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EXISTENCE AND BLOW UP IN A SYSTEM OF WAVE

EQUATIONS WITH NONSTANDARD NONLINEARITIES

SALIM A. MESSAOUDI, OULIA BOUHOUFANI,

ILHEM HAMCHI, MOHAMED ALAHYANE

Abstract. In this article, we consider a coupled system of two nonlinear

hyperbolic equations, where the exponents in the damping and source terms
are variables. First, we prove a theorem of existence and uniqueness of weak

solution, by using the Faedo Galerkin approximations and the Banach fixed

point theorem. Then, using the energy method, we show that certain solutions
with positive initial energy blow up in finite time. We also give some numerical

applications to illustrate our theoretical results.

1. Introduction

In this work, we study the following initial-boundary-value problem for the un-
knowns u and v:

utt − div(A∇u) + |ut|m(x)−2ut = f1(x, u, v) in Ω× (0, T ),

vtt − div(B∇v) + |vt|r(x)−2vt = f2(x, u, v) in Ω× (0, T ),

u = v = 0 on ∂Ω× (0, T ),

u(0) = u0, ut(0) = u1 in Ω,

v(0) = v0 and vt(0) = v1 in Ω,

(1.1)

where T > 0 and Ω is a bounded domain of Rn (n = 1, 2, 3) with a smooth boundary
∂Ω, m and r are continuous functions on Ω such that, for all x ∈ Ω,

2 ≤ m(x), if n = 1, 2,

2 ≤ m− ≤ m(x) ≤ m+ ≤ 6, if n = 3
(1.2)

and
2 ≤ r(x), if n = 1, 2,

2 ≤ r− ≤ r(x) ≤ r+ ≤ 6, if n = 3,
(1.3)

where

m− = inf
x∈Ω

m(x), m+ = sup
x∈Ω

m(x), r− = inf
x∈Ω

r(x), r+ = sup
x∈Ω

r(x).
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The coupling terms f1 and f2 are as follows: for all x ∈ Ω and (u, v) ∈ R2,

f1(x, u, v) =
∂

∂u
F (x, u, v), f2(x, u, v) =

∂

∂v
F (x, u, v), (1.4)

with

F (x, u, v) = a|u+ v|p(x)+1 + 2b|uv|
p(x)+1

2 , (1.5)

where a, b > 0 two positive constants, p is a given continuous function on Ω such
that, for all x ∈ Ω,

3 ≤ p− ≤ p(x) ≤ p+, if n = 1, 2,

p(x) = 3, if n = 3,
(1.6)

with

max{m+, r+} ≤ p− = inf
x∈Ω

p(x).

A and B are symmetric matrices of class C1(Ω× [0,∞)) such that for constants a0,
b0 > 0 and all ξ ∈ Rn,

Aξ · ξ ≥ a0|ξ|2, Bξ · ξ ≥ b0|ξ|2, (1.7)

A′ξ · ξ ≤ 0, B′ξ.ξ ≤ 0, (1.8)

where A′ = ∂A
∂t (·, t) and B′ = ∂B

∂t (·, t).
The study of system (1.1) is motivated by the description of several models

in physical phenomena, such as viscoelastic fluids, filtration processes through a
porous media, fluids with temperature dependent viscosity, image processing, or
robotics, etc. See for example [7] for an application of such functional spaces in the
image recovery. Our system can be regarded as a model for interaction between two
fields describing the motion of two nonlinear “smart” materials. For more details,
see [1, 7].

