposition to show m converges to
an exponential function if P is not a lattice distribution.

Theorem 4.12 (Wiener-Ikehara Theorem [13, p. 233]). If ϕ(t) is a non-negative,
non-decreasing function for t ≥ 0 such that the integral

f(s) =

∫ ∞
0

e−stϕ(t) dt, s = σ + iτ ∈ C (4.21)

converges for σ > 1, and if for some constants A ∈ C, α > 0, and some function
g(τ),

lim
σ→1+

f(s)− A

s− α
= g(τ) (4.22)

uniformly in every finite interval −a ≤ τ ≤ a, then

lim
t→∞

ϕ(t)e−αt = A. (4.23)

Note that the result is stated for α = 1 in [13], but the general case is easily seen
to follow.

Theorem 4.13. Suppose P and Q are not both δ-lattice distributions. Then

mf (t) ∼ c1eαt, mg(t) ∼ c2eαt, nf (t) ∼ d1eαt, ng(t) ∼ c1eαt. (4.24)

4.3. Convergence of Xt/E[Xt] and Yt/E[Yt]. Let F represent the joint generating
function of Xt, Yt, Xt+τ , and Yt+τ when you start with exactly one mother cell
and no daughter cells, and let G represent the joint generating function when you
start with exactly one daughter cell and no mother cells. Then

F (t, τ, x1, x2, y1, y2) = x1x2(1− P (t+ τ))

+

∫ t

0

F (t− y, τ, x1, x2, y1, y2)G(t− y, τ, x1, x2, y1, y2) dP (y)

+ x1

∫ τ

t

f(t+ τ − y, x2, y2)g(t+ τ − y, x2, y2) dP (y)

G(t, τ, x1, x2, y1, y2) = y1y2(1−Q(t+ τ))

+

∫ t

0

F (t− y, τ, x1, x2, y1, y2)G(t− y, τ, x1, x2, y1, y2) dQ(y)

y1

∫ τ

t

f(t+ τ − y, x2, y2)g(t+ τ − y, x2, y2) dQ(y),

where the parameters x1 and y1 correspond to to Xt and Yt, and x2 and y2 corre-
spond to Xt+τ and Yt+τ .
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Define the following expectations:

m2,f (t, τ) := E[XtXt+τ | X0 = 1, Y0 = 0] = Fx1x2
(t, τ, 1, 1, 1, 1);

m2,g(t, τ) := E[XtXt+τ | X0 = 0, Y0 = 1] = Gx1x2
(t, τ, 1, 1, 1, 1);

n2,f (t, τ) := E[YtYt+τ | X0 = 1, Y0 = 0] = Fy1y2(t, τ, 1, 1, 1, 1);

n2,g(t, τ) := E[YtYt+τ | X0 = 0, Y0 = 1] = Gy1y2(t, τ, 1, 1, 1, 1);

cf (t) := E[XtYt | X0 = 1, Y0 = 0] = Fx1y1(t, t, 1, 1, 1, 1);

cg(t) := E[XtYt | X0 = 0, Y0 = 1] = Gx1y1(t, t, 1, 1, 1, 1).

(4.25)

Proposition 4.14. The expectations m2,f and m2,g satisfy the system

m2,f (t, τ)

= 1− P (t+ τ) +

∫ t

0

m2,f (t− y, τ) +m2,g(t− y, τ) dP (y)

+

∫ t

0

mf (t− y)mg(t+ τ − y) +mf (t+ τ − y)mg(t− y) dP (y)

+

∫ t+τ

t

mf (t+ τ − y) +mg(t+ τ − y) dP (y),

(4.26)

m2,g(t, τ)

=

∫ t

0

m2,f (t− y, τ) +m2,g(t− y, τ) dQ(y)

+

∫ t

0

mf (t− y)mg(t+ τ − y) +mf (t+ τ − y)mg(t− y) dQ(y).

