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Abstract. This article concerns the parabolic attraction-repulsion chemo-
taxis system with signal-dependent sensitivities

ut = ∆u−∇ · (uχ(v)∇v) +∇ · (uξ(w)∇w), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

wt = ∆w − w + u, x ∈ Ω, t > 0

under homogeneous Neumann boundary conditions and initial conditions, where

Ω ⊂ Rn (n ≥ 2) is a bounded domain with smooth boundary, χ, ξ are functions

satisfying certain conditions. Existence of bounded global classical solutions
to the system with logistic source and logistic damping have been obtained in

[1]. This article establishes the existence of global bounded classical solutions

with logistic damping.

1. Introduction

Recently, in [1], we studied the fully parabolic attraction-repulsion chemotaxis
system with signal-dependent sensitivities and logistic source

ut = ∆u−∇ · (uχ(v)∇v) +∇ · (uξ(w)∇w) + µu(1− u),

vt = ∆v − v + u,

wt = ∆w − w + u,

(1.1)

where χ, ξ are decreasing functions and µ > 0. The existence of bounded global
solution for (1.1) was obtained by using the effect of the logistic term. In light of
this result, the following question is raised:

Does boundedness of solutions still hold without logistic term?
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To answer the above question, we study the fully parabolic attraction-repulsion
chemotaxis system with signal-dependent sensitivities,

ut = ∆u−∇ · (uχ(v)∇v) +∇ · (uξ(w)∇w), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

wt = ∆w − w + u, x ∈ Ω, t > 0,

∇u · ν = ∇v · ν = ∇w · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.2)

where Ω ⊂ Rn (n ≥ 2) is a bounded domain with smooth boundary ∂Ω; ν is
the outward normal vector to ∂Ω; χ, ξ are positive known functions; u, v, w are
unknown functions. The initial data u0, v0, w0 are supposed to be nonnegative
functions satisfying

u0 ∈ C0(Ω), u0 6= 0, (1.3)

v0, w0 ∈W 1,∞(Ω). (1.4)

We now explain the background of (1.2). Chemotaxis is a property of cells to
move in response to the concentration gradient of a chemical substance produced
by the cells. The origin of the problem of describing such biological phenomena is
the chemotaxis model proposed by Keller-Segel [9]:

ut = ∆u−∇ · (uχ(v)∇v), vt = ∆v − v + u.

Systems (1.1) and (1.2) describe a process by which cells move in response to a
chemoattractant and a chemorepellent produced by the cells themselves. In particu-
lar, system (1.2) with constant sensitivities (i.e., χ(v) ≡ χ, ξ(w) ≡ ξ, where χ, ξ > 0
are constants) represents the quorum sensing effect that cells keep away from a re-
pulsive chemical substance [17] and describes the aggregation of microglial cells in
Alzheimer’s disease [12]. There are a lot of studies for such attraction-repulsion
chemotaxis systems; we summarize some of them, by reducing parameters to 1, as
follows.

For (1.1) with constant sensitivities (i.e., χ(v) ≡ χ, ξ(w) ≡ ξ, where χ, ξ > 0 are
constants), the existence of bounded global solutions was obtained in [5, 6, 7, 8].
More precisely, Jin-Wang [7] investigated the one-dimensional case. Also, when
χ = ξ, Jin-Liu [6] studied the two- and three-dimensional cases. Recently, Jin-
Wang [8] obtained the existence, boundedness, and stabilization of global solutions

under the condition ξ
χ ≥ C > 0 in the two-dimensional setting. In this way,

boundedness is well established for system (1.1) with logistic term. This holds for
the Keller-Segel system, that is, the system (1.1) with w = 0; see e.g., [20] for the
parabolic-elliptic setting, and [23, 25, 27, 28, 29, 30] for the parabolic-parabolic
setting.

On the other hand, system (1.2) with χ(v) ≡ χ, ξ(w) ≡ ξ (positive constants) has
been studied in [3, 10, 11]. In the two-dimensional setting, Liu-Tao [11] established
existence and boundedness of global solutions under the condition χ < ξ. In the
case χ > ξ, Fujie-Suzuki [3] obtained boundedness under the condition

∫
Ω
u0 <

4π
χ−ξ

(
∫

Ω
u0 <

8π
χ−ξ for the radial case) in the two-dimensional setting, and they asserted

finite-time blow-up in the higher-dimensional case. Lankeit [10] showed finite-time
blow-up for the system having the second equation vt = ∆v− βv+u and the third
equation wt = ∆w − δw + u with β 6= δ in the three-dimensional radial setting
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when χ > ξ. Some related works which deal with the parabolic-elliptic-elliptic
version of (1.1) can be found in [18, 19, 21, 31]. Specifically, Tao-Wang [19] derived
global existence and boundedness under the condition χ < ξ in two or more space
dimensions. While finite-time blow-up was proved in the two-dimensional setting
when χ > ξ and the initial data satisfy the conditions that

