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EXISTENCE AND BLOW UP IN A SYSTEM OF WAVE
EQUATIONS WITH NONSTANDARD NONLINEARITIES

SALIM A. MESSAOUDI, OULTIA BOUHOUFANTI,
ILHEM HAMCHI, MOHAMED ALAHYANE

ABSTRACT. In this article, we consider a coupled system of two nonlinear
hyperbolic equations, where the exponents in the damping and source terms
are variables. First, we prove a theorem of existence and uniqueness of weak
solution, by using the Faedo Galerkin approximations and the Banach fixed
point theorem. Then, using the energy method, we show that certain solutions
with positive initial energy blow up in finite time. We also give some numerical
applications to illustrate our theoretical results.

1. INTRODUCTION

In this work, we study the following initial-boundary-value problem for the un-
knowns v and v:

g — div(AVY) + w20, = f1(2,u,0) in Qx (0,7),
vy — div(BV) + o ["® 20, = fo(z,u,v) in Qx (0,T),
u=v=0 ondx(0,T), (1.1)
w(0) =ug, u(0)=wuy inQ,
v(0) = vg and v;(0) =v; in Q,

where T > 0 and Q is a bounded domain of R™ (n = 1,2, 3) with a smooth boundary
09, m and r are continuous functions on € such that, for all x € Q,

2<m(z), ifn=1,2

1.2
2<m” <m(zr)<m" <6, ifn=3 (1.2)
and
2<r(z), ifn=12
_ + . (1.3)
2<r  <r(z)<r" <6, ifn=3,
where
m~ = inf m(z), m* =supm(z), 7~ = infr(z), " =supr(z).
2€Q veQ 2eQ =
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The coupling terms f; and f, are as follows: for all z € Q and (u,v) € R2,

0 0
fl(xauav) Ju (x,u,v), fg(l‘,u,’l}) v (Z‘,’U/,’U), ( )
with
F(z,u,v) = a|lu + v[P®)*! +2b|uv|p($2)+1, (1.5)

where a,b > 0 two positive constants, p is a given continuous function on Q such
that, for all z € Q,
3<p <plx)<ph, ifn=1,2 (1.6)
p(x) =3, ifn=3,
with

max{m™, 7"} <p~ = inf p(x).
e

A and B are symmetric matrices of class C1(Q x [0, 00)) such that for constants ag,
bo > 0 and all £ € R™,

AE-€>aglél?, BE- € > bolef, (1.7)
where A’ = 24(. ) and B’ = 2B(.,¢).

The study of system is motivated by the description of several models
in physical phenomena, such as viscoelastic fluids, filtration processes through a
porous media, fluids with temperature dependent viscosity, image processing, or
robotics, etc. See for example [7] for an application of such functional spaces in the
image recovery. Our system can be regarded as a model for interaction between two
fields describing the motion of two nonlinear “smart” materials. For more details,
see [1 [7].

A considerable effort has been devoted to the study of single wave equations in
the case of constant exponents. The equation

g — Au A+ alug| ™ 2uy = bluP 2w in Q x (0,T),

with initial and Dirichlet boundary conditions, has been studied by many re-
searchers. For example, Ball in [5] showed that if a = 0, then the source term
blu|P~2u, with b > 0, forces the negative-energy solutions to explode in finite time.
Haraux and Zuazua [I0] proved that in the absence of the source term, the damping
term alus|™ 2uy, with a > 0, assures the global existence for arbitrary initial data.
In the presence of both terms, the problem was first considered by Levine [12].
He established the blow up for solutions with negative initial energy, when m = 2.
Georgiev and Todorava [8] pushed Levine’s result to the case m > 2, by introducing
a different method. Messaoudi [I4] proved that any solution with negative initial
energy only, blows up in finite time when m < p.

For a wave equation with variable-exponent nonlinearity, we mention some works.
In [3], Antontsev studied the equation

uy — div(a|Vu|P@Y=2Vu) — aAu, — bulu)” @72 = f in Q x (0,T),

where o > 0 is a constant and a, b, p, o are given functions. Under specific condi-
tions, he proved the local and global existence of some weak solutions and a blow-up
result for certain solutions having arbitrary initial energy. Guo and Gao [9] took
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o(x,t) = r > 2 and established a finite-time blow-up result. Sun et al. [22] studied
the equation

ugy — div(a(z, t)Vu) + c(z, t)ug|u | 1@ = bz, ulu[P D72 in Q x (0,7)

and established a blow-up result. Also, under some conditions on the initial data,
the lower and upper bounds for the blow-up time are obtained. In addition, they
provided numerical illustrations for their result. After that, Messaoudi and Talah-
meh [I7] studied the equation

wy — div(|Va™ @72V + puy = wlu[P72 in Q x (0,T),

for ;> 0 supplemented with Dirichlet-boundary conditions. They proved a blow-
up result for certain solutions with arbitrary positive initial energy. In [I8], the
same authors considered the equation

uy — div(|Va"®72Vu) + auy|ug ™72 = bulu[P® =2 in Q x (0,T),

where a,b > 0 are two constants and m, r,p are given functions. They established
a finite-time blow-up result for negative-initial-energy solutions and for certain so-
lutions with positive initial energy. Recently, Messaoudi et al. [I9] considered the
equation

g — A+ aug|ug ™2 = buluP@ =2 in Q x (0, 7).

Using the Faedo-Galerkin method, they established the existence and uniqueness of
a weak local solution and proved the finite-time blow up for solutions with negative
initial-energy.

Concerning the coupled systems of two nonlinear wave equations with constant
exponents, Messaoudi and Said-Houari [I6] proved a nonexistence theorem for
positive-initial-energy solutions of a system of viscoelastic wave equations. Un-
der some restrictions on the nonlinearity of the damping and source terms and the
initial data, Said-Houari et al. [2I] proved that the rate of decay of the total energy
depends on those of the relaxation functions. Agre and Rammaha [2] obtained
several results on the local and global existence, uniqueness, and the finite-time
blow up of solutions, under appropriate conditions on the parameters in the sys-
tem. Very recently, Messaoudi and Hassan [15] established a general decay result
for a certain system of viscoelastic wave equations.

In the case of coupled systems of two nonlinear hyperbolic equations with vari-
able exponents, there is only the work of Bouhoufani and Hamchi [6], where they
proved the global existence of a weak solution and established decay estimates of
the solution energy. However, the existence of a local solution was not discussed. In
this work, we push the local existence result of Agre and Rammaha [2], which was
established for the case of constant-exponent nonlinearities, to our system which
deals with variable-exponent nonlinearities. To the best of our knowledge, this is
the first result of this kind and the generalization was not trivial at all. In addition
to the local existence, we establish the blow up in finite time for certain solutions
with positive initial energy and give some numerical illustrations.

This paper consists of four Sections, in addition to the introduction. In Section
2, we give some preliminary results. The existence and uniqueness of weak solution
is discussed in Section 3. Section 4 is devoted to the statement and the proof of
the finite-time blow up result. In section 5, we present two numerical examples to
illustrate our theoretical findings.
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2. PRELIMINARIES

In this section, we define the Lebesgue and Sobolev spaces with variable expo-
nents and present some facts and results related to this important class of spaces.
See [4, [TT] for more details.

Let ¢ : © — [1,00) be a measurable function. We define the Lebesgue space with
a variable exponent by

L1O(Q) = {f: Q — R measurable in Q : g,(.)(Af) < +oo for some A > 0},
where

0q<~>(f)=/ﬂlf(a:)|Q(”)d:c.

L‘Z(‘)(Q) is a Banach space with respect to the following Luxembourg-type norm
£l = int 3> 05 [ D e < 1y,
Q
We also define the variable exponent Sobolev space
Whit(Q) = {f € LI(Q) : Vf exists and |V f| € L1O(Q)}.
Equipped with the norm
| lwsacr@y = 1l + 19l

W14a()(Q) is a Banach space. Furthermore, we denote by Hé’q(')(ﬂ) the closure of
Cg°(€) in W) () and by W~14'0)(Q) the dual space of W, *)(Q) (in the same
way as the usual Sobolev spaces), where
WEPO(Q) = {u e WEPO(Q) - u = uyx for a compact K C Q}
1 1

Lemma 2.1 (Young’s Inequality [II]). Let p,q,s :  — [1,00) be measurable
functions, such that

1
— 4+ ——, foraeyeq.