(4.27)

Similarly, the expectations n2,f and n2,g satisfy the system

n2,f (t, τ) =

∫ t

0

n2,f (t− y, τ) + n2,g(t− y, τ) dP (y)

+

∫ t

0

nf (t− y)ng(t+ τ − y) + nf (t+ τ − y)ng(t− y) dP (y),

(4.28)

n2,g(t, τ) = 1−Q(t+ τ) +

∫ t

0

n2,f (t− y, τ) + n2,g(t− y, τ) dQ(y)

+

∫ t

0

nf (t− y)mg(t+ τ − y) + nf (t+ τ − y)mg(t− y) dQ(y)

+

∫ t+τ

t

nf (t+ τ − y) + ng(t+ τ − y) dQ(y),

and the expectations cf and cg satisfy the system

cf (t) =

∫ t

0

cf (t− y) + cg(t− y) dP (y)

+

∫ t

0

mf (t− y)ng(t− y) + nf (t− y)mg(t− y) dP (y),

cg(t) =

∫ t

0

cf (t− y) + cg(t− y) dQ(y)

+

∫ t

0

mf (t− y)ng(t− y) + nf (t− y)mg(t− y) dQ(y).
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Following the arguments given in Proposition 4.6, we obtain the following result.

Proposition 4.15. The expectations m2,f (t, τ), m2,g(t, τ), n2,f (t, τ), n2,g(t, τ) are
non-decreasing in both arguments and finite for t, τ ≥ 0. Similarly cf (t) and cg(t)
are non-decreasing and finite for t ≥ 0.

Lemma 4.16 ([1, Lemma 2]). If v(t) satisfies the equation

v(t) =

∫ t

0

v(t− y)dH(y) + h(t) (4.29)

where H is a non-decreasing function with H(0) = 0 and H(∞) = α < 1, and h(t)
is a bounded function such that limt→∞h(t) = c, then

lim
t→∞

v(t) =
c

1− α
(4.30)

Now, we can prove the following convergence theorem about E[XtXt+τ ] and
E[YtYt+τ ].

Theorem 4.17. If P and Q is not both δ-lattice distributions, then

m2,f (t, τ) ∼ D1e
αteα(t+τ), n2,f (t, τ) ∼ D2e

αteα(t+τ), (4.31)

uniformly in τ , and
cf (t) ∼ D1e

2αt, (4.32)

where

D1 =
c1c2p

∗(2α)

ψ(2α)
, D2 =

c1c2q
∗(2α)

ψ(2α)
. (4.33)

There are similar results for m2,g, n2,g and cg.

Proof. Multiply both sides of (4.26) by e−αte−α(t+τ), and multiply both sides of
(4.27) by e−αte−α(t+τ), and set

K1(t, τ) := e−αte−α(t+τ)m2,f (t, τ), K2(t, τ) := e−αte−α(t+τ)m2,g(t, τ), (4.34)

dP (y) :=
e−2αydP (y)

p∗(2α)
, dQ(y) :=

e−2αydQ(y)

q∗(2α)
(4.35)

to obtain

K1(t, τ) = p∗(2α)

∫ t

0

K1(t− y, τ) +K2(t− y) dP (y) + h1(t, τ),

K2(t, τ) = q∗(2α)

∫ t

0

K1(t− y, τ) +K2(t− y) dQ(y) + h2(t, τ)

(4.36)

where

h1(t, τ) :=e−αte−α(t+τ)(1 + P (t+ τ))

+ p∗(2α)

∫ t

0

e−α(t−y)mf (t− y)e−α(t+τ−y)mg(t+ τ − y) dP (y)

+ p∗(2α)

∫ t

0

e−α(t−y)mg(t− y)e−α(t+τ−y)mf (t+ τ − y) dP (y)

+ p∗(2α)

∫ t+τ

t

e−α(t−y)e−α(t+τ−y)mf (t+ τ − y) dP (y)

+ p∗(2α)

∫ t+τ

t

e−α(t−y)e−α(t+τ−y)mg(t+ τ − y) dP (y)

(4.37)
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and

h2(t, τ) :=q∗(2α)

∫ t

0

e−α(t−y)mf (t− y)e−α(t+τ−y)mg(t+ τ − y) dQ(y)

+ q∗(2α)

∫ t

0

e−α(t−y)mg(t− y)e−α(t+τ−y)mf (t+ τ − y) dQ(y).

