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COUPLED POROSITY-FLUID CONCENTRATION
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Abstract. In this article, we study a problem on propagation of coupled
porosity, fluid concentration flux, and temperature waves. We use a model

formulated in previous papers for porous media saturated by a fluid flow, in

the framework of non-equilibrium thermodynamics. We derive three modes of
propagation in the one-dimensional and perfect isotropic case, and then we test

the validity of the model. The waves propagation velocities are represented

in diagrams as functions of the wave number. The derived results have appli-
cations in technological sectors such as seismology, medical sciences, geology

and nanotechnology.

1. Introduction

In a previous article [5] a problem of propagation of coupled porosity and fluid
concentration waves was studied, using a theory developed in [6, 23, 24, 25, 26].
These papers use a theory describing porous media filled by a fluid flow formulated
using the procedures of extended thermodynamics with internal variables; see [1,
3, 11, 12, 13, 15, 17, 18, 19, 22].

In this article, we focus our attention on a problem of coupled porosity, fluid
concentration flux, and temperature waves, in perfect isotropic porous media. This
problem has applications in technological sectors such as seismic waves, medical
sciences, biology, geology, and nanotechnology. In nanostructures the volume ele-
ment size L along a direction is comparable or smaller than the free mean path of
the heat carriers l, i.e. l

L � 1. Furthermore there are situations of propagation of
high-frequency waves and the rate variation of properties of these porous media are
faster than the time scale of the relaxation times of the fluxes to their equilibrium
values.

In Section 2 the temperature equation and the rate equations for the porosity
field, its flux, the heat flux and the fluid concentration flux for the considered media
are presented in the anisotropic case (see [25, 26]). In Section 3 we particularize the
above equations in a special case and when the geometric, transport and thermal
properties of the media are invariant for all rotations and inversions of the frame
axes. In Section 4, assuming that the porous medium filled by a fluid flow occupies
the whole space, we derive the propagation velocities of the coupled waves of the
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porosity, fluid concentration flux, and thermal fields in the one-dimesional case. For
a given numerical set of the several coefficients present in the equations, the waves
propagation speeds are represented in diagrams. Then the validity of the model is
tested. The appendices present a detailed derivation of the rate and temperature
equations in the case of perfect isotropic media. Monographs [4, 27] present a
study of the porous media filled by a fluid flux. While the authors in [7] study a
thermodynamic model for erosion and/or deposition in elastic porous media.

2. Model equations

We consider a porous structure presenting a network of very thin tubes saturated
by a fluid flow, whose mechanical, thermal and transport properties are analyzed
using a model formulated in the framework of the extended thermodynamics (see
[23, 24, 25, 26]). There the porosity field is described by an internal variable, the
structural permeability tensor by rij as in Kubik [16], its gradient by rij,k and its
flux by Vijk. (a comma in the lower indices indicates the spatial derivation.)

Also, we assume that medium is elastic, and the inside the mechanical phenom-
ena are described by the symmetric stress tensor τij and the small-strain tensor
εij . The thermal processes are described by the temperature T , its gradient T,i,
and the heat flux qi. The fluid flux through the porous channels is described by
the fluid concentration c, its gradient c,i, and its flux jci .

Thus, we choose the thermodynamic state vector

C = {εij , c, T, rij , jci , qi, c,i, T,i, rij,k,Vijk},

where εij = 1
2 (ui,j +uj,i), with ui the displacement field. We refer to the configura-

tion at time t, Kt, and use the standard Cartesian tensorial notation in rectangular
coordinate systems. Furthermore, we assume that the porous skeleton filled by a
fluid flow is a mixture of two components, so that we have

ρ = ρ1 + ρ2, (2.1)

with ρ the density of the medium as a whole, ρ1 the density of the fluid, and ρ2 the
density of the elastic skeleton.

We consider the continuity equation, where the source term has been neglected
(see [3, 25])

ρċ+ jci,i = 0, (2.2)

where a superimposed dot indicates the material derivative (i.e. d
dt = ∂

∂t + xγ
∂
∂xγ

,

where Einstein convention for repeated indices is used). The concentration of the
fluid is defined by c = ρ1/ρ and its flux jci by jci = ρ1(v1i − vi), with v1i the fluid
velocity and vi the barycentric velocity of the mixture. These velocities satisfy
ρvi = ρ1v1i + ρ2v2i, where v2i is the porous structure velocity.