11
py)  qly)’

s)
Then, for all a,b > 0, we have
(ab)*)  qr() paC)
< —+—=.
s(+) p() gl
By taking s =1 and 1 < p,q < 400, it follows that for any € > 0,
ab < ea? + C.b?,  where C. = 1/q(ep)?/?. (2.1)

Lemma 2.2 (Holder’s Inequality [I1]). Let p,q,s : Q@ — [1,00) be measurable
functions, such that

1 1 1
@) pw Taw e vER

If f € LPO(Q) and h € L1O)(Q), then fh € L*O)(Q), with
IfRllscy < 201 f o 1Rllge)-
Lemma 2.3 ([I1]). If1 < ¢~ < q(z) < ¢ < 400 holds, then for any f € L1O)(Q),

min{|| FII2,, 1F150,3 < eaiy(f) < max{[|£11%, 112 3
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Lemma 2.4 ([11]). If g < +o0, then C§°(2) is dense in LIO)(Q).

Lemma 2.5 (Embedding Property [11]). Let  C R™ be a bounded domain with a
smooth boundary 0. If r,q € C(Q) such that r,q > 1 and inf 5 (r*(z) —q(z)) > 0
with

(@) e
v (z) = 4 ety <
0, if rt >n.

Then, the embedding WOI’T(')(Q) < LIC)(Q) is continuous and compact.

3. EXISTENCE OF WEAK SOLUTIONS

We begin this section by giving the definition of a weak solution for the system

TD).

Definition 3.1. Let (ug, u1), (vo,v1) € H}(Q)x L3(Q). Any pair of functions (u, v)
such that

u,v € L*([0,T), Hy (),
wp € L([0,T), L*(2)) N L™O(Q x (0,T)),
v, € L2([0,T), L*(Q)) N L™(Q x (0,T)),
is called a weak solution of (L.I]) on [0,T), if

i[/ ut<I>dx+/AVu Vodz] + /|ut|m($)_2ut<1>dx—/ ®frdz =0,
Q

d
dt[/ vt\I/d;z:+/BVv VUdzx] + /|vt|r(x) zut\Ildx—/\IJfQ dz =0,
Q

w(0) =wug, ut(0) =uy, ©0(0)=wvy, v:(0)=01,
for a.e. t € (0,T) and all test functions ®, ¥ € H{ ().

To prove the existence of a local weak solution of problem (|1.1]), we first consider,
as in [I3], the initial-boundary-value problem

wyy — div(AVY) 4 |u @2y, = f(2,t) in Qx (0,T),
vy — div(BV) + v ["® 20, = g(x,t)  in Q x (0,T),
u=v=0 ondQx(0,T), (3.1)
u(0) =ug, u(0)=wuy in€Q,
v(0) =vg, v(0)=wv1 in €,
where f,g € L?(2 x (0,7T)).

Theorem 3.2. Under the above conditions, on m,r, A and B, and for the initial

values (ug,u1), (vo,v1) € HE(Q) x L3(Q), problem (B.1) has a unique local weak

solution (u,v) on [0,T), in the sense of Definition

Proof. (Uniqueness.) Suppose that (3.1) has two weak solutions (uy,v1) and
(ug,v3), in the sense of Deﬁnition Then, (u,v) = (u; — ug, vy — vy) solves the
problem

g — div(AVY) + [t 20y, — |ugy "™ 2uy, =0 in Q x (0,7),
vy — div(BVo) + |vlt|r(’”)_2v1t — |’U2t|r(x)_2?]2t =0 inQx(0,7),
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u=v=0 ondQx(0,T),
u(0) = u¢(0) = 0,v(0) = v,(0) =0 in Q,
in the sense of Definition Taking ® = u;, we obtain
Cclit[/ (ut + AVu.Vu)dz)
(3.2)
+ 2/9(|u1t|m(a:)727.tlt — Juge ™™ "2 ug) (uyy — ugy)da <0,

by (L.8) and

d (/ AVu - Vudx) = / A'Vu - Vudz + 2/ AVu - Vug dx. (3.3)
dt Q Q

Since, for all z € Q,Y, Z € R and ¢(z) > 2, we have
(Y172 — |29 2Z)(Y = Z2) >0, q(z) > 2, (3.4)

inequality (3.2]) leads to
7 (ut + AVu - Vu)dz <0.
Integrating over (0,t),t < T, and using ((1.7), we find that

[[ut |13 + aol[Vull3 = 0.
Similarly, we obtain

[[e]|3 + bol| V3 = 0.
Therefore, ui(-,t) = ve(-,t) = 0 and Vu(-,t) = Vo(-,t) = 0 for allt € (0,7). Which
implies u = v =0 on Q x (0,7T), since u = v = 0 on 9 x (0,7T). This proves the
uniqueness.

Existence. To prove the existence of a weak solution of (3.1]), we proceed in
four steps:

Step 1. Approximate problem. We consider an orthonormal basis {wj}j’il

of H}(Q) and define, for all k > 1, a sequence (u*,v*) in the finite-dimensional
subspace Vi, = span{wy,ws,...,wg}, as follows

u (@, 1) = Ty a;(Hw;(x),  v*(t) = i1k (t)w; (@),

for x € Q and ¢ € (0,T), satisfying the approximate problems
/utt(x t)wjdx—i—/ AVUF(z,t) - Vw;dx
/ [k (2, 1)@ =20k (2, t)wda = / [z, tw;dz,
/vtt(x t)w]dx—i—/BVv z,t) - Vwjdz
/ [k (, 1) |"® =20k (2, t)w;dx = /Qg(x,t)wjdx,

for j =1,2,...,k, and with the initial data

u(0) = uf = S0 (ug, widwi,  uf(0) = uf = I (ur, w;)ws

vF(0) = vf = B, (vo, wi)wi,  vF(0) =vf = B, (v1,wi)ws,
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where (uf) and (vf) are two sequences such that
uk — ug, vk — vy in HY(Q),
u¥ = uy, oF v in L2(Q).

This generates a system of k nonlinear ordinary differential equations, which admits
a unique local solution (u*,v*) in [0,T%), Tk < T, by the standard ODE theory.

Step 2. A priori Estimates. Now, we show, by a priory estimates, that T, = T,
for all k > 1. For this, we multiply (3.5))1 and (3.5)2 by a’;(t) and b/;(t), respectively.
Then sum each result over j, from 1 to k, and integrate each equation over (0, 1),
with ¢ < Tj. We obtain

o1 = 115 + | AV Vo~ [ AGe0)Val - Vb

t t
+ 2/ / [uk (,t)|™®) dz dt < 2/ / f(z, t)uk(z,t) de dt
0 Ja 0o Jo

JoFIZ — o2 + / BVt - Vokds / B(z,0)Vuk - Volda

+2//|vtxt|TI)dxdt<2// (z,t)vk (x,t) dz ds,

by (3.3) and (| . Under the assumptions on A and B, the addition of | and
(3.7), Young’s inequality (2.1]) gives

k
g I3 + llof ||2+ao\|Vuk||2+bo||W I3

Tk
N 2/ / (luf (2, )™ + Jof (2, 1)["*)) da ds
0

(3.6)

and

(3.7)

(3.8)
Ty
szs/o (|2 + o112 >ds+2c/ /|fxt|2+|g<x )

k
+ ¥ (13 + [[VF113 + ol Vug |3 + BIIVs 3,

where

%)) dx ds

a= sup A(z,t), B= sup B(z,t).
Qx(0,7) Qx(0,T)

Since f,g € L?(2 x (0,T)) and
ul = ug, wf —wve in HY(Q),
ul = up, o — v in L2(Q),
invoking Gronwall’s lemma, estimate (| . ) leads to

sup [[[uf |13 + [[of 1[5 + IV (13 + Vo |13]
(0,T%)

T
[ ek & o @) deds < .
0o Ja
where C' > 0, for all T, < T and k > 1. Therefore, the local solution (u*,v*) of
system ([3.5)) can be extended to (0,T), for all k > 1. Furthermore,
(u*),, (v%)1, are bounded in L>=((0,T), Hi (Q)),
(uf ) is bounded in L°((0,T), L*(2)) N L™ (Q x (0,T)),
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(vF);, is bounded in L=((0,T), L*(Q)) N L™(Q x (0,T)).