∫
Ω
u0 >

8π
χ−ξ and that∫

Ω
u(x)|x− x0|2 dx (x0 ∈ Ω) is sufficiently small. Salako-Shen [18] obtained global

existence and boundedness when χ = 0 (or µ > χ − ξ + M with some M > 0 in
(1.1)). Whereas in the two-dimensional setting, finite-time blow-up was shown by
Yu-Guo-Zheng [31] and lower bound of blow-up time was given by Viglialoro [21].
Thus we see that if there is no logistic term, boundedness breaks down in some
cases. A similar phenomenon occurs for the Keller-Segel system; see e.g., [15, 16]
for the parabolic–elliptic type; and [4, 13, 22, 24, 26] for the parabolic-parabolic
type.

As mentioned above, the logistic term seems helpful to derive boundedness in
(1.1), whereas it is not clear whether boundedness in (1.2) without logistic term
holds or not. The purpose of this article is to establish a result on boundedness for
(1.2) with extra information about the outcome by our previous work.

Now we introduce conditions on the functions χ, ξ and then state the main the-
orem. We assume throughout this paper that χ, ξ satisfy the following conditions:

χ ∈ C1+θ1([η1,∞)) ∩ L1(η1,∞) (0 < ∃θ1 < 1), χ > 0, (1.5)

ξ ∈ C1+θ2([η2,∞)) ∩ L1(η2,∞) (0 < ∃θ2 < 1), ξ > 0, (1.6)

∃χ0 > 0; sχ(s) ≤ χ0 ∀s ≥ η1, (1.7)

∃ξ0 > 0; sξ(s) ≤ ξ0 ∀s ≥ η2, (1.8)

∃α > 0; χ′(s) + α|χ(s)|2 ≤ 0 ∀s ≥ η1, (1.9)

∃β > 0; ξ′(s) + β|ξ(s)|2 ≤ 0 ∀s ≥ η2, (1.10)

where η1, η2 ≥ 0 are constants which will be fixed in Lemma 2.2; note that if
v0, w0 > 0, then we can take η1, η2 > 0 (see also (2.1) with z0 > 0). Moreover, we
suppose that the α, β appearing in the conditions (1.9), (1.10) satisfy

α >
n
2 (2δ + 1)

(
(n− 1)δ + n

)
+
√
D

2δ(β − n)− δ2 − n
2

, β > n+
√
n/2 (1.11)

for some δ ∈ J :=
(
β − n−

√
(β − n)2 − n

2 , β − n+
√

(β − n)2 − n
2

)
, where

D :=
nδ

2

(
2β + (2n− 1)δ

)[
2δ(β − n) +

n

2

(
2n(δ + 1)2 − (2δ + 1)2

)]
.

The main result reads as follows.

Theorem 1.1. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with smooth boundary.
Assume that (u0, v0, w0) satisfy (1.3), (1.4). Suppose that χ, ξ fulfill (1.5)–(1.10)
with α, β which satisfy (1.11) for some δ ∈ J . Then there exists a unique triplet
(u, v, w) of nonnegative functions

u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

v, w ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) ∩ L∞(0,∞;W 1,∞(Ω)),

which solves (1.2) in the classical sense. Moreover, the solution (u, v, w) is bounded:

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,∞(Ω) + ‖w(·, t)‖W 1,∞(Ω) ≤ C
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for all t > 0 and some C > 0.

Remark 1.2. The above theorem provides the additional information.

• Boundedness still holds in the system without logistic damping under the
identical condition in [1].
• The functions χ, ξ admits the singular case like χ0/s

k with χ0 > 0, k > 1.
This case was excluded from [1] because of the required regularity of χ, ξ ∈
L1(0,∞).