Using Theorem 4.13, a standard ε-δ argument shows that

lim
t→∞

h1(t, τ) = 2p∗(2α)c1c2, lim
t→∞

h2(t, τ) = 2q∗(2α)c1c2 (4.38)

uniformly in τ . Now, adding Equations (4.36) and setting

K(t, τ) := K1(t, τ) +K2(t, τ),

h(t, τ) := h1(t, τ) + h2(t, τ),

dR(y) :=
e−2αyd(P (y) +Q(y))

p∗(2α) + q∗(2α)
,

(4.39)

we obtain

K(t, τ) = (p∗(2α) + q∗(2α))

∫ t

0

K(t− y, τ) dR(y) + h(t, τ). (4.40)

Since p∗ + q∗ is a decreasing function and p∗(α) + q∗(α) = 1, then we must have
p∗(2α) + q∗(2α) < 1. Moreover, from (4.38),

lim
t→∞

h(t, τ) = 2(p∗(2α) + q∗(2α))c1c2 (4.41)

uniformly in τ . Using Lemma 4.16, we can conclude we can conclude that

lim
t→∞

K(t, τ) =
2(p∗(2α) + q∗(2α))c1c2

ψ(2α)
. (4.42)

Looking back at (4.36), and using (4.38) and (4.42), we obtain the equation for
mf (t, τ). The other equations follow similarly. �

Now, we define

Wt :=
Xt

c1eαt
, Vt :=

Yt
d1eαt

. (4.43)

Proposition 4.18. If P and Q are not both δ-lattice distributions, then

lim
t→∞

E
[
(Wt+τ −Wt)

2
]

= 0, lim
t→∞

E
[
(Vt+τ − Vt)2

]
= 0 (4.44)

uniformly in τ , and

E[(Wt − Vt)2]→ 0 (4.45)

Proof. First we show these results conditionally on either X0 = 1 and Y0 = 0, or
X0 = 0 and Y0 = 1. The case when X0 = 1 and Y0 = 0 follows by multiplying out

E
[
(Wt+τ −Wt)

2
]

and applying Theorem 4.17 to mf (t, t), mf (t, τ), and mf (τ, τ).

The other cases follow similarly.
Now, suppose that X0 and Y0 are not specified. Then we can create X0 random

variables (X̃
(n)
t , Ỹ

(n)
t ) for 1 ≤ n ≤ X0, each being an independent copy of (Xt, Yt)

conditioned on X0 = 1, Y0 = 0, and Y0 random variables (X̂
(n)
t , Ŷ

(n)
t ) for 1 ≤ n ≤
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Y0, each being an independent copy of (Xt, Yt) conditioned on X0 = 0, Y0 = 1.
Then

Xt =

X0∑
n=1

X̃
(n)
t +

Y0∑
n=1

X̂
(n)
t

Yt =

X0∑
n=1

Ỹ
(n)
t +

Y0∑
n=1

Ŷ
(n)
t

(4.46)

A short verification shows that the result still holds. �

Since L2 is a complete metric space, we obtain the immediate corollary.

Corollary 4.19. Wt and Vt converge in L2 to a random variable W .

5. Distribution of mutant cells

In this section, we will determine a probability distribution for the mutant cell
population size when the total cell population is effectively infinite. We start by
making assumptions about the cell population and the expected number of muta-
tions that occur at any given time. The culmination of this paper are Theorems 5.8
and 5.9, where we give an explicit formula for the generating functions for the
mutant cell population.

5.1. Preliminaries and assumptions. We start by stating our assumptions about
cell growth under asymmetric cell division in which cells can mutate.