In the following the mass density ρ will be assumed constant. In [25, 26] the
constitutive equations and rate equations were obtained (to close the systems of
balance equations, see [25]) obeying the objectivity and frame indifference principles
[9, 20, 21]. In particular the rate equations for rij , and the fluxes jci , qi and Vijk
have the form

ṙij + Vijk,k = β1
ijklεkl + β2

ijklrkl + β3
ijkj

c
k + β4

ijkqk

+ β5
ijklmrkl,m + β6

ijkc,k + β7
ijkT,k,

(2.3)

τ q q̇i = χ1
ijj

c
j − qi + χ3

ijklrjk,l + χ4
ijc,j − χ5

ijT,j , (2.4)
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τ j
c

j̇ci = −jci + ξ2
ijqj + ξ3

ijklrjk,l − ξ4
ijc,j + ξ5

ijT,j , (2.5)

V̇ijk = γ1
ijklj

c
l + γ2

ijklql + γ3
ijklmnVlmn + γ4

ijklc,l + γ5
ijklT,l + γ6

ijklmnrlm,n, (2.6)

where the phenomenological tensors are assumed constant.
In this article for the sake of simplicity we choose

Vijk = −Dνrij,k, (2.7)

with Dν a diffusive coefficient, and thus equation (2.3) keeps the form

ṙij −Dνrij,kk = β1
ijklεkl + β2

ijklrkl + β3
ijkj

c
k + β4

ijkqk + β5
ijklmrkl,m

+ β6
ijkc,k + β7

ijkT,k.
(2.8)

In [26] the generalized telegraph temperature equation was deduced as

τ qT̈ + Ṫ = −γij(τ q ε̈ij + ε̇ij) + ϕ(τ q c̈+ ċ) + ηij(τ
q r̈ij + ṙij)

+KijT,ji − ν1
ijj

c
j,i +Dνν

3
ijklrjk,li − ν4

ijc,ji,
(2.9)

where the phenomenological coefficients are assumed constant, Kij is the thermal
diffusivity tensor, and (2.7) has taken into account.

Equations (2.3)–(2.6), (2.8), (2.9) describe disturbances having finite velocity of
propagation and their own relaxation times to reach their respective thermodynamic
equilibrium values.

In (2.4) the phenomenological tensors χ1
ij , χ

4
ij , and χ3

ij are the thermodiffusive
kinetic tensor, thermodiffusive tensor, and phenomenological tensor. These tensors
describe the influences of the fluid concentration flux, the concentration gradient,
and the porosity field gradient on the heat flux, respectively. The phenomenological
tensor χ5

ij is the thermal conductibility.
Equation (2.4) is a generalization of the anisotropic transport equation Maxwell-

Vernotte-Cattaneo for the heat flux τ q q̇i = −qi−χ5
ijT,j , where τ q is the relaxation

time of the field qi, having finite propagation velocity. When the relaxation time τ q

is null this equation reduces to the anisotropic Fourier law qi = −χ5
ijT,j describing

thermal signals having infinite velocities of propagation (see [2, 8]).
In equation (2.5) the phenomenological tensors ξ2

ij , ξ
3
ij , and ξ5

ijkl describe the
influences of the heat flux, porosity field gradient, and temperature gradient on the
fluid concentration flux field, respectively. Furthermore, ξ4

ik is the diffusion tensor.
Equation (2.5) generalizes the anisotropic transport equation Fick-Nonnenmacher

for the fluid concentration flux τ j
c

j̇ci = −jci −ξ4
ijc,j , where τ j

c

is the relaxation time

of the field jci , having finite propagation velocity. When the relaxation time τ j
c

is
vanishing, this equation reduces to the anisotropic Fick law jci = −ξ4

ijc,j , where the
fluid concentration flux has infinite propagation velocity.

Equations (2.3) and (2.6) describe the evolution of the porosity field and its flux,
and in their right-hand sides the sources terms represent contributions of several
fields. Also, from the evolution equation (2.9) of the thermal field, it is seen that
several fields influence the propagation of the field T .