A considerable effort has been devoted to the study of single wave equations in
the case of constant exponents. The equation

utt −∆u+ a|ut|m−2ut = b|u|p−2u in Ω× (0, T ),

with initial and Dirichlet boundary conditions, has been studied by many re-
searchers. For example, Ball in [5] showed that if a = 0, then the source term
b|u|p−2u, with b > 0, forces the negative-energy solutions to explode in finite time.
Haraux and Zuazua [10] proved that in the absence of the source term, the damping
term a|ut|m−2ut, with a > 0, assures the global existence for arbitrary initial data.
In the presence of both terms, the problem was first considered by Levine [12].
He established the blow up for solutions with negative initial energy, when m = 2.
Georgiev and Todorava [8] pushed Levine’s result to the case m > 2, by introducing
a different method. Messaoudi [14] proved that any solution with negative initial
energy only, blows up in finite time when m < p.

For a wave equation with variable-exponent nonlinearity, we mention some works.
In [3], Antontsev studied the equation

utt − div(a|∇u|p(x,t)−2∇u)− α∆ut − bu|u|σ(x,t)−2 = f in Ω× (0, T ),

where α > 0 is a constant and a, b, p, σ are given functions. Under specific condi-
tions, he proved the local and global existence of some weak solutions and a blow-up
result for certain solutions having arbitrary initial energy. Guo and Gao [9] took
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σ(x, t) = r > 2 and established a finite-time blow-up result. Sun et al. [22] studied
the equation

utt − div(a(x, t)∇u) + c(x, t)ut|ut|q(x,t)−1 = b(x, t)u|u|p(x,t)−2 in Ω× (0, T )

and established a blow-up result. Also, under some conditions on the initial data,
the lower and upper bounds for the blow-up time are obtained. In addition, they
provided numerical illustrations for their result. After that, Messaoudi and Talah-
meh [17] studied the equation

utt − div(|∇u|m(x)−2∇u) + µut = u|u|p(x)−2 in Ω× (0, T ),

for µ ≥ 0 supplemented with Dirichlet-boundary conditions. They proved a blow-
up result for certain solutions with arbitrary positive initial energy. In [18], the
same authors considered the equation

utt − div(|∇u|r(x)−2∇u) + aut|ut|m(x)−2 = bu|u|p(x)−2 in Ω× (0, T ),

where a, b > 0 are two constants and m, r, p are given functions. They established
a finite-time blow-up result for negative-initial-energy solutions and for certain so-
lutions with positive initial energy. Recently, Messaoudi et al. [19] considered the
equation

utt −∆u+ aut|ut|m(x)−2 = bu|u|p(x)−2 in Ω× (0, T ).

Using the Faedo-Galerkin method, they established the existence and uniqueness of
a weak local solution and proved the finite-time blow up for solutions with negative
initial-energy.

Concerning the coupled systems of two nonlinear wave equations with constant
exponents, Messaoudi and Said-Houari [16] proved a nonexistence theorem for
positive-initial-energy solutions of a system of viscoelastic wave equations. Un-
der some restrictions on the nonlinearity of the damping and source terms and the
initial data, Said-Houari et al. [21] proved that the rate of decay of the total energy
depends on those of the relaxation functions. Agre and Rammaha [2] obtained
several results on the local and global existence, uniqueness, and the finite-time
blow up of solutions, under appropriate conditions on the parameters in the sys-
tem. Very recently, Messaoudi and Hassan [15] established a general decay result
for a certain system of viscoelastic wave equations.

In the case of coupled systems of two nonlinear hyperbolic equations with vari-
able exponents, there is only the work of Bouhoufani and Hamchi [6], where they
proved the global existence of a weak solution and established decay estimates of
the solution energy. However, the existence of a local solution was not discussed. In
this work, we push the local existence result of Agre and Rammaha [2], which was
established for the case of constant-exponent nonlinearities, to our system which
deals with variable-exponent nonlinearities. To the best of our knowledge, this is
the first result of this kind and the generalization was not trivial at all. In addition
to the local existence, we establish the blow up in finite time for certain solutions
with positive initial energy and give some numerical illustrations.