Assumption 5.1. Cells have the following properties:

(1) there are exactly two types of cells: mother cells and daughter cells;
(2) all cells are independent of each other, mother cells are identical to other

mother cells, and daughter cells are identical to other daughter cells;
(3) cell life-span for mother cells and daughter cells are strictly positive, real-

valued random variables Tx and Ty, respectively, with distributions P and
Q, respectively;

(4) at the end of a cell’s life, both mother cells and daughter cells will divide
into one mother cell and one daughter cell;

(5) when a cell divides, exactly one child cell can mutate with probability µ;
(6) all children spawned from a mutant cell will be mutants with no chance of

losing the mutation.

We will be working backwards in time and let the current (time 0) cell population
be n. In order for our model to work, we have to assume the following about our
mutation rate and current cell population:

Assumption 5.2. We will assume n is very large and µ is sufficiently small so the
product of µ and n stays fixed as µ→ 0+ and n→∞, with

m := µn (5.1)

5.2. Constructing the generating function. We will start by assuming time
is discrete and takes values kδt for integers k ≥ 0, where δt > 0. Because we are
working backwards in time, kδt represents time k time-units ago.

Consider 4 random variables:

(1) the number of mutant mother cells NM
k created k time-units ago;

(2) the number of mutant daughter cells ND
k created k time-units ago;
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(3) the number of mutants Mk that arise from any one mutant mother cell
which was created at k time-units ago;

(4) the number of mutants Dk that arise from any one mutant daughter cell
which was created at k time-units ago.

Then the total number of mutants will be given by the formula

R = RM +RD, (5.2)

where

RM =

∞∑
k=0

NM
k∑

j=1

M
(j)
k , RD =

∞∑
k=0

ND
k∑

j=1

D
(j)
k , (5.3)

and where M
(j)
k and D

(j)
k denote independent copies of Mk and Dk, respectively.

Let Fm(t) and FD(t) be functions representing the mother and daughter cell
population t time-units ago, respectively. So, FM (0) + FD(0) = n.

Assumption 5.3. We will assume NM
k is a Poisson random variable such that

NM
k ∼ Pois (µ (FM (kδt)− FM ((k + 1)δt))) , (5.4)

which is assuming on average, a µ-proportion of new mother cells created during
that time-unit will become mutants. Similarly, we will assume ND

k is a Poisson
random variable such that

ND
k ∼ Pois (µ (FD(kδt)− FD((k + 1)δt))) , (5.5)

which is assuming on average, a µ-proportion of new daughter cells created during
that time-unit will become mutants.

Remark 5.4. In practice, k in Equations (5.3) only needs to increase to a point
where the population of non-mutants k time-units is much smaller than the current
population. However, since we will assume we start with an effectively infinite cell
population, mathematically, letting k →∞ is reasonable.

Assumption 5.5. In our model, we are counting the cell population that grows
from a single mutant cell, and because cell growth is independent, we can assume
RM and RD are independent.

Using Assumption 5.3, we obtain the generating function for RM ,

GRM
(x) =

∞∏
k=0

GNM
k

(GMk
(x))

=

∞∏
k=0

exp (µ (FM (kδt)− FM ((k + 1)δt)) (GMk
(x)− 1))

= exp
(
− µFM (0) + µ

∞∑
k=0

(FM (kδt)− FM ((k + 1)δt))GMk
(x)
)
.

(5.6)

Letting δt → 0 and replacing GMk
(x) with f(t, x), we obtain a continuous-time

model,

gRM
(x) = exp

(
− µFM (0)− µ

∫ ∞
0

f(t, x) dFM (t)
)
. (5.7)

Similarly,

gRD
(x) = exp

(
− µFD(0)− µ

∫ ∞
0

g(t, x) dFD(t)
)
. (5.8)
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Remark 5.6. f(t, x) and g(t, x) represent the generating function for the total cell
population when you start from one mother cell or one daughter cell, respectively.
This means f(t, x) = f(t, x, x) and g(t, x) = g(t, x, x) where the right-side of the
equalities are the generating functions in (3.3).