3. Equations governing the evolution of porosity, fluid
concentration flux, and temperature fields in a special case

For the treatment of the problem of coupled porosity, fluid concentration flux
and temperature waves, we take into account the system of differential equations
(2.8), (2.5) and (2.9), and we assume the following:
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(i) the considered porous medium is at rest,
(ii) in equation (2.8) the influence of the field εij can be neglected,

(iii) in the rate equation (2.5) the influence of the fields qi and c,i can be disre-
garded,

(iv) in equation (2.9) the influence of the first time and second time derivatives
of the small deformations field εij and the concentration field c, the second
time derivative of the porous field rij , the fluid concentration flux gradient
and the gradient of the concentration gradient can be neglected.

Thus, we obtain

∂rij
∂t
−Dνrij,kk = β2

ijklrkl + β3
ijkj

c
k + β4

ijkqk + β5
ijklmrkl,m

+ β6
ijkc,k + β7

ijkT,k,
(3.1)

τ j
c ∂jci
∂t

= −jci + ξ3
ijklrjk,l + ξ5

ijT,j , (3.2)

τ q
∂2T

∂t2
+
∂T

∂t
= ηij

∂rij
∂t

+KijT,ji +Dνν
3
ijklrjk,li. (3.3)

In the rate equation (3.1), because of the symmetry of rij = rji, the phenomenolog-
ical coefficients βs (s = 2, . . . , 7) present some symmetries. For the fourth tensor
β2
ijkl, present in equation (3.1), we have

β2
ijkl = β2

jikl and β2
ijkl = β2

ijlk, (3.4)

which are equivalent to

β2
ijkl = β2

jikl = β2
ijlk = β2

jilk.

Furthermore,
βpijk = βpjik (p = 3, 4, 6, 7),

β5
ijklm = β5

jiklm = β5
ijlkm = β5

jilkm.
(3.5)

Also, from the symmetry properties of rij and rjk,l, rjk,li (in the indexes {j, k} and
{l, i} respectively) and of T,ji (in the indexes {j, i}), in the rate equations (3.2) and
(3.3) we have for the following phenomenological symmetries:

ξ3
ijkl = ξ3

ikjl, ηij = ηji, Kij = Kji, ν3
ijkl = ν3

ikjl, ν3
ijkl = ν3

ljki . (3.6)

Relations (3.6)4 and (3.5)5 are equivalent to

ν3
ijkl = ν3

ikjl = ν3
ljki = ν3

lkji. (3.7)

The symmetry relations (3.4)-(3.7) reduce the number of the significant compo-
nents of the above phenomenological tensors in equations (3.1)-(3.3). The number
of these significant components can have a further reduction if we suppose the
considered media are perfect isotropic.

3.1. Perfect isotropic media. In this subsection we consider perfect isotropic
systems, having invariant symmetry properties with respect all rotations and the
inversion of the frame axes. These properties simplify the form of the temperature
and rate equations (3.1)–(3.3) in such a way that the number of the significant
Cartesian components of the phenomenological tensors have a further reduction
(see [6, 10, 14]). In fact, in this case the phenomenological tensors of order two ξ5

ij ,
Kij , and ηij take the form

ξ5
ij = ξ5δij , Kij = Kδij , ηij = ηδij ; (3.8)
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the tensors of order three and five vanish,

β3
ijk = β4

ijk = β5
ijklm = β6

ijk = β7
ijk = 0; (3.9)

the tensors of order four have the form

Lijkl = L1δijδkl + L2δikδjl + L3δilδjk, (3.10)

where Ls (s = 1, 2, 3) are the 3 significant components of Lijkl, so that β2
ijkl, ξ

3
ijkl

and ν3
ijkl have three significant components. Because of these tensors satisfy also

the symmetry properties (3.4)3, (3.6)1, and (3.7), in the appendix we show that the
tensors β2

ijkl, ξ
3
ijkl, and ν3

ijkl have only two significant components.