This paper consists of four Sections, in addition to the introduction. In Section
2, we give some preliminary results. The existence and uniqueness of weak solution
is discussed in Section 3. Section 4 is devoted to the statement and the proof of
the finite-time blow up result. In section 5, we present two numerical examples to
illustrate our theoretical findings.
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2. Preliminaries

In this section, we define the Lebesgue and Sobolev spaces with variable expo-
nents and present some facts and results related to this important class of spaces.
See [4, 11] for more details.

Let q : Ω→ [1,∞) be a measurable function. We define the Lebesgue space with
a variable exponent by

Lq(·)(Ω) =
{
f : Ω→ R measurable in Ω : %q(·)(λf) < +∞ for some λ > 0

}
,

where

%q(·)(f) =

∫
Ω

|f(x)|q(x)dx.

Lq(·)(Ω) is a Banach space with respect to the following Luxembourg-type norm

‖f‖q(·) := inf
{
λ > 0 :

∫
Ω

|f(x)

λ
|q(x)dx ≤ 1

}
.

We also define the variable exponent Sobolev space

W 1,q(·)(Ω) = {f ∈ Lq(·)(Ω) : ∇f exists and |∇f | ∈ Lq(·)(Ω)}.
Equipped with the norm

‖f‖W 1,q(·)(Ω) = ‖f‖q(·) + ‖∇f‖q(·),

W 1,q(·)(Ω) is a Banach space. Furthermore, we denote by H
1,q(·)
0 (Ω) the closure of

C∞0 (Ω) in W 1,q(·)(Ω) and by W−1,q′(·)(Ω) the dual space of W
1,q(·)
0 (Ω) (in the same

way as the usual Sobolev spaces), where

W
k,p(·)
0 (Ω) = {u ∈W k,p(·)(Ω) : u = uχK for a compact K ⊂ Ω}

and 1
p(·) + 1

p′(·) = 1.

Lemma 2.1 (Young’s Inequality [11]). Let p, q, s : Ω → [1,∞) be measurable
functions, such that

1

s(y)
=

1

p(y)
+

1

q(y)
, for a.e y ∈ Ω.

Then, for all a, b ≥ 0, we have

(ab)s(·)

s(·)
≤ ap(·)

p(·)
+
bq(·)

q(·)
.

By taking s = 1 and 1 < p, q < +∞, it follows that for any ε > 0,

ab ≤ εap + Cεb
q, where Cε = 1/q(εp)q/p. (2.1)

Lemma 2.2 (Hölder’s Inequality [11]). Let p, q, s : Ω → [1,∞) be measurable
functions, such that

1

s(y)
=

1

p(y)
+

1

q(y)
, for a.e. y ∈ Ω.

If f ∈ Lp(·)(Ω) and h ∈ Lq(·)(Ω), then fh ∈ Ls(·)(Ω), with

‖fh‖s(·) ≤ 2‖f‖p(·)‖h‖q(·).

Lemma 2.3 ([11]). If 1 < q− ≤ q(x) ≤ q+ < +∞ holds, then for any f ∈ Lq(·)(Ω),

min{‖f‖q
−

q(·), ‖f‖
q+

q(·)} ≤ %q(·)(f) ≤ max{‖f‖q
−

q(·), ‖f‖
q+

q(·)}.
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Lemma 2.4 ([11]). If q+ < +∞, then C∞0 (Ω) is dense in Lq(·)(Ω).

Lemma 2.5 (Embedding Property [11]). Let Ω ⊂ Rn be a bounded domain with a
smooth boundary ∂Ω. If r, q ∈ C(Ω) such that r, q ≥ 1 and infx∈Ω(r∗(x)− q(x)) > 0
with

r∗(x) =

{
nr(x)

supx∈Ω(n−r(x)) , if r+ < n,

∞, if r+ ≥ n.

Then, the embedding W
1,r(·)
0 (Ω) ↪→ Lq(·)(Ω) is continuous and compact.

3. Existence of weak solutions

We begin this section by giving the definition of a weak solution for the system
(1.1).