Consequently, we can extract two subsequences of (u*); and (v*), which we denote
by (w;); and (v;);, respectively, such that

u! = wand ' — v weakly * in L>=((0,T), Hi(Q)),
ul — uy weakly * in L°((0,T), L3(Q)) and weakly in L™ (Q x (0,T)),
vl — v weakly * in L>((0,T), L*(€)) and weakly in L™)(Q x (0,T)),

as |l — +o0

Step 3. Nonlinear terms. In this step, we show that
m()
Jub |24 5 Ju, ™20, weakly in L=O-1 (€ x (0,T)),
()
[0 " =20! - |, |"O 720, weakly in LTO-1(Q x (0,T))

and then, we establish that (u,v) satisfies the differential equations (3.1) on © x
(0,T). So, by exploiting Hélder’s inequality (Lemma , one easily deduce that

m(-)
(Jub|™)=24l); is bounded in L™~ (2 x (0,T)). Then, there exists a subsequence,
still denoted by (Jul|™()=2ul);, such that

m()
lul| =2yl 5 & weakly in L=0-1 (2 x (0,T)).

To prove that ® = |u,|™)~2u;, we set h(z) = |2|™) =22 and define, as in [I3], the
sequence

si= [ [ttty - nepit - ),

for z € L™0)((0,T), H} (Q)) and I > 1. Replacing u* by u! in (3.6)), integrating the
result over (0,7, and letting I — oo, by (3.3)), we obtain

. 1
0< hmlsup S < 3 [||u1||§ — |lug(T) |2 +/ A(z,0)Vuyg - Vuo}
Q

1 / Az, T)Vu(T) - Vu(T)] - /0 ' /Q P- (3.9)

2 Ja
—/OT/Qh(z)(ut—z)—i—/oT/QfUt~

On the other hand, if we use u' instead of u* in (3.5)); and integrate the result over
(0,t), we arrive at

¢ ¢ ¢
/utw—/ulw—i—//AVU-Vw—i—//(I)w://fw, Yw € HE (),
Q Q 0 Jo 0 Jo 0o Ja

since {w;}52, is a basis of Hg(2). Therefore,

/ U + / (AVu - Vw + dw) = / fw, Ywe HHQ), (3.10)
Q Q Q
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for all t € (0,T). Using the denseness of H{ () in L?(Q), we use u; instead of w in
(3.10) and integrate the result over (0,7") to obtain

[ ue= 3l ~ st + [ A mum) - vu(m)

1 T
—7/ A(x,O)Vuo.Vuo}—i—/ /@ut.
2 Ja 0o Ja

Combining (3.9) and (3.11)), we infer that

(3.11)

/T / [® — h(2)](us — 2) > limsup S; > 0, Vze L™O(Qx (0,T)), (3.12)
0 Q l

since H}(Q) is dense in L™()(Q) (see Lemma .
Now, let z = A\ + uz, w € L™ (Q x (0,T)). Hence, inequality ((3.12) can be

rewritten as
T
—)\/ / [@ — h(Adw +ug)]w >0, VA #O.
0o Ja

The continuity of h with respect to A yields

/T/(q> Ch(u))w =0, Ve e L™OQ x (0,T)).
0 Q

Thus, ® = h(ug) = |u|™®~2u,. Therefore, inequality ((3.10) becomes

/uttw+/AVu'Vw+/ ‘Ut‘m(w)72utu}:/fwa Yw € Hj(Q).
Q Q Q Q

Consequently,

ugy — div(AVa) 4 |u ™20, = £ in D'(Q x (0,T)). (3.13)
Likewise and since H} () is dense in L") (Q) (Lemma [2.4)), we obtain

[l "2k |72y, weakly in LNTS%(Q x (0,7))

and
vy — div(BV) + o ["® 20, = g in D'(Q x (0,7)). (3.14)

Step 4. Initial conditions.
First, by Lions’ lemma [I3], Lemma 1.2, page 7] and since

ul —u  weakly * in L>((0,T), Hi()),
up — up  weakly * in L((0,7), L*(Q)),
we deduce that u! — u in C([0,T], L?(2)). Therefore, u'(-,0) is defined and
ul(-,0) = u(-,0) in L*(Q).

But, u!(-,0) = ul — wg, in H}(Q). Then u(-,0) = wug. Similarly, we obtain
v(+,0) = vo.
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Second, for any ¢ € C§°(0,T) and j < [, we obtain from that
T T
/ / by (i, D)y (2) (1) + / / AVl (2, 1) - Yooy (2) (1)
0 Q 0 Q
T
. / / d (a,£)) =20z, Yo () (1) (3.15)
0 Q

+Aaéﬂam%mww

By routine computations and taking [ — +o0, we find that for all w € HE(Q),

/0 ' [ wntatsteyo

T

which means us; € L$ ([0,T), H=1(Q)) and that u solves the equation
Uy — div(AVY) + [ug ™20, = £, in D'(Q x (0,T)).

So, we have
up € L((0,T), LX(Q)), uy € L7071 ([0,T), H1()).

By Lions’ lemma [13], u; € C([0,7T), H=*(£2)) and consequently, u (-, 0) has a mean-
ing and, in addition,
utl&('70)_>ut('a0)7 in Hil(Q)
Since, ul(-,0) = u} — wuy in L2(2), this implies that u:(-,0) = uy. Similarly, one
has v¢(+,0) = vy.
Therefore, (u,v) is the unique local solution of (3.1)). O

To state and prove the existence of a solution for problem (1.1)), we recall the
following elementary inequalities:

X[ = Y[ < CIX = Y](I X[+ V[P, (3.16)
for some constant C' > 0, all K > 1 and all X,Y € R. Also
XM X = Y MY| < CIX =YX F + YY), (3.17)

for some constant C' > 0, all ¥’ > 0 and all X,Y € R.

Theorem 3.3. Let (ug,u1), (vo,v1) € HE(Q) x L2(2) be given. Assume that the
conditions on p(-), r(-), m(-), A and B, given in Section 1, hold. Then, problem
(1.1) has a unique weak local solution (u,v) on [0,T), for some T > 0.

Proof. (Existence.) Recall that the source terms are defined for all z € Q and
(y,2) € R? by

0 0
fl(l',y,z) - @F(xvyaz)a f2($7y72) - aF(a:,y,z),

where
p(x)+1

F(z,y,2) = aly + 2P@* 4 2blyz| =2, a,b>0.

So,

p(z)=3 p(x)+1

flx,y,2) = (p(x) + Daly + 2Py +2) + bylyl 2 |2 2],
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p(x)—3 p(z)+1

fo(z,y,2) = (p(x) + Dlaly + 2Py +2) +bzlz] " 2 |yl 2 .