Furthermore, in the following we will consider only the scalar (or spherical) part
rδij of rij , with r defined by

r =
1

3
rkk, (3.11)

having split rij in its deviatoric part r̃ij = rij − rδij , and its spherical part rδij .
By this assumption we have

rij = rδij , rij,kk = r,kkδij , rkl,m = r,mδkl,

rjk,l = r,lδjk, rjk,li = r,liδjk.
(3.12)

From equations (3.1)-(3.3), taking into consideration the results (3.12) and re-
lations (3.8), (3.9), (4.2), (4.4), and (4.5) for the phenomenological tensors (see
detailed calculations in Appendices 4–7), we derive the following simplified sys-
tem of equations governing the evolution of porosity, fluid concentration flux and
temperature fields

∂r

∂t
−Dνr,kk = −αrr, (3.13)

τ j
c ∂jci
∂t

= −jci + αcr,i + βcT,i, (3.14)

τ q
∂2T

∂t2
+
∂T

∂t
= KT,kk + αT r,kk − 3ηαrr, (3.15)

where

αr = (τ r)
−1

> 0 (3.16)

is the inverse of the relaxation time of the field r, given by relation (5.3) of Appendix
5, αc, βc, and αT are coupling coefficients reflecting some cross-kinetic effects of the
porosity gradient field and the temperature gradient on the the fluid concentration
flux, and the effect of the field r,kk on the temperature field, respectively (see
relations (6.3) and (7.4) of Appendices 6 and 7, respectively). A detailed derivation
of equations (3.13)-(3.15) has been obtained in Appendix 5–7.

3.2. Propagation velocities of the coupled waves. The aim of this Subsection
is to find the dispersion relation, the propagation velocities of the coupled porosity,
fluid concentration flux, and temperature waves as functions of the wave number.

We assume that the porous medium occupies the whole space, and confine our
study to one-dimensional waves, that propagate along the x direction, so that jc =
(jc, 0, 0). Thus, we assume that the solutions of the set of equations (3.13)-(3.15)
keep the form

r(x, t) = r̂eik(x−vt), jc(x, t) = ĵceik(x−vt), T (x, t) = T̂ eik(x−vt), (3.17)
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where v is the wave velocity, k is the wave number and r̂, ĵc and T̂ are the amplitudes
of the waves r(x, t), jc(x, t) and T (x, t) (3.17); v is defined by v = ω/k [m s−1], with
ω the angular frequency, ω = 2πf [s−1], being f the wave frequency, k the wave
number, given by k = 2π/λ [m−1], and λ the wavelength.

Thus, inserting the relations (3.17) and their suitable derivatives into (3.13)-
(3.15), we obtain the system of equations(

Dνk
2 + αr − ikv

)
r̂ = 0, (3.18)

αcikr̂ +
(
τ j
c

ikv − 1
)
ĵc + βcikT̂ = 0, (3.19)

(−αT k2 − 3ηαr)r̂ +
(
τ qk2v2 + ikv −Kk2

)
T̂ = 0, (3.20)

which has non-trivial solutions only if its determinant vanishes, i.e.

D =

∣∣∣∣∣∣
Dνk

2 + αr − ikv 0 0
αcik τ j

c

ikv − 1 βcik
−αT k2 − 3ηαr 0 τ qk2v2 + ikv −Kk2

∣∣∣∣∣∣ = 0. (3.21)

Developing D we obtain the following dispersion relation for the waves propagation
velocities v concerning possible propagation modes:

τ j
c

τ qk3v4 + ik2
[
τ j
c

+ τ q + τ j
c

τ q
(
Dνk

2 + αr
) ]
v3

− k
[ (
τ j
c

+ τ q
) (
Dνk

2 + αr
)

+ τ j
c

Kk2 + 1
]
v2

− i
[(
Kτ j

c

k2 + 1
) (
Dνk

2 + αr
)

+Kk2
]
v +Kk

(
Dνk

2 + αr
)

= 0.

(3.22)

From the real part of this dispersion relation, we obtain

τ j
c

τ qk2v4 −
[(
τ j
c

+ τ q
) (
Dνk

2 + αr
)

+ τ j
c

Kk2 + 1
]
v2

+K
(
Dνk

2 + αr
)

= 0,
(3.23)

from which we derive two possible modes

v(1) =

√
A +

√
A 2 −B, v(2) =

√
A −

√
A 2 −B, (3.24)

where

A =
τ j
cKk2 + 1 +

(
τ j
c

+ τ q
) (
Dνk

2 + αr
)

2τ jcτ qk2
, with A > 0, (3.25)

B =
K
(
Dνk

2 + αr
)

τ jcτ qk2
, with B > 0. (3.26)

The velocity v(1) is real when

A 2 −B ≥ 0 and A +
√

A 2 −B ≥ 0. (3.27)

Condition (3.27)1 is satisfied when[
τ j
c

Kk2 + 1 +
(
τ j
c

+ τ q
)(
Dνk

2 + αr
)]2
− 4τ j

c

τ qKk2
(
Dνk

2 + αr
)
≥ 0, (3.28)

whereas (3.27)2 is always satisfied, if (3.28) holds, because it is a sum of two positive
terms.