Definition 3.1. Let (u0, u1), (v0, v1) ∈ H1
0 (Ω)×L2(Ω). Any pair of functions (u, v)

such that

u, v ∈ L∞([0, T ), H1
0 (Ω)),

ut ∈ L∞([0, T ), L2(Ω)) ∩ Lm(·)(Ω× (0, T )),

vt ∈ L∞([0, T ), L2(Ω)) ∩ Lr(·)(Ω× (0, T )),

is called a weak solution of (1.1) on [0, T ), if

d

dt
[

∫
Ω

utΦdx+

∫
Ω

A∇u.∇Φdx] +

∫
Ω

|ut|m(x)−2utΦdx−
∫

Ω

Φf1dx = 0,

d

dt
[

∫
Ω

vtΨdx+

∫
Ω

B∇v.∇Ψdx] +

∫
Ω

|vt|r(x)−2utΨdx−
∫

Ω

Ψf2dx = 0,

u(0) = u0, ut(0) = u1, v(0) = v0, vt(0) = v1,

for a.e. t ∈ (0, T ) and all test functions Φ,Ψ ∈ H1
0 (Ω).

To prove the existence of a local weak solution of problem (1.1), we first consider,
as in [13], the initial-boundary-value problem

utt − div(A∇u) + |ut|m(x)−2ut = f(x, t) in Ω× (0, T ),

vtt − div(B∇v) + |vt|r(x)−2vt = g(x, t) in Ω× (0, T ),

u = v = 0 on ∂Ω× (0, T ),

u(0) = u0, ut(0) = u1 in Ω,

v(0) = v0, vt(0) = v1 in Ω,

(3.1)

where f, g ∈ L2(Ω× (0, T )).

Theorem 3.2. Under the above conditions, on m, r,A and B, and for the initial
values (u0, u1), (v0, v1) ∈ H1

0 (Ω) × L2(Ω), problem (3.1) has a unique local weak
solution (u, v) on [0, T ), in the sense of Definition 3.1.

Proof. (Uniqueness.) Suppose that (3.1) has two weak solutions (u1, v1) and
(u2, v2), in the sense of Definition 3.1. Then, (u, v) = (u1 − u2, v1 − v2) solves the
problem

utt − div(A∇u) + |u1t|m(x)−2u1t − |u2t|m(x)−2u2t = 0 in Ω× (0, T ),

vtt − div(B∇v) + |v1t|r(x)−2v1t − |v2t|r(x)−2v2t = 0 in Ω× (0, T ),
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u = v = 0 on ∂Ω× (0, T ),

u(0) = ut(0) = 0, v(0) = vt(0) = 0 in Ω,

in the sense of Definition 3.1. Taking Φ = ut, we obtain

d

dt
[

∫
Ω

(u2
t +A∇u.∇u)dx]

+ 2

∫
Ω

(|u1t|m(x)−2u1t − |u2t|m(x)−2u2t)(u1t − u2t)dx ≤ 0,

(3.2)

by (1.8) and

d

dt

(∫
Ω

A∇u · ∇udx
)

=

∫
Ω

A′∇u · ∇u dx+ 2

∫
Ω

A∇u · ∇ut dx. (3.3)

Since, for all x ∈ Ω, Y, Z ∈ R and q(x) ≥ 2, we have

(|Y |q(x)−2Y − |Z|q(x)−2Z)(Y − Z) ≥ 0, q(x) ≥ 2, (3.4)

inequality (3.2) leads to

d

dt

∫
Ω

(u2
t +A∇u · ∇u)dx ≤ 0.

Integrating over (0, t), t ≤ T , and using (1.7), we find that

‖ut‖22 + a0‖∇u‖22 = 0.

Similarly, we obtain

‖vt‖22 + b0‖∇v‖22 = 0.