The strategy for the proof of Theorem 1.1 is to show the Lp-boundedness of u
with some p > n/2. The key is to derive the differential inequality

d

dt

∫
Ω

upf(x, t) dx ≤ c1
∫

Ω

upf(x, t) dx− c2
(∫

Ω

upf(x, t) dx
)1/θ

+ c3 (1.12)

with some constants c1, c2, c3 > 0, θ ∈ (0, 1) and some function f defined by using
v, w (see (3.1)). In our previous work including the logistic term µu(1 − u), the
differential inequality

d

dt

∫
Ω

upf(x, t) dx ≤ c1
∫

Ω

upf(x, t) dx− µp|Ω|−1/p
(∫

Ω

upf(x, t) dx
)1+ 1

p

(1.13)

was established. The second term on the right-hand side of this inequality, which
is important in proving boundedness, is derived from the effect of the logistic term.
In other words, in the absence of a logistic source, the differential inequality (1.13)
with µ = 0 cannot derive boundedness which means the proof in the previous work
fails. Thus we will show the differential inequality (1.12) without any help of the
logistic term. More precisely, using the effect of the diffusion term, we will establish

d

dt

∫
Ω

upf(x, t) dx ≤ c1
∫

Ω

upf(x, t) dx− ε0p(p− 1)

∫
Ω

up−2|∇u|2f(x, t) dx (1.14)

with some small ε0 > 0. Then, by applying the Gagliardo-Nirenberg inequality to
the second term on the right-hand side of (1.14), we will obtain (1.12). This step
is a difference between this paper and the previous one (see Lemma 3.6).

This article is organized as follows. In Section 2 we collect some preliminary
facts about local existence of classical solutions to (1.2) and a lemma such that an
Lp-estimate for u with some p > n/2 implies an L∞-estimate for u. Section 3 is
devoted to the proof of global existence and boundedness (Theorem 1.1).

2. Preliminaries

In this section we give some lemmas which will be used later. We first present the
result obtained by a similar argument in [2, Lemma 2.2] (see also [14, Lemma 2.1
and Remark 2.2]), which will be applied to the second and third equations in (1.2).

Lemma 2.1. Let T > 0. Let u ∈ C0(Ω × [0, T )) be a nonnegative function such
that, with some m > 0,

∫
Ω
u(·, t) = m for all t ∈ [0, T ). If z0 ∈ C0(Ω), z0 ≥ 0 in Ω

and z ∈ C0(Ω× [0, T )) ∩ C2,1(Ω× (0, T )) is a classical solution of

zt = ∆z − z + u, x ∈ Ω, t > 0,

∇z · ν = 0, x ∈ ∂Ω, t > 0,

z(x, 0) = z0(x), x ∈ Ω,
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then for all t ∈ (0, T ),
inf
x∈Ω

z(x, t) ≥ η

with

η := sup
τ>0

(
min

{
e−2τ min

x∈Ω
z0(x), c0m(1− e−τ )

})
≥ 0, (2.1)

where c0 > 0 is a lower bound for the fundamental solution of ϕt = ∆ϕ − ϕ with
Neumann boundary condition.

We next introduce a result on the existence of local classical solutions to (1.2).

Lemma 2.2. Let n ≥ 1 and let (u0, v0, w0) fulfill (1.3), (1.4). Put m0 :=
∫

Ω
u0

and let η1, η2 ≥ 0 be constants given by (2.1) with (z0,m) = (v0,m0) and (z0,m) =
(w0,m0), respectively. Assume that χ ∈ C1+θ1([η1,∞)), ξ ∈ C1+θ2([η2,∞)) with
some θ1, θ2 ∈ (0, 1). Then there exists Tmax ∈ (0,∞] such that (1.2) admits a
unique classical solution (u, v, w) such that

u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v, w ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) ∩ L∞loc([0, Tmax);W 1,∞(Ω)),

and u has positivity as well as the mass conservation property∫
Ω

u(·, t) =

∫
Ω

u0 (2.2)

for all t ∈ (0, Tmax), whereas v and w satisfy the lower estimates

inf
x∈Ω

v(x, t) ≥ η1, inf
x∈Ω

w(x, t) ≥ η2 (2.3)

for all t ∈ (0, Tmax). Moreover, if Tmax <∞, then

lim sup
t↗Tmax

(
‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,∞(Ω) + ‖w(·, t)‖W 1,∞(Ω)

)
=∞. (2.4)

Proof. Using a standard argument based on the contraction mapping principle as
in [19, Lemma 3.1], we can show local existence and blow-up criterion (2.4). Note
that the mass conservation property (2.2) can be obtained by integrating the first
equation in (1.2) over Ω× (0, t) for t ∈ (0, Tmax), and that the lower estimates (2.3)
follow from Lemma 2.1. �

In the following we assume that Ω ⊂ Rn (n ≥ 2) is a bounded domain with
smooth boundary, χ, ξ fulfill (1.5), (1.6), respectively, (u0, v0, w0) satisfies (1.3),
(1.4). Then we denote by (u, v, w) the local classical solution of (1.2) given in
Lemma 2.2 and by Tmax its maximal existence time.

We next give the following lemma which tells us a strategy to prove global
existence and boundedness.