The velocity v(2) is real when: (i) expression (3.28) holds, and from (3.24)2 we
have

A −
√

A 2 −B ≥ 0, (3.29)
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from which we derive B ≥ 0, that is always true.
From the imaginary part of the dispersion relation (3.22), we derive

k2
[
τ j
c

+ τ q + τ j
c

τ q
(
Dνk

2 + αr
) ]
v3

−
[ (
Kτ j

c

k2 + 1
) (
Dνk

2 + αr
)

+Kk2
]
v = 0,

(3.30)

from which we obtain the values

v(3) = 0, v(4) =

√
Kk2 + (Kτ jck2 + 1) (Dνk2 + αr)

k2 [τ jc + τ q + τ jcτ q (Dνk2 + αr)]
. (3.31)

Notice that the velocity v(4) is real for all k 6= 0 because in (3.31) the radicand is
always positive. Thus, we have obtained three possible modes of propagation: v(1),
v(2) and v(4).

In Figures 1–3 the propagation speeds v(1), v(2), and v(4) as functions of k,
solving the real part (3.23) or the imaginary part (3.30) of the dispersion relation
(3.22), are represented in the case where, as an example, we have considered a given
numerical set of the several coefficients present in the equations of the examined
problem: Dν = 10−2 m2 s−1, K = 10−4 m2 s−1, τ j

c

= 10−2 s, τ q = 10−2 s, and αr =
102 s−1. In this assumption condition (3.28) is satisfied for all k and furthermore
the velocities v(1) and v(2) are real. We recall that the velocity v(4) is real for all
k 6= 0.

Figure 1. Representation of the wave propagation speed v(1) (in
blue color) as function of k, for a given numerical set of the several
coefficients present in the examined problem. The horizontal line
in fuchsia color is its horizontal asymptote.

Conclusions

In this article we worked out for a perfect isotropic porous media filled by a fluid
flow, a system of rate equations for the porosity, a fluid concentration flux, and
temperature fields to study the propagation of coupled waves of these fields. We
used a model formulated in previous papers, in the framework of rational extended
irreversible thermodynamics with internal variables. A structural permeability ten-
sor rij , its gradient rij,k, and its flux Vijk were introduced in the thermodynamic
state vector and the mass density of the mixture consisting of the porous skeleton
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Figure 2. Representation of the wave propagation speed v(2) (in
blue color) as function of k, for a given numerical set of the several
coefficients present in the studied problem.The horizontal line in
fuchsia color is its horizontal asymptote.

Figure 3. Representation of the wave propagation speed v(4) (in
blue color) as function of k, for a given numerical set of the several
coefficients present in the examined problem. The horizontal line
in fuchsia color is its horizontal asymptote.

and the fluid flowing inside of it was assumed constant. The body was supposed
occupying the whole space. The dispersion relation was derived, three possible
propagation modes were obtained, and the corresponding wave propagation veloc-
ities as functions of the wave number k, were represented in diagrams, for a given
set of the several phenomenological coefficients present in the studied problem.

4. Appendix A: Perfect isotropic tensors with special symmetry
properties

Here we consider perfect isotropic tensors of fourth order, having special symme-
try properties, and thus a reduced number of significant components. In particular,
we demonstrate that the tensors β2

ijkl, ξ
3
ijkl and ν3

ijkl can be expressed only by two
significant independent components.
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Case (a) Let us consider the fourth order perfect isotropic tensor β2
ijkl, present

in equation (3.1) and having the symmetries β2
ijkl = β2

jikl = β2
ijlk = β2

jilk. Using

relation (3.10) we obtain

β2
jikl = β2

aδjiδkl + β2
b δjkδil + β2

c δjlδik (4.1)

and an analogous expression for β2
ijkl. Matching the two relations obtained by the

help of (3.10), the tensor β2
ijkl can be written as

β2
ijkl = β2

1δijδkl + β2
2(δikδjl + δilδjk), with β2

1 = β2
a, β

2
2 = (β2

b + β2
c )/2. (4.2)

Case (b) Let us consider the fourth order perfect isotropic tensor ξ3
ijkl, present in

equation (3.2) and having the symmetry

ξ3
ijkl = ξ3

ikjl.