Using Assumption 5.5, we obtain

gR(x) = gRM
(x)gRD

(x)

= exp
(
− µn− µ

∫ ∞
0

f(t, x) dFM (t)− µ
∫ ∞
0

g(t, x) dFD(t)
)
.

(5.9)

Since we are working backwards in time, we can interpret our current time as
infinite relative to when we started from a single cell. Suppose P and Q are not
both δ-lattice distributions. By Theorem 4.4, we know that asymptotically, the
proportion of mother cells to the total cell population will be p∗(α), while the
proportion of daughter cells to the total cell population will be q∗(α) = 1− p∗(α).
This leads us to the following assumption about the cell population at backwards
time t.

Assumption 5.7. The mother cell population at backwards time t is

FM (t) = np∗(α)e−αt, (5.10)

and the daughter cell population at backwards time t is

Fd(t) = nq∗(α)e−αt (5.11)

with high probability.

Hence

gR(x) = exp
(
−m+mα

∫ ∞
0

(p∗(α)f(t, x) + q∗(α)g(t, x))e−αt dt
)
, (5.12)

where we recall Equation (5.1).
The above construction culminates to the following theorem.

Theorem 5.8. Suppose distributions P and Q are not both δ-lattice distributions
for any δ > 0. Let R be a random variable representing the mutant cell population
in an effectively infinite cell population n with effectively zero mutation rate µ, and
set m := µn. Let f(t, x) and g(t, x) be the generating functions for the total cell
population at time t when you start from a single mother cell and daughter cell,
respectively, with life-span distributions P and Q for mother cells and daughter
cells, respectively, which must satisfy

f(t, x) = x(1− P (t)) +

∫ t

0

f(t− τ, x)g(t− τ, x) dP (τ)

g(t, x) = x(1−Q(t)) +

∫ t

0

f(t− τ, x)g(t− τ, x) dQ(τ).

(5.13)

Let α be the root of

1−
∫ ∞
0

e−st dP (t)−
∫ ∞
0

e−st dQ(t) = 0 (5.14)

and

γ :=

∫ ∞
0

e−αt dP (t). (5.15)
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Then the generating function for R is

gR(x) = exp
(
−m+mα

∫ ∞
0

(γf(t, x) + (1− γ)g(t, x))e−αt dt
)
. (5.16)

It is also worth stating the special case when cell division is symmetric, when we
do not need to distinguish between mother and daughter cells.

Theorem 5.9. Suppose the distribution P is not a δ-lattice distribution for any
δ > 0. Let R be a random variable representing the mutant cell population in an
effectively infinite cell population n with effectively zero mutation rate µ, and set
m := µn. Let f(t, x) total cell population at time t when you start from a cell with
life-span distribution P , which must satisfy

f(t, x) = x(1− P (t)) +

∫ t

0

f(t− τ, x)2 dP (τ) (5.17)

Let α be the root of

1− 2

∫ ∞
0

e−st dP (t) = 0. (5.18)

Then the generating function for R is

gR(x) = exp
(
−m+mα

∫ ∞
0

f(t, x)e−αt dt
)
. (5.19)

6. Examples

6.1. Life-span is multi-phase. We say that P has a “multi-phase” distribution
with parameter n if is a gamma distribution with parameters β = 1 and α = n.
Biologically, this means that a cell is more likely to divide around the nth “stage” of
its life. If n = 1, then a cell is most likely to divide closer to birth, and P would be
an exponential distribution. However, when n = 3, for example, it would mean the
cell takes time to mature before it can divide, which is more realistic biologically.