Let y,z € L>((0,T), H}(R2)). Using Young’s inequality (2.1) and the Sobolev
embedding (Lemma , fi(y, 2z) and fo(y, z) are in L?(Q x (0,7)). Indeed, we

have
/ iy, 2)|Pde
Q
<9

/Q(p(x) +12[a?ly + 2P 4 6Py P 2 PO da

< 2(p+—|—1)2 {QQ/ |y+z|2p(m)dm+b2/ |y|p(I)71|Z|p(1)+1dx:| (3.18)
Q o
SCO{/ |y+z‘2p+dx+/ Iy+zl2p’dx+/ Yo" e
Q QO Q

+Co[/ |y|3(”_*1)dx+/ |Z|%(p+“)dx+/ |Z\%(”_+Ud4,
Q Q Q
where Cy = 2(pT + 1)? max{a?,3b*>} > 0. By the embeddings, one can obtain the
following results
e If n=1,2, then
3. - 3.+ + +
L<g™ +) <507 +1) <2p" <3(p" —1) <oo,
since 3 < p~ < p(z) < pt < co. Therefore, estimate (3.18)) leads to
/Q|f1($,y,2)|2d$
+ - 3(pt—1 3(p~ -1 3.19
<IN+ +IVG+ 2 +IVels® ™+ [vyis 0] 319
3t E
+ [V + 19237 Y] < 40, O = CoCe

e If n = 3, then the Sobolev embeddings used in (3.19)) are also satisfied, since
p=3on Q.
Consequently, under assumption (1.6)), for all ¢ € (0,7), we have

/ |f1(x,y,z)|2dx <00
Q

and similarly,

/ ‘.f.2(37?11/72:)|2d:1j < oo.
Q

Therefore,
fl(y,z)a fZ(yaz) € LQ(Q X (OvT))

By Theorem there exists a unique weak solution (u,v) for the problem
ug — div(AVY) + ug|"® 20, = fi(y,2z) in Qx (0,7T),
v — div(BV) + |7 20, = fo(y, z) in Qx (0,7),
u=v=0 ondQx(0,T), (3.20)
u(0) =up, u(0)=wuy inQ,
v(0) =v9, v (0)=v; in Q.
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Now, let G : Wr X Wy :— Wr x Wr be a map defined by G(y, z) = (u,v), where
Wr = {w € L>((0,T), Hy (Q))/w; € L>=((0,T), L*(Q))}.

Note that Wr is a Banach space with respect to the norm

w3y, = sup |Vw| dx + sup / lwy|*de.
(0,7 (0,7)

s

Our task is to prove that G is a contraction mapping from a bounded ball B(0, d)
into itself, where

B(0,d) = {(y,2) € Wr x Wr/||(y, 2)llwx, xws, < d},

for d > 0 sufficiently large and Ty > T to be fixed later. To do so, let (y,z2)
be in B(0,d) and (u,v) be the corresponding solution of system (3.20). Taking
(®, V) = (uy, v;) in Definition [3.1) and by and (L.8), and then integrating each
identity over (0, t), for all ¢t <T', we obtain

1 1 1
§||ut||§ ||u1||2 / AVu - Vudz — 5/ A(z,0)Vug - Vugdz
Q

+/Ot/ﬂ|ut(x,t)m<z> (3.21)
§/Ot/ﬂutf1(y,z)d:nds

1 1 1 1
5”%”% - §||vl||§ + §/QBV1) -Vodr — 5/ B(x,0)Vof - Vg dx

and

Q

+/0t/9vt(x,t)|’“<m> (3:22)
g/ot/gvtfg(y,z)dxds.

Recalling the assumptions on A and B, inequalities (3.21]), (3.22]) lead to

1 t
3l + ol Val) < 5 (hual + ol Vuol) + [ [ wifion o,

N~ N =

t
(luell2 + ol Vol2) < 2 (a2 + BIF0]2) + / /Q vifaly, 2) da ds.
0

N =

Consequently, we arrive at

1 2
— <X N+ —F—— up f d d
2||uHWT 0 mm{l ao} S / /ut 1(y, z) dz ds,

Lo w2
— < + — d d
2||UH T & min {1 bO} b()uTI’))/ /Utf2 Yoz aras,

where,

w2 + a||Vugl|?
)\O:H 1||2. | 0||27 By =

lvall3 + Bl Vvoll3
2min {1, a0} ’

2min{1,bo}
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The addition the last two inequalities yield

1
§H(u7v)||%[/TXWT

< + C2 sup /t (|/Qutf1(y,z)d:v|—i—\/ﬂvtfg(y,z)dx\)ds

0,7)J0

(3.23)

where
1 1
- + — .
min{l,ap} min{l, by}

Y = Ao+ Bo, Co=

Under assumption (1.6]), we apply Young’s inequality (2.1]) and the Sobolev embed-
dings (Lemma [2.5) to obtain, for a.e. t € (0,T),

[ sty
Q
p(z)— (=)
<@t +0)fa [ funlly+ 2P b [ a5 2
Q Q

ela+b 2a o) 2b 2)— ©
<@+ )[EED [+ 2 [y + 2 [ pyperippen]
2 Q € Ja € Ja
<a[ghul+C( [ ool de s [y ar)]
Q Q

+ch5(/ |y|3<p<x)—1>dx+/ |Z|%(p(x>+1>dx)
Q Q

2p~ 2p~ 2pT 2pT
< oo elludl3+ IVylF + IV +IVylE + V203" |

3(p~ -1 3(pT—1 +1 +1)
e [IVyI® Y VIRV V3T v,

(3.24)
where €, ¢1, co are positive constants. Likewise, we obtain
| [ oefalu o
Q
p(z)—1 (=)
<t + Do [ Jodly+ o746 [ el
Q Q (3.25)
- - + +
< co[ellunllf + IVHIZ + 19213 + I9yl3" + V213" ]
—1 71 +1 +1
+c2[||w||2<p D+ IV gl oY
Combining (3.24) and - we find
t
Sup/ (I/Utfl(y,Z)dle/vtfz(y,Z)dl“!)dS
(0,1)J0 Q
< ecoT || (u, )3y oy . (3.26)
3(p~—1
2T (10 2w + 102w + 10 2) 100

(p™+1 +1)
+ T (11 DL s + 10 2y + 1 DR )
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By substituting (3.26)) into (3.23]), we obtain, for some ¢z > 0,

1
§||(u7v)||%/vTXWT
< Yo + €C3TH(U’IU)||%/VT><WT (3 27)

2p~ 2pT 3(p~—1
o (I 2) ey + 10 2) 3 ey + 1 2) 9800 )

3(pT—1 (™ +1) Spt+1)
5T (1w DIt + 1w 2) iy + 10 2 leins )-

Choosing ¢ such that ec3T = 1/4 and recalling that ||(y, 2)||lw,xw, < d, for some
d > 1, inequality (3.27) implies, for some ¢4 > 0,

1€t ) v

2p~ 2pt 3(p~ -1
< 0 + 4eaT (|0, Iy vy + 10 2) e + 10 I i)

3(pt—1 2(p+1 2(pt+1
+4eaT (1 It + 1w 2) iy + 10 e )

<4+ C4d3(p+_1)T
< Ay + ead®® 0T

Hence, if we take (d, Tp) such that d? >> 4y and Ty < L4 we obtain

cad3pT—1)7
H(ua U)H%/VTXWT S ”(U’U)HY%VTOXWTO S dz»
which implies (u,v) € B(0,d). Thus, G : B(0,d) — B(0,d).

Next, we show that G : B(0,d) — B(0,d) is a contraction. For this, let (y1,21)
and (y2,22) be in B(0,d) and set (u1,v1) = G(y1,21) and (ug,v2) = G(y2,22).
Then (u,v) = (u1 — ug,v1 — va) is a weak solution of the problem

gy — div(AVL) + (Juge] ™ 2uge — Jug ™) " 2ug,)
= filyr,21) — fi(y2,22) in Qx (0,7),
Vit — le(BVU) + (|’Ult|r(m)72’t}1t - |,02t|7‘(93)72,u2t)
= fa(y1,21) — fa(y2,22) in Qx (0,7),
u=v=0 ond2x(0,T),
(u(0),v(0)) = (u(0),v¢(0)) = (0,0) in €,

in the sense of Definition Therefore, by taking ® = u; (in Definition and
integrating the result over (0,¢), we obtain, for a.e. t < T,

d ) /
— |lwl|5 + [ AVu-Vu
gillls+ | ]

— / A/VU -Vu + 2/ ut(|u1t|m(z)72u1t — |u2t|m(x)72u2t) (329)
Q Q

(3.28)

= Q/QUt(fl(thl) — f1(y2, z2))dx.