Therefore, ut(·, t) = vt(·, t) = 0 and ∇u(·, t) = ∇v(·, t) = 0 for allt ∈ (0, T ). Which
implies u = v = 0 on Ω × (0, T ), since u = v = 0 on ∂Ω × (0, T ). This proves the
uniqueness.

Existence. To prove the existence of a weak solution of (3.1), we proceed in
four steps:

Step 1. Approximate problem. We consider an orthonormal basis {ωj}∞j=1

of H1
0 (Ω) and define, for all k ≥ 1, a sequence (uk, vk) in the finite-dimensional

subspace Vk = span{ω1, ω2, . . . , ωk}, as follows

uk(x, t) = Σkj=1aj(t)ωj(x), vk(t) = Σkj=1bj(t)ωj(x),

for x ∈ Ω and t ∈ (0, T ), satisfying the approximate problems∫
Ω

uktt(x, t)ωjdx+

∫
Ω

A∇uk(x, t) · ∇ωjdx

+

∫
Ω

|ukt (x, t)|m(x)−2ukt (x, t)ωjdx =

∫
Ω

f(x, t)ωjdx,∫
Ω

vktt(x, t)ωjdx+

∫
Ω

B∇vk(x, t) · ∇ωjdx

+

∫
Ω

|vkt (x, t)|r(x)−2vkt (x, t)ωjdx =

∫
Ω

g(x, t)ωjdx,

(3.5)

for j = 1, 2, . . . , k, and with the initial data

uk(0) = uk0 = Σki=1〈u0, ωi〉ωi, ukt (0) = uk1 = Σki=1〈u1, ωi〉ωi
vk(0) = vk0 = Σki=1〈v0, ωi〉ωi, vkt (0) = vk1 = Σki=1〈v1, ωi〉ωi,
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where (uk0) and (vk0 ) are two sequences such that

uk0 → u0, vk0 → v0 in H1
0 (Ω),

uk1 → u1, vk1 → v1 in L2(Ω).

This generates a system of k nonlinear ordinary differential equations, which admits
a unique local solution (uk, vk) in [0, Tk), Tk ≤ T , by the standard ODE theory.

Step 2. A priori Estimates. Now, we show, by a priory estimates, that Tk = T ,
for all k ≥ 1. For this, we multiply (3.5)1 and (3.5)2 by a′j(t) and b′j(t), respectively.
Then sum each result over j, from 1 to k, and integrate each equation over (0, t),
with t ≤ Tk. We obtain

‖ukt ‖22 − ‖uk1‖22 +

∫
Ω

A∇uk · ∇ukdx−
∫

Ω

A(x, 0)∇uk0 · ∇uk0dx

+ 2

∫ t

0

∫
Ω

|ukt (x, t)|m(x) dx dt ≤ 2

∫ t

0

∫
Ω

f(x, t)ukt (x, t) dx dt

(3.6)

and

‖vkt ‖22 − ‖vk1‖22 +

∫
Ω

B∇vk · ∇vkdx−
∫

Ω

B(x, 0)∇vk0 · ∇vk0dx

+ 2

∫ t

0

∫
Ω

|vkt (x, t)|r(x) dx dt ≤ 2

∫ t

0

∫
Ω

g(x, t)vkt (x, t) dx ds,

(3.7)

by (3.3) and (1.8). Under the assumptions on A and B, the addition of (3.6) and
(3.7), Young’s inequality (2.1) gives

‖ukt ‖22 + ‖vkt ‖22 + a0‖∇uk‖22 + b0‖∇vk‖22

+ 2

∫ Tk

0

∫
Ω

(|ukt (x, t)|m(x) + |vkt (x, t)|r(x)) dx ds

≤ 2ε

∫ Tk

0

(‖ukt ‖22 + ‖vkt ‖22)ds+ 2Cε

∫ T

0

∫
Ω

(|f(x, t)|2 + |g(x, t)|2)) dx ds

+ ‖uk1‖22 + ‖vk1‖22 + α‖∇uk0‖22 + β‖∇vk0‖22,

(3.8)

where
α = sup

Ω×(0,T )

A(x, t), β = sup
Ω×(0,T )

B(x, t).