From relation (3.10) we have

ξ3
ikjl = ξ3

aδikδjl + ξ3
b δijδkl + ξ3

c δilδkj (4.3)

and an analogous result for ξ3
ikjl. Matching the two results we have

ξ3
ijkl = ξ3

1δilδjk + ξ3
2(δijδkl + δikδjl). (4.4)

Case (c) The perfect isotropic fourth tensor ν3
ijkl, present in equation (3.3), has

the symmetries ν3
ijkl = ν3

ikjl = ν3
ljki = ν3

lkji. Thus, by an analogous method used in

the cases (a) and (b) the tensor ν3
ijkl can be written as

ν3
ijkl = ν3

1δilδjk + ν3
2(δijδkl + δikδjl). (4.5)

5. Appendix B: Derivation of the rate equation for porosity field

To obtain equation (3.13), we use (3.9), (3.12)1, (3.12)2, and the special form
(4.2) assumed by the fourth order tensor β2

ijkl, so that (3.1) takes the form

∂r

∂t
δij −Dνr,kkδij = [β2

1δijδkl + β2
2(δikδjl + δilδjk)]rδkl, (5.1)

where β2
1 , β2

2 are the 2 significant independent components of the fourth tensor
β2
ijkl. Then, from (5.1) we obtain

∂r

∂t
δij −Dνr,kkδij =

(
3β2

1 + 2β2
2

)
rδij , (5.2)

i.e. equation (3.13), when i = j and we define(
3β2

1 + 2β2
2

)
= −αr = − (τ r)

−1
, (5.3)

where τ r the relaxation time of the porosity field.

6. Appendix C: Derivation of the rate equation for the fluid
concentration flux

To derive (3.14), we use (3.2) and the special forms (3.8)1 and (4.4) for the
tensors ξ5

ij and ξ3
ijkl, respectively, so that we obtain

τ j
c ∂jci
∂t

= −jci + [ξ3
1δilδjk + ξ3

2(δijδkl + δikδjl)]r,lδjk + ξ5T,i, (6.1)
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where ξ3
1 , ξ3

2 are the 2 significant independent components of the fourth tensor
ξ3
ijkl and ξ5 is the only significant component of the second order tensor ξ5

ij . Thus,

equation (6.1) keeps the form

τ j
c ∂jci
∂t

= −jci + (3ξ3
1 + 2ξ3

2)r,i + ξ5T,i, (6.2)

i.e. equation (3.14), when we define

βc = ξ5, αc = 3ξ3
1 + 2ξ3

2 . (6.3)

7. Appendix D: Derivation of temperature equation

To deduce (3.15), we use (3.3) , (3.11), (3.12)1, and (3.12)5, and the special
forms (3.8)2, (3.8)3 , and (4.5) of the tensors Kij , ηij and ν3

ijkl, so that we obtain

τ q
∂2T

∂t2
+
∂T

∂t
= 3η

∂r

∂t
+KT,ii +Dν

[
ν3

1δilδjk + ν3
2(δijδkl + δikδjl)

]
r,liδjk, (7.1)

where ν3
1 , ν3

2 are the 2 significant independent components of the fourth tensor ν3
ijkl

and K, η are the only significant components of the second order tensors Kij and
ηij . Then equation (7.1) reads

τ q
∂2T

∂t2
+
∂T

∂t
= 3η

∂r

∂t
+KT,ii +Dν

(
3ν3

1 + 2ν3
2

)
r,ii. (7.2)

Using (3.13), equation (7.2) assumes the form

τ q
∂2T

∂t2
+
∂T

∂t
= KT,ii +Dν

(
3ν3

1 + 2ν3
2 + 3η

)
r,ii − 3ηαrr, (7.3)

i.e. equation (3.15), when we define

αT = Dν

(
3ν3

1 + 2ν3
2 + 3η

)
. (7.4)
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