Lemma 2.3. Assume that χ, ξ fulfill that χ(s) ≤ K1, ξ(s) ≤ K2 for all s ≥ 0 with
some K1,K2 > 0, respectively. If there exist K3 > 0 and p > n/2 satisfying

‖u(·, t)‖Lp(Ω) ≤ K3

for all t ∈ (0, Tmax), then

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,∞(Ω) + ‖w(·, t)‖W 1,∞(Ω) ≤ C
for all t ∈ (0, Tmax) with some C > 0.

For a proof of the above lemma see [1, Lemma 2.3]; note that it is rather easier
to show it without the logistic term.
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3. Proof of Theorem 1.1

Thanks to Lemma 2.3, it is sufficient to derive an Lp-estimate for u with some
p > n/2. To establish the estimate for u we introduce the function f = f(x, t) by

f(x, t) := exp
(
− r

∫ v(x,t)

η1

χ(s) ds− σ
∫ w(x,t)

η2

ξ(s) ds
)
, (3.1)

where r, σ > 0 are some constants which will be fixed later. Here the function f
is finite valued, because integrability in (3.1) is assured by (1.5) and (1.6) together
with (2.3).

Then we give the following lemma which was proved in [1, Lemma 3.2] with
µ = 0. Although in the literature we used the function f with η1 = η2 = 0, the
conclusion of the following lemma does not depend on the choice of (η1, η2).

Lemma 3.1. Let r, σ > 0. Then for all p > 1, we have

d

dt

∫
Ω

upf = I1 + I2 + I3 − r
∫

Ω

upfχ(v)(−v + u)

− σ
∫

Ω

upfξ(w)(−w + u)

(3.2)

for all t ∈ (0, Tmax), where

I1 := p

∫
Ω

up−1f∇ ·
(
∇u− uχ(v)∇v + uξ(w)∇w

)
,

I2 := −r
∫

Ω

upfχ(v)∆v,

I3 := −σ
∫

Ω

upfξ(w)∆w.

Next we state an estimate for I1 + I2 + I3 in the following lemma.

Lemma 3.2. Let r, σ > 0, ε ∈ [0, 1) and put

x := u−1|∇u|, y := χ(v)|∇v|, z := ξ(w)|∇w|.

Then for all p > 1, the following estimate holds:

I1 + I2 + I3 ≤ −εp(p− 1)

∫
Ω

upfx2

+

∫
Ω

upf · (a1(ε)x2 + a2xy + a3xz + a4y
2 + a5yz + a6z

2)

(3.3)

for all t ∈ (0, Tmax), where

a1(ε) := −(1− ε)p(p− 1), a2 := p(p+ 2r − 1),

a3 := p(p+ 2σ − 1), a4 := −r(p+ r + α),

a5 := pr + pσ + 2rσ, a6 := −σ(−p+ σ + β).

Proof. Noting that −εp(p−1) +a1(ε) = −p(p−1) for all ε ∈ (0, 1), we see that the
estimate (3.3) is almost the same as that in the case ε = 0 except multiplication by
constants and is proved in [1, p. 10]. �

We next give the following lemma, which is useful to show that the second term
on the right-hand side of (3.3) is nonpositive.
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Lemma 3.3. Assume that α, β satisfy (1.11). Then there exist p > n/2 and
r, σ > 0 such that

A1 :=

∣∣∣∣a1(0) a3
2

a3
2 a6

∣∣∣∣ > 0 and A2 :=

∣∣∣∣∣∣
a1(0) a3

2
a2
2

a3
2 a6

a5
2

a2
2

a5
2 a4

∣∣∣∣∣∣ < 0. (3.4)

Remark 3.4. In [1, Proof of Lemma 3.3], we showed that there exist p > n/2 and
r, σ > 0 such that A1 > 0, A2 ≤ 0. Here, A2 ≤ 0 can be refined as A2 < 0 for some
p > n/2 and r, σ > 0. More precisely, we set

ϕ2(r) := c1r
2 + c2r + c3

with c1, c2, c3 > 0 and find r > 0 such that ϕ2(r) ≤ 0 by the following two condi-
tions:

r0 > 0, where r0 is the axis of the parabola ϕ2,

D2 > 0, where D2 is the discriminant of ϕ2.

These conditions show that ϕ2(r) < 0 for some r > 0 which implies to A2 < 0.

Combining the above three lemmas, we can derive the following important in-
equality which leads to the Lp-estimate for u.