Suppose P and Q are multi-phase distributions with parameter n and m, respec-
tively. Then

dP (t) =
tk−1e−t

(k − 1)!
dt, dQ(t) =

tn−1e−t

(n− 1)!
dt (6.1)

and the exponential growth rate α for both Xt and Yt is the root to

(1 + s)
k+n − (1 + s)

k − (1 + s)
n

= 0. (6.2)

The multi-phase distribution is of great importance in the asymmetric cell di-
vision case, and is a major inspiration for this paper, where we were interested
in developing a generating function when the daughter cells take time to mature
before they can divide. A good model for this would be to assume mother cells
have multi-phase distribution with parameter k = 1 or n = 2, while daughter cells
have multi-phase distribution k = 2 or n = 3.

Theorem 6.1. If P and Q are multi-phase distributions with parameters k and n,
respectively, then the generating functions f = f(t, x, y) and g = g(t, x, y) satisfy(

1 +
∂

∂t

)k
f = fg,

(
1 +

∂

∂t

)n
g = fg, f(0, x, y) = x, g(0, x, y) = y (6.3)
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6.2. Symmetric cell division. Suppose P is an exponential distribution with pa-
rameter 1, that is, it is a multiphase distributions with n = 1. Then the differential
equation for the generating function is

∂f

∂t
= f2 − f, f(0, x) = x (6.4)

which can be solved to obtain

f(t, x) =
xe−t

1− x+ xe−t
. (6.5)

Moreover α = 1. So, the generating function becomes

gR(x) = (1− x)
m(1−x)

x

= e−m +
1

2
e−mmx+

1

24
e−mm(3m+ 4)x2 +

1

48
e−mm(m+ 2)2x3 + . . . .

which is the Lea-Coulson distribution (see [5]).

6.3. Asymmetric cell division. Suppose P and Q are multi-phase distributions
with parameters 1 and 2, respectively. Then we have

α = γ =

√
5− 1

2
. (6.6)

This models a situation where mother cells have shorter expected life-spans than
daughter cells.

Using the series solution to f(t, x) and g(t, x) discussed in Section 3.4, and the
Ma-Sandri-Sarkar algorithm (see [7]), we can compute the coefficients of gR(x)
relatively quickly. These were computed using the software package sagemath (see
[10]), using code shown in Section 6.4.

Pr(R = 0) = e−m

Pr(R = 1) = 0.472135955me−m

Pr(R = 2) = (0.111456180002m2 + 0.172209268743m)e−m

Pr(R = 3) = (0.0175408233286m3 + 0.0813061875578m2

+ 0.0923265707329m)e−m

Pr(R = 4) = (0.00207041334343m4 + 0.019193787255m3

+ 0.0584187097653m2 + 0.054750171345m)e−m

Pr(R = 5) = (0.000195503316229m5 + 0.00302069235857m4

+ 0.0172912064384m3 + 0.0417490156659m2

+ 0.0359263840576m)e−m

Pr(R = 6) = (1.53840241522× 10−5m6 + 0.000356544367868m5

+ 0.00327215809956m4 + 0.0144601403668m3

+ 0.0306527224493m2 + 0.0253788856813m)e−m

Pr(R = 7) = (1.03762156212× 10−6m7 + 3.36674831246× 10−5m6

+ 0.000451249775082m5 + 0.00313432945934m4

+ 0.0118370547378m3 + 0.0232240363224m2
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+ 0.0188813484058m)e−m

Pr(R = 8) = (6.12373058949× 10−8m8 + 2.64927154958× 10−6m7

+ 4.87502731868× 10−5m6 + 0.000487114247624m5

+ 0.00283908715808m4 + 0.00968207809151m3

+ 0.018100793276m2 + 0.0145941835643m)e−m

Pr(R = 9) = (3.21248154448× 10−9m9 + 1.78688050445× 10−7m8

+ 4.3192805187× 10−6m7 + 5.85526505241× 10−5m6

+ 0.000484413747255m5 + 0.00250654733417m4

+ 0.0079759775165m3 + 0.0144521031634m2

+ 0.0116173054839m)e−m

Pr(R = 10) = (1.51672804192× 10−10m10 + 1.0545631668× 10−8m9

+ 3.23914598676× 10−7m8 + 5.71296309855× 10−6m7

+ 6.34669453811× 10−5m6 + 0.000460389737452m5

+ 0.00218929525915m4 + 0.00663573155793m3

+ 0.0117763023231m2 + 0.00946644120115m)e−m

6.4. Sage code to compute probabilities for multiphase distributions.

t = var(’t’); m = var(’m’); y = var(’y’); a = var(’a’)