Integrating over (0,t) and using the initial conditions, the assumptions (|1.7)), (1.8
and inequality (3.3]), we arrive at

t
e 3 + a0l Vul}2 < 2 / / we(fr s 21) — fulya, z2)) der ds,
0 Q
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for all t € (0,T). Consequently,

t
ol < sup / /Q el | fo(y1, 21) — Fa (92, 22)| dec ds, (3.30)

where C' = 2/ min{1, ap}. By repeating the same computations with ¥ = vy, in the
second equation in Definition we obtain

t
ol < C sup [ [ tollsatvnzn) = s o)l deds,

where C' = 2/ min{1, by}. Exploiting Young’s inequality (2.1)), estimates (3.30)) and
(3.31)), we arrive at

t
e < <CT ol +Ce sup / /Q Fryas21) — Fa(g2, 22)? duds,

t
oI, < eCTjo|, + C- sup / / a1, 1) — Falya, 2)|? der ds.
o1 Jo Jo

By addition and choosing & small enough, we obtain

t
s 0) s o < Ce sUp / /Q 12 (s 22) — fr(s 22)

(0,T7)
+ | foly1, 21) — fo(y2, 22)*] dz ds.
Now, we set Y = y1 — 92, Z = 21 — 22 and estimate

/|f1(y1,21)—f1(y2,zz)|2dw and /|f2(y1,21)—f2(3127z2)|2d$-
Q Q

For this purpose, we recall inequalities (3.16) and (3.17) to obtain the following
estimates satisfied by fi and fs, respectively (as in [2]).

|fi(y1, z1) — fi(y2, 22)| < Callyr — yo| + 121 — 22\)(|Z/1|p(00)71 + |z |P@1

+ |y P~ + ‘Z2|p(1)—1)

(3.32)

(3.33)
p(z)—1 p(z)—1 p(z)—1
+ Csln = 2l 5 (Ja) "5 209
p(z)+1 p(x)—3 p(x)—3
+ Cslys = gal 22 5 (Jon] 57 + el 7).
and
|f2(y1, 21) — fa(ya, 22)| < Callyr — ya| + |21 — Z2|)(\?/1|p(m)71 + |z [P
O 4 [0
(3.34)

p(z)—1 p(z)—1 p(z)—1
+ Cslys = gl lar) “F (Il ™5 + [y )

(@)+1 (2)-3 (2)-3
+05IZ1722|.|y2|M2 (|21|pw2 +\Zz|pT2 )7

for some constants Cy, C5 > 0 and for almost all z € Q and ¢ € (0,T). So,

/ |f1(y1,21) — fi(y2, 22)Pde < I + I + I3 + 14, (3.35)
Q
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where

I = 04/Q I Y e Y e T
o /Q T (7 e S R
I = C, /Q 121 — 202 (g1 PP@ D [z 220D g
+O4/Q|Z1 = P (ya2P® D) L |5 20E -1 gy
B = Cs [ 11 = 2P (a1 + 2o i,

Iy = 05/ 1 — ya|?|zoP@H! (|y1|p(x)73 + |92|p(z)73)dx'
Q

By using Hoélder’s and Young’s inequalities (Lemmas and and the Sobolev
embeddings (Lemma , we obtain the following estimate for a typical term in Iy
and I,

/ ly1 — ya 2 yn PPV dz
Q

<o [ - lar) ([ o)™

<l = sl [( [ b0 Dae) 4 ([ 1P an)] a0

2(pt -1 2(p~—1
<OV — ) 3l 30523 + w53 23)

+_ - _
< CIVY 3(IVil2® 0 + vy 20 7)

2(pt—1 2(p~ —1
< CIIVY (v, 2) 158 e + 1w 20 58 )

since 1 < 3(p~ —1) < 3(pT —1) < oo, when n = 1,2; and 1 < 3(p~ — 1) =

3(pt —1) =6 =22, whenn = 3.

Similarly, we obtain

/ 121 — 2Pl PP D dg
Q

2(pt—1 2(p~ —1
< CIVZI3(I w2 22) 08 + w2, 22) 58 ) -
Since (y1, 21), (y2, 22) € B(0,d) and d > 1, estimates (3.36)) and (3.37) lead to
L <ClP - V|VY|2 and I, < Cd*® ~D|vZ|2.

(3.37)

Hence,
L+ I < CPP V(WY |2+ [V Z])2). (3.38)

Similarly, a typical term in I3 can be handled as follows:

[ = PP
Q

1/3 2/3
= 2(/ 21 - 22‘60195) (/ |3/1|%(p($)_1)|z1|%(P($)—1))
@ Q
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< Clla =R [( [ P Do) o ([ oo vag)”]

< CIV G = 2) B (lml5E +Hy1||§§§ R P Eo e I Y )
< OV = 2) B(I9nl3” 7 + 93 )

+ OV = )3Vl + Va3 )

< 2019215 (s, 20l o + I, 20138 )

since 1 < 3(p~ —1)<3( —1) < oo, whenn =1,2; and 1 < 3(p~ — 1) =
3(pT —1) = 6 = 2%, when n = 3. Therefore,

I; < Cd?P =D v z|32. 3.39
2

Using the same arguments, we estimate a typical term in Iy, as follows:

Case 1. If n = 1,2, we have 3 < p~ < pt < 0. So

[ 1= 0Pl S
Q

2/3 1/3
< 2(/ ly1 fy2|3dx) (/ |ZQ|3<p<z>+1>|yl‘s<p<m>—3>>
Q
1/3
< Clln _y2||§[(/ |2 |6(p(”“)+1)d$c / vt |6(P(1) 3)d$) }
2 1 +_3 2 —
< VY B(IV2® D + 1920570 + 93 ll57 7 + I Vp 5 )
<40P@ V|V,

since (1, 21), (y2,22) € B(0,d) and d > 1.
Case 2. If n = 3, then p = 3 on Q and, hence,

/ ly1 — 2l 2P |y [P 3 = / 1 — y2|?|22| da
Q

<C /|y1—y2|6dx /| |6dac
< Cllyr — allg-l|z2 5

< CIVY3.1(y2, 22) [y s -
‘We deduce that

Iy < Ca2P )| vy |2. (3.40)
Finally, by substituting (3.40]), (3.39) and ((3.38) in (3.35)), we arrive at
/ fi(y1,21) = Fale, ) Pz < CEP D (VY3 + [V Z]3), (3.41)
Q

for all t € (0,T). Similarly, we obtain

/Q |f2(y1721) - fz(@/2,22)|2d$ < Cd2(p++1)(||vy||§ + ||VZ||§)- (3'42)
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Now, we replace (3.41]) and (3.42) in (3.32) to obtain

t
)
100 oo < Cod® ™) sp / (VY ()| + [V Z(s)|12) ds

< C.d®P ITN(Y, 2) 3w
< fYTOH(Yv Z)H%VTXWTv

where v = ngz(p++1). So, if we take Tj small enough, we obtain, for 0 < k < 1,

1, ) g < RIS 2w

Thus,

1G(y1,21) — G2, 22) g e < Kl (W1, 21) — (25 22) [y sy

This proves that G : B(0,d) — B(0,d) is a contraction. The Banach-fixed-point
theorem guarantees the existence of a unique (u,v) € B(0,d), such that G(u,v) =
(u,v), which is obviously a local weak solution of (|1.1)).

Uniqueness. Suppose that (1.1)) has two solutions (u1,v1) and (ug,vs), in the
sense of Definition Therefore, (u,v) = (u; — ug,v; — v2) satisfies the problem

ugy — div(AVu) + (|u1t|m(’:)_2u1t — |uzt|m(’”)_2u2t)
= fi(ui,v1) = fi(ug,v2) in Qx (0,7),
vy — div(BVo) + (|v1t|r($)72v1t - |v2t|r(m)*2v2t)
= fo(ug,v1) — fa(ug,va) in Q x (0,7),
u=v=0 ondQx(0,T),
(u(0),v(0)) = (u(0),v¢(0)) = (0,0) in Q.