Lemma 3.5. Assume that χ, ξ satisfy (1.5)–(1.10) with α, β which fulfill (1.11).
Then there exist p > n/2 and r, σ > 0 such that

d

dt

∫
Ω

upf + ε0p(p− 1)

∫
Ω

up−2f |∇u|2

≤ −r
∫

Ω

upfχ(v)(−v + u)− σ
∫

Ω

upfξ(w)(−w + u)

for all t ∈ (0, Tmax) with some ε0 ∈ (0, 1).

Proof. We put

A1(ε) :=

∣∣∣∣a1(ε) a3
2

a3
2 a6

∣∣∣∣ and A2(ε) :=

∣∣∣∣∣∣
a1(ε) a3

2
a2
2

a3
2 a6

a5
2

a2
2

a5
2 a4

∣∣∣∣∣∣
for ε ∈ [0, 1). Since A1(0) > 0 and A2(0) < 0 hold in view of (3.4) and the function
a1 : ε 7→ −(1 − ε)p(p − 1) is continuous at ε = 0, we can find ε0 ∈ (0, 1) such that
A1(ε0) > 0 and A2(ε0) < 0. By using the Sylvester criterion, we have

a1(ε0)x2 + a2xy + a3xz + a4y
2 + a5yz + a6z

2 ≤ 0. (3.5)

Combining (3.3) and (3.5) with (3.2), we arrive at the conclusion. �

We now show the desired Lp-estimate for u with some p > n/2.

Lemma 3.6. Let p > n/2. Assume that χ, ξ satisfy (1.5)–(1.10) with α, β which
fulfill (1.11). Then there exists C > 0 such that ‖u(·, t)‖Lp(Ω) ≤ C for all t ∈
(0, Tmax).
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Proof. By Lemma 3.5, we see from the positivity of χ, ξ and (1.7), (1.8) that

d

dt

∫
Ω

upf + ε0p(p− 1)

∫
Ω

up−2f |∇u|2

≤ −r
∫

Ω

upfχ(v)(−v + u)− σ
∫

Ω

upfξ(w)(−w + u)

≤ rχ0

∫
Ω

upf + σξ0

∫
Ω

upf

= (rχ0 + σξ0)

∫
Ω

upf

(3.6)

for all t ∈ (0, Tmax) with some ε0 ∈ (0, 1). Noting f ≤ 1 in view of (3.1) and then
using the Gagliardo-Nirenberg inequality and the mass conservation property (2.2),
we have ∫

Ω

upf ≤
∫

Ω

up = ‖u
p
2 ‖2L2(Ω)

≤ c1
(
‖∇u

p
2 ‖L2(Ω) + ‖u

p
2 ‖
L

2
p (Ω)

)2θ

‖u
p
2 ‖2(1−θ)

L
2
p (Ω)

= c1

(
‖∇u

p
2 ‖L2(Ω) + ‖u0‖

p
2

L1(Ω)

)2θ

‖u0‖p(1−θ)L1(Ω)

≤ c2‖∇u
p
2 ‖2θL2(Ω) + c3

(3.7)

for all t ∈ (0, Tmax) with c1, c2, c3 > 0, where θ :=
pn
2 −

n
2

pn
2 +1−n

2
∈ (0, 1). Also, noticing

from χ ∈ L1(η1,∞), ξ ∈ L1(η2,∞) (see (1.5), (1.6)) that

f ≥ c4 := exp
(
− r

∫ ∞
η1

χ(s) ds− σ
∫ ∞
η2

ξ(s) ds
)
> 0 on Ω× (0, Tmax), (3.8)

we obtain
4c4
p2
‖∇u

p
2 ‖2L2(Ω) =

4c4
p2

∫
Ω

|∇u
p
2 |2 ≤

∫
Ω

up−2f |∇u|2. (3.9)

for all t ∈ (0, Tmax). Combining (3.7) and (3.9) with (3.6), we see that

d

dt

∫
Ω

upf ≤ c5
∫

Ω

upf − c6
(∫

Ω

upf
)1/θ

+ c7

for all t ∈ (0, Tmax) with c5, c6, c7 > 0. This provides a constant c8 > 0 such that∫
Ω
upf ≤ c8, which again by (3.8) implies∫

Ω

up ≤ p2c8
4c4

for all t ∈ (0, Tmax) and thereby we arrive at the conclusion. �

We are in a position to complete the proof of Theorem 1.1. If χ, ξ satisfy (1.5)–
(1.10) with α, β fulfilling (1.11), then, according to the relations that χ(s) ≤ χ(η1)
for all s ≥ η1 and ξ(s) ≤ ξ(η2) for all s ≥ η2 (see (1.9) and (1.10)), a combination
of Lemmas 2.3 and 3.6, along with (2.4), leads to the end of the proof.
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