# The next line seems to be required to make the definite integrals

# work.

assume(t>0)

# number of coefficients to compute.

degree = 10

# life-span distribution density of P (multi-phase with parameter

# k).

k = 1

p(t) = t^(k-1)*exp(-t)/factorial(k-1)

P(t) = integrate(p(y),y,0,t)

# life-span distribution density of Q (multi-phase with parameter

# n).

n = 2

q(t) = t^(n-1)*exp(-t)/factorial(n-1)

Q(t) = integrate(q(y),y,0,t)

# find alpha and gamma.

eqn = (1+x)^(k+n)-(1+x)^k-(1+x)^n

assume(x,’real’)

alpha = max(a.rhs() for a in eqn.solve(x))

# use float for faster calculations.
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alpha = float(alpha)

gamma = integrate(exp(-alpha*t)*p(t),t,0,infinity)

# store coefficients c[i] and b[i] of the generating functions f and

# g.

c = [0,1-P(t)]

b = [0,1-Q(t)]

for i in xrange(2,degree+1):

tempsum(t) = sum(expand(c[j]*b[i-j]) for j in xrange(1,i))

# indefinite integration is faster than definite integration.

temp1(y)=integrate(expand(tempsum(y)*expand(p(t-y))),y)

temp2(y)=integrate(expand(tempsum(y)*expand(q(t-y))),y)

c.append(temp1(t)-temp1(0))

b.append(temp2(t)-temp2(0))

# store coefficients of

# H = integral(pgf*alpha*e^(-alpha t),t,0,infinity).

h = [0]

for i in xrange(1,degree+1):

h.append(integrate((gamma*c[i]+

(1-gamma)*b[i])*

alpha*exp(-alpha*t),t,0,infinity))

# compute coefficients of e^H using MSS algorithm.

prob = [1]

for r in xrange(1,degree+1):

prob.append(expand(sum(m*s/r*h[s]*prob[r-s] for s in

xrange (1,r+1))))

for r in xrange(0,degree+1):

print "\\Pr(R =",r,") &=",latex(e^(-m)*prob[r]),"\\\\"

6.5. Mathematica code to compute probabilities for multiphase distribu-
tions.

degree = 10;

k = 1;

p[t_] = t^(k - 1) Exp[-t]/(k - 1)!;

P[t_] = Integrate[p[y], {y, 0, t}];

n = 2;

q[t_] = t^(n - 1) Exp[-t]/(n - 1)!;

Q[t_] = Integrate[q[y], {y, 0, t}];

alpha = N[Max[x /. Solve[(1 + x)^(k + n) - (1 + x)^k

- (1 + x)^n == 0, x]]];

gamma = Integrate[Exp[-alpha t] p[t], {t, 0, Infinity}];

c[1] = 1 - P[t];

b[1] = 1 - Q[t];

Do[tempsum[t_] = Sum[Expand[c[j] b[i - j]], {j, 1, i - 1}];

c[i] = Integrate[Expand[tempsum[y] Expand[p[t - y]]], {y, 0, t}];

b[i] = Integrate[Expand[tempsum[y] Expand[q[t - y]]], {y, 0, t}],
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{i, 2, degree}];

Do[h[i] = Integrate[(gamma c[i] + (1 - gamma) b[i]) alpha

Exp[-alpha t], {t, 0, Infinity}], {i, 1, degree}];

prob[0] = 1;

Do[prob[r] = Expand[Sum[m s/r h[s] prob[r - s], {s, 1, r}]], {r, 1,

degree}];

Table[{r, prob[r] Exp[-m]}, {r, 0, degree}] // TableForm
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