By taking (®,¥) = (uy, v;) in this definition, integrating each equation over (0, t)
(t <T) and adding the two results, we obtain (as in (3.30]) and (3.31))) the following

t
I el + 1V, T3 < € [ [ furll i 0) = foluz, o) do
0 JQ

t
+C’/O /Q|Ut||f2(u1,111)*fg(uz,w)‘dl,dt'

Under assumption (|1.6)) and applying similar arguments as in above, we arrive at

¢
[ (ut, ve) 13 + (Y, V)3 < Cs/o (I(ue(s), ve())3 + [1(Vuls), Vo (s))[3)ds,
for all t € (0,T"). Gronwall’s lemma leads to
[ (ue, ve)l13 + [[(Vu, Vo)[|53 =0, for all t € (0,T).

Thanks to the boundary conditions, we obtain u = v = 0 on Q x (0, 7). This proves
the uniqueness of the solution of (1.1)). O

Theorem is a generalization of the local existence of Agre and Rammaha [2],
which dealt with constant exponents, to the situation of variable exponents.
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4. BLOW UP RESULT

To prove our main blow-up result, we give some Lemmas. First we derive the
energy functional associated with the problem.

1 1
B(t) = 3 (el + el + i/Q(AVquJrBVv-Vv)dx

(4.1)
- / F(x,u,v)dz,
Q
for all t € [0,T), and
- e 1 1 2
a1 = (ko™ + D)7, B = (5 - —p)ad, (42)
where
B, p_+1
k= (a2p72+1 + Qb) <B—2) T, ¢o = min{ag,bp} > 0
co

and B is the best constant of the Sobolev embedding Hg (Q) «— LPO+1(Q).
4.1. Lemmas.

Lemma 4.1 ([6]). The energy functional E is decreasing function and, for a.e.
t€(0,T), we have

E'(t)
4.3
= —/ |1 | ™) da — / v |" @ da: + %/(A/Vu -Vu+ B'Vv - Vv)dz. (4.3)
Q Q Q

Lemma 4.2. [16] (1) There exist C1,Co > 0 such that, for all = € Q and (u,v) €
R?, we have

Cy (JulP @+ 4 [P+ < Fa,u,v) < ColufPE+ 4 [of@H), (4.4)
(2) For all z € Q and (u,v) € R?, we have
u f1(z,u,v) + vfa(z,u,v) = (p(x) + 1) F(x, u,v). (4.5)
Lemma 4.3. For any solution (u,v) of the system , with initial energy
E(0) < Ey (4.6)

and

1/2 c
ay < (/Q(AVUO -Vug + BV - Vvo)dx) < (%)1/2,

there exists ag > ap such that
1/2
s < (/(AVu~Vu+BVv~VU)dx) ., Vtel0,T). (4.7)
Q
Proof. From the definition of the energy, it results that
1
E(t) > 3 / (AVu - Vu+ BVv - Vv)dz — / F(z,u,v)dx.
Q Q

If we set

o= (/Q(AVu -Vu+ BVuv - Vv)dx) i (4.8)
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then
Za? — z,u,v)dr. .
E(t) > / F(z,u,v)d (4.9)

From (1.7)), we have
1
Va3 + || Vo3 < c—/(Avu~Vu+Bvu-vu)dx.
0 JQ

So
2 o
IVullz + 1Volle < = (4.10)
On the other hand, by the definition of F, we have

/ F(z,u,v) = a/ |u+v|p(x)+1dx+2b/ |uv|p( 2
Invoking Lemma [2.3] this leads to

/ F(z,u,v) < amax {|lu+ v||p )+1’ llu+ v||p )+1
@ (4.11)
p~+1 pt+1 '
+ 2masc{uvl], 5o Juvl 3 )
First, by the embedding (Lemma, we have
lu+vllpeyr < BIV(u+0)l, < Bl([Vull2 + [ Voll2)*]2.
Since
(X +Y)° <2074(X%+V?), forall X,Y >0andd>1, (4.12)
it follows that B )
lu+ ollpey1 < BI2(|Vall, + [ Vol5)]"2.
y (4.10),
2B2q2\1/2
||u+v||p(.)+1< ) .
Hence,
- 2B%a?\ 55 + 2B%a2% ptia
P+l ( ) pt+1 P
Hu + UH;,,(.)_H S o y lu+ U”p( DU < o )
Therefore,
n
mane {0l L vl
(4.13)

23202 £ 0B2a2 Bht
<mas {(5) (05 T )
€o €o
Likewise, Holder’s and Young’s inequalities (Lemmas[2.]] u and give

luvll ey < 2llellpeyallollpeyn < Nl + 1olpo 0 < BXUVul3 + [190]3).
Again, by -, we find that

B202
vl sy < =
So, we have
p72+1 B2a2 p_2+1 p+2+1 B2OZ2
]| 3 < ( vl B < (
2 2 Co
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Therefore,
- - - +.1
P41 pti1 B2a2 P41 B2a2\ & +
ma { uv) 3o ol 3 } < max{(Z2) 7 (25) T L @
- - Co Co
Substituting (4.13) and (4.14]) in (4.11)), we infer that
2B\ 2f%a? Pt
/F(aau,v)gamax{( ) ,( ) }
Q Co Co (4.15)
B2a?\ 5 B2a?y P -
e {(=5) T () T )
+ 2b max o o
By inserting (4.15)) into (4.9)), we obtain
E(t) > h(a), for all a >0, (4.16)
where
1 28202\ 552 (2B%0%\ L5
h(a)::fcﬁ—amax{( a) ’ ,( a) ’ }
2 Co Co
B202\ B B2a2 Bt
—omax {(Z) T (S25) T}
Co Co
For a in [0, (%)1/2}, one can easily check that
B2a?  2B2a?
< <
Co Co
Consequently,
Y NS NSy
>
( Co ) _( Co ) ’ Co ) _( Co )
Thus, (4.16) leads to
1 » B2\ =5
B(t) > 50? = (a2"7" +20)(=-) 7 o ¥
2 Co
That is,
E(t) > g(a), forallae [0, (222)1/2], (4.17)
where

1 _
g(a) = 5042 — ka? T

It is easy to verify that g is strictly increasing on [0, 1) and strictly decreasing on
[, 4+00). Since

E(O) < Fy and FE;= g(al),
then, we can find oz > a3 such that g(az) = E(0). But

1/2
g = (/Q(AVUQ - Vug + BV - Vvo)dx) € [oq, (%

therefore, by (4.17), we obtain g(az) = E(0) > g(ag).

This implies g > . Consequently as € (g, (2%302 )12

To establish ([4.7]), we suppose on the contrary that

)],

(/Q(AVu(.,t*).Vu(.,t*) + BVU(.,t*).Vv(.,t*))dx) i < g,
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for some ¢* € [0,T). By the continuity of ( [, AVu - Vu + BVuv - Vvdm)1/2 and
since as > ay, we can choose t* such that

1/2
:| > oq.

[/ (AVu(., t*).Vu(., t*) + BVo(., t*).Vu(., t*))dz
Q

The g being decreasing of on [, (:%)/?] and (#.17) imply that

2B2
1/2
BE(t*) zg([/(Avu(.,t*).vu(.,t*)+Bv@(.,t*).vu(.,t*))dx] )
Q
> g(az) = E(0).
This is impossible since E(t) < E(0), for all ¢ € [0.T). Thus, (4.17) is established.

U
Now, we set
H(t)=FEy — E(t), forallte[0,T). (4.18)
Lemma 4.4. We have
0< H)<H() < / F(z,u,v)dx, forallte[0,T), (4.19)
Q
/ F(z,u,v)dx > ko . (4.20)
Q

Proof. From Lemma and assumption (4.6)), we have

0< E,—FE0) =H(0) < H(t) (4.21)

and by (4.9), we obtain
1
H(t) < Ey — 50[2 +/ F(x,u,v)dz.
Q

Since F1 = g(a1) and a > ag > a1, we obtain

H{(t)

IN
—~
=8
Q
-
2

i
~—
+
5
=
8
RS
<
U
53

Thus, (4.19) is established. To prove (4.20]), we note that E is nonincreasing. Hence,

E0)> E(t)> %QQ —/QF(;U,u,U)dx.

Consequently,

o’ — E(0).

DN =

/ F(z,u,v)dx >
Q

But E(0) = g(az) and o > ag, so

1 _
/ F(z,u,v)dz > ia% —glag) = kab T
Q
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In what follows and for simplicity, we denote

) = [ Ju PO e plo) = [ o POt
Q Q
and we define
Qr ={zeQ:|ulz,t)| >1}, Q- ={xeQ:|u(x,t) <1}
Lemma 4.5. There exists C5 > 0 such that any solution of (1.1) satisfies

+ollP 17 < Calp(u) + p(v)). (4.22)

p+1

Jufp*t

Proof. Since p~ < p(-) < p™, one easily sees that

p) = [P de 4 [
Q4

Z/ ‘U|p_+1dl’ +/ |U|p++1dl’
Q4 Q

_ _ pr41
> [ e[ an
[ Q

for some ¢; > 0. Thus,

T+1 p(u) h “4+1
p(u) 2/ |ulP” Ttdx and (—)p 2/ lulP” Ttdx.
Q4 €1

By addition, for some ¢y > 0, we obtain

_ pT +1
lull- 51 < p(u) + ea(pl(u)) v

< p(u) + p(v) + c2(p(u) + p(v))%

= (p(w) + p())[1 + e2(plar) + p(0)) T ).
Recalling and , we infer that

0 < H(0) < H(t) < Ca(p(u) + p(v)), (4.23)
then p(u) + p(v) > H(0)/C5. Therefore,

[l 1 < (p(u) + p(v)[1 oo (H(0)/Co) 577,
Hence
P~ 1] < es(p(w) + p(v),

- ot
where cg = 1+ CQ(H(O)/CQ)pP++ﬁ > 0. Similarly, we arrive at
41
[ollP_ 17 < eslp(u) + p(v)).
Therefore, (4.22)) is satisfied with C3 = 2c3. O
Corollary 4.6. There exist constants Cy,Cs > 0 such that

mt m=—

/Q Ju| ™ de < Ca[(p(w) + p(v)) 7=+ + (p(u) + p(v))»=+1 ], (4.24)

rt r—

/Q 0" @ de < G5 [(p(w) + p(v) 7 + (plu) + p(v) 1], (4.25)
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Proof. Since p~ > max{m™,r T}, it follows that

/|u|m(”)dx§/ |u|m+dx +/ lu|™ dx
Q o Q

mt m

< Cl(/ ‘u|p7+1dx> PTHL 4 Cl(/ |u|p7+1dl‘) T+
Q Q_

+

. )
<er(llullp s+l sy)s e >o.

Recalling Lemma we obtain, for a constant C4 > 0,

mt m :|

/Q P < Cu[(pw) + plw)) 7 + (plar) + pla))7
Similarly, we obtain, for some C5 > 0,
/Q o < 5 [(p(u) + p(v)

Thus, (4.23) and (4.24) are proved. O

4.2. Main result. Now, we state and prove our main blow-up result.

rt r—

P+ (plu) + p(v) 7 .

Theorem 4.7. Let the assumptions given in Subsection 4.1 hold. Then any solution
of the system (L.1)) blows up in finite time.

Proof. We assume that the solution exists for any ¢ > 0 and reach to a contradiction.
This will be established in 4 steps.
Step 1. For small € > 0 to be fixed later, we define the auxiliary functional

G(t) = H'"7(t) + E/ (uuy + vog)dzx, t > 0,
Q

where

p~ —mT +1 p—rt+1 p—1 }
(p=+(mt =17 (p~+ )(rt = 1) 2(p~ + 1))

Our goal is to show that G satisfies a differential inequality which leads to a blow
up in finite time. Now, we have

G'(t) = (1= o)H=7 () H'(t) + (fJull3 + [vel3)

—|—€/(uf1(:1:,u7v)+vf2(x,u,v))dx
Q

0<o< min{ (4.26)

(4.27)
- 5/(AVu -Vu+ BVv - Vou)dz
Q

— 5/(|ut|m(”)_2utu + v ["®=2,0) .
Q
From Lemma [£.2] it follows that
[ @hie.u0) + ofaleu0))ds = [ (o6a) + DF(,0,0)ds
Q

@ (4.28)
> + 1)/9F(m,u,v)dx.



EJDE-2021/91 EXISTENCE AND BLOW UP FOR WAVE EQUATIONS 25

By the definition of H and E, we obtain

/ (AVu - Vu + BVu - Vv)dx
Q

(4.29)
—2 [ Fla.uo)do — [ul} - [} +2B: - 2H()
Q
If we insert (4.28) and (4.29) into (4.27)), we then obtain
G'(t) > (1= o) H™7 () H' () + 2e([Juell3 + [Jvel|3) + 2 H(2)
2B te(pm —1) | F(z,u,v)d
eE +e(p )/Q (z,u,v)dx (4.30)
- 6/(|U\|Ut|m(gﬂ)71 + [v] o] d.
Q
Using (4.20)), we have
E; < (kagiﬂ)_lEl/ F(x,u,v)dz.
Q
Hence, (4.30]) becomes
G'(t)
> (1= OH' O+ 22(ulB+ [ul) +eer [ Flowods o
o :

+ 2¢H(t) —g/(|u|\ut|m<w>—1+|v\ |~ d,
Q

where c; = p~ — 1 — 2(ka’2’7+1)’1E1 > 0, since as > aj.
Step 2. In this step, we estimate the last two terms in the right-hand side of (4.31)).
We set

L ::/ |ul|ue @ de, I ::/ 0] o) dae
Q Q

and apply the Young inequality

A —B 1 1
XYg%XA—F?YB, forallX,Y20,5>Oamdx—|—3:17
with
X = Y =l m@-1 = __ml@) s
|’U/‘7 |Ut‘ ’ A m(x), ﬁ m(:z:) — 1) >0,
to obtain
m(z) _
I < / O @ +/ @) =L sm(@)/m(@) =)y, @Dy, (432)
o m(z) o m(z)
By taking

1—m(x)
5= [KH ()] 7
where K is a large constant to be chosen later, we obtain

Klfm’
I < - /[H(t)]a(m(z)fl)wm(r)dz
" 19 (4.33)
+ X — KH_“(t)/ e | ™) .
m Q
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From Lemma [£.I] we have
1
H'(t) = / g | @) e +/ v " daz — 3 / (A'Vu - Vu+ B'Vv - Vo)dx
Q Q Q

and by (1.8)), we obtain

i | @ dz < H'(t). (4.34)

On the other hand, since m(z) < m™ and H(¢t) > H(0) > 0, one has

o(m(z)— m(x H(t) o(m(z)-1 o(m(z)— m(x
e e = [ )t s

< aalHE™ D [ [HO) OO
Q

where ¢; = 1/[H(0)]°™ =1 But [H(0)]°™®) =1 < ¢5 for all z € ©, where ¢3 > 0.

So, for a constant ¢4 > 0, we obtain

/ [H (£)]7 @) =Dy ) g < ey [H (£))7™ D / u|™®) de., (4.35)
Q Q

Replacing (4.35) and (4.34)) in , we infer that
Kl—’n’f

H(t a(m+—l)/ m(a:)d
() @

mt —1

I, <
(4.36)

+ KH™?(t)H'(t).

Likewise, we obtain, for some c5 > 0,

Kl—r7

rt—1

I, < KH™(t)H'(t). (4.37)

es[H (#7071 / W @de +
r Q

Also, from (4.19)), we have, for some cg > 0,
o(mt— o(mtT —
[H ()70 D < cg(p(u) + p(v))7™ Y.
This inequality and estimate (4.24) imply that for some ¢; > 0,

H(t o(m* 1) u|™@) gy
Q

r

(4.38)

m
P41,

+71)+

< erlplu) + p(0))" " TV e er(pfu) + plo))7 " O

Now, if we use (4.26)) and the algebraic inequality
1
27 <z4+1<(1+-)(z+a), forallz>0, 0<7<1anda>0, (4.39)
a

with
m+

p~+1

z=pu)+p), a=H0), T=0cmt—1)+

and then with 7 = o(m™ — 1) + respectively, we obtain

_m__
pT+1
+

ot 1
o < L+ @](p(w +p(v) + H(0)) (4.40)

<y(p(u) + p(v) + H(t))

(p(u) + p(v))” ™ 0
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and
o(mT 1)+

(p(w) + p(v)) 5 < y(p(u) + plv) + H(1)) (4.41)
where v =1+ ﬁo)' Combining (4.41)) and (4.40) with (4.38]), we obtain that for

some cg > 0,

O [ e < (o) + plo) + H (D) (4.42)
Similarly, we have for some cg > 0,
(HE D [ o @de < eolpl) + pl0) + HD). (4.43)
Substituting into , we find that
e o) 4 ol) + HO) + k@m0, (44
and substituting ([£.43) into (£.37), we obtain
< o)+ o) + HE) + K E ), (44

where c1g and c1; are two positive constants.

Step 3. Now, we estimate G'. By inserting (4.44]) and (4.45) into (4.31]), we arrive
at

G'(t) > (1~ o —eM)H () H'(t) + 2(|[ue]3 + [lve]|3) + 2 H (1)

1-m~—

+ c1a(p(w) + pl(v)) — e c10(p(w) + p(v) + H(1))

— EK;:F c11(p(v) + p(u) + H(t)),

where ¢19 > 0 and M = K(% + T:r_:l). Therefore,

G'(t) = (1= o —eM)H™7(O)H'(t) + 2e([[ue]l3 + [[ve]13)

Klfm_ Klfr_
+€(2— — C10 — — 011>H(t)
m r

K1-m~ K1-r"
21 = ——c10 = ———cu1) (plu) + p(v)).

For a large value of K, we can find c¢13 > 0 such that
Gt)>(1—c—eM)H " (t)H'(t)
+ecra(llugll3 + [[vell3 + H(E) + p(u) + p(v).

Once K is fixed, we select € small enough so that

1—0—eM>0and G(0) = H~7(0) +€/(u0u1 + vovy)dx > 0.
Q
From Lemma [4.1] we have H'(t) > 0. Therefore, there exists h > 0 satisfying
G'(t) = eh(H (t) + [luell3 + l[vell3 + p(u) + p(v)). (4.46)
Consequently,

G(t) > G(0) >0, fort>0.
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Step 4. Finally, we complete the proof of the blow up result. By the definition of
G and using (4.12), it follows that

1/(1—0)
Gl/(-o) (t) < (Hlfa(t) + 5/ |UUt + vvt|d$)
Q

< 20/(1-0) (H(t) + (s/ﬂ(|uut| + |vvt|)dx)1/(1*“))
< ena () + (| (ullu] + olfo i) /=),
where c14 = 2°/079) max{1,/(1=)}. Also, we have
([ (bl + el

1/(1-0) 1/(1-0)
< 2”/(1_")</ |uHut|daz> +20/(1_a)(/ |U||Ut|d$) :
o Q

Since p~ > 2, Holder’s and Young’s inequalities yield, for ¢y5,c16 > 0,

1/(1=0) 1/(1-o 1/(1—o
([ rulnlaz) ™ < =

1/(1— 1/(1—
< easully 7 el

1—0o 1—0o
< ero(full 22577 + uelly’ 07,

) 1/(1—0)
(4.47)

where i—i—% = 1. If we set 8 =2(1—0), we obtain /(1 —0) =2/(1 —20). Hence,

1/(1=0) 2/(1—20 2
( /Q fulfuldz) " < el + ul3): (4.48)
By Lemma estimate (4.48) becomes
1/(1-0) . )
( / fullucldz) " < ern((p(u) + p(0)7 + lluel3),

where ¢17 > 0 and 7 = 2/(p” +1)(1—20). Again, by (4.26)), (4.39) and since 7 < 1,
we obtain, for some cig > 0,

1/(1—0) 2
([ lurldz) ™7 < caslotu) + pto) + HO + ). (149)
Q
Similar computations lead to
1/(1—0) 2
([ ellolaz) ™7 < exslotu) + o) + HO + [l (450)
By adding (4.49) and (4.50)), estimate (4.47)) yields, for some c19 > 0,
1/(1—0) 2 2
( / (lullue] + ollo)dz) " < ero(p(u) + p(o) + llwally + lella + H(D))-
Therefore, for some cog > 0, we arrive at
2 2
GO (t) < eaolp(u) + p(v) + H(t) + lulls + [[ve]2)- (4.51)

Combining (4.51)) and (4.46), we deduce that
G'(t) > TGY =) (1), for all t > 0,
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where I' = % A simple integration over (0,t) yields
Ga/(l o)( ) 1 ,
G0
which implies that G(t) — +oo, as t — T*, where T* < ﬁ Conse-
oT[G =) (0
quently, the solution of problem (|1.1)) blows up in finite time. |

5. NUMERICAL TESTS

In this section, we show some numerical experiments to illustrate the theoretical
results in Theorem [£.7 We solve the system under specific initial data and
Dirichlet boundary condltlons. We use a numerlcal scheme based on the finite
element method in space and the Newmark method in time [24] 23].

We consider problem in two space-dimensions and take the functions m, r
and p fulfilling the assumptions , and . Precisely, we have

1 2
1+x 1L 27 1+ 1.2 1+x2+y2’
and the source terms are given by and ( with @ = b = 1. Whereas, the
matrices A and B are given as follows

B (201 B 1 (30
A=(1+e )(0 1) B_(1+—1+t) 1 9
Test 1. We consider the circular domain Q; = {(z,y) : 22 + y?> < 1} with a

triangulation discretization (see the mesh-grid in Figure (1)) which consists of 281
triangles and 162 degrees of freedoms [20] and use the initial conditions

m(z,y) =2+ r(z,y) =2+ p(z,y) =3+

’U,()(x,y) :2(1—$2—y2), UO(xvy) :3(1—$2—y2), uy = v = 0.

We run our code with a time step At = 1072, which is small enough to catch the
below-up behavior.

AVAVAY;
ALK Vﬂh
NV VAVA
05 Af"“'%““)v
> 0
-0.5

FIGURE 1. Uniform mesh grid of €.

Figure [2| shows the approximate numerical results of the solution (u,v) at differ-
ent time iterations t = 0, t = 0.02, ¢t = 0.023, and t = 0.024, where the left column
shows the approximate values of u and the right column shows the approximate
values of v. Note that the blow-up is occurring at instant ¢ = 0.024.
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U(0.02,2,y)

(D) t = 0.024

FIGURE 2. Numerical results of Test 1 at different times.

250
5 x10

0 0.005 0.01 0.015 0.02 0.025
Time

FI1GURE 3. Test 1: Blow-up of H in finite time.

Figure [3| presents the numerical values of the functional H(t) defined by
during the time iterations. It shows the blow-up of the energy of system .
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XOOK)
AVATAVAVAVAYAYAYaYs
IVAVAVAVAVAVAVAVAVAY

A VAV

T(0.0205, . )
S - oo
V(0.0205, 2, )

° =
o & = N 2
S (S

x

Kobto %
¢ B

¢(0.02L,2,y)

(D) ¢t =0.021

FIGURE 5. Numerical results of Test 2 at different times.

Test 2. We consider the elliptical domain Qs = {(z,y) : % +y? < 1} with a
triangulation discretization (see the mesh-grid in Figure E[) which consists of 311
triangles and 180 degrees of freedom [20] and take the initial conditions

2 2

X X
ug(w,y) =2(1 — Ve y2)a vo(w,y) = 3(1 — Ve Z/Q), u; = v = 0.
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%1025

0 0.005 0.01 0.015 0.02 0.025
Time

FIGURE 6. Test 2: Blow-up of H in finite time.

We run our code with a time step At = 5- 107, which is small enough to catch
the below-up behavior.

In Figure [5, we show the approximate numerical results of the solution (u,v)
at different time iterations ¢ = 0, ¢t = 0.02, ¢ = 0.0205 and ¢t = 0.021, where the
left column shows the approximate values of w and the right column shows the
approximate values of v. Note that the blow-up takes place at instant ¢t = 0.021.

For Test 2, the numerical values of the functional H(t) are presented in Figure
[(l Observe the blow-up of the energy from ¢ = 0.02.
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