Since f, g ∈ L2(Ω× (0, T )) and

uk0 → u0, vk0 → v0 in H1
0 (Ω),

uk1 → u1, vk1 → v1 in L2(Ω),

invoking Gronwall’s lemma, estimate (3.8) leads to

sup
(0,Tk)

[‖ukt ‖22 + ‖vkt ‖22 + ‖∇uk‖22 + ‖∇vk‖22]

+

∫ Tk

0

∫
Ω

(|ukt (x, t)|m(x) + |vkt (x, t)|r(x)) dx ds ≤ C,

where C > 0, for all Tk ≤ T and k ≥ 1. Therefore, the local solution (uk, vk) of
system (3.5) can be extended to (0, T ), for all k ≥ 1. Furthermore,

(uk)k, (v
k)k are bounded in L∞((0, T ), H1

0 (Ω)),

(ukt )k is bounded in L∞((0, T ), L2(Ω)) ∩ Lm(·)(Ω× (0, T )),
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(vkt )k is bounded in L∞((0, T ), L2(Ω)) ∩ Lr(·)(Ω× (0, T )).

Consequently, we can extract two subsequences of (uk)k and (vk)k, which we denote
by (ul)l and (vl)l, respectively, such that

ul → u and vl → v weakly * in L∞((0, T ), H1
0 (Ω)),

ult → ut weakly * in L∞((0, T ), L2(Ω)) and weakly in Lm(·)(Ω× (0, T )),

vlt → vt weakly * in L∞((0, T ), L2(Ω)) and weakly in Lr(·)(Ω× (0, T )),

as l→ +∞
Step 3. Nonlinear terms. In this step, we show that

|ult|m(·)−2ult → |ut|m(·)−2ut weakly in L
m(·)
m(·)−1 (Ω× (0, T )),

|vlt|r(·)−2vlt → |vt|r(·)−2vt weakly in L
r(·)
r(·)−1 (Ω× (0, T ))

and then, we establish that (u, v) satisfies the differential equations (3.1) on Ω ×
(0, T ). So, by exploiting Hölder’s inequality (Lemma 2.2), one easily deduce that

(|ult|m(·)−2ult)l is bounded in L
m(·)
m(·)−1 (Ω× (0, T )). Then, there exists a subsequence,

still denoted by (|ult|m(·)−2ult)l, such that

|ult|m(·)−2ult → Φ weakly in L
m(·)
m(·)−1 (Ω× (0, T )).

To prove that Φ = |ut|m(·)−2ut, we set h(z) = |z|m(·)−2z and define, as in [13], the
sequence

Sl =

∫ T

0

∫
Ω

(h(ult)− h(z))(ult − z),

for z ∈ Lm(·)((0, T ), H1
0 (Ω)) and l ≥ 1. Replacing uk by ul in (3.6), integrating the

result over (0, T ), and letting l→∞, by (3.3), we obtain

0 ≤ lim sup
l

Sl ≤
1

2

[
‖u1‖22 − ‖ut(T )‖22 +

∫
Ω

A(x, 0)∇u0 · ∇u0

]
− 1

2

∫
Ω

A(x, T )∇u(T ) · ∇u(T )]−
∫ T

0

∫
Ω

Φz

−
∫ T

0

∫
Ω

h(z)(ut − z) +

∫ T

0

∫
Ω

fut.

(3.9)

On the other hand, if we use ul instead of uk in (3.5)1 and integrate the result over
(0, t), we arrive at∫

Ω

utω −
∫

Ω

u1ω +

∫ t

0

∫
Ω

A∇u · ∇ω +

∫ t

0

∫
Ω

Φω =

∫ t

0

∫
Ω

fω, ∀ω ∈ H1
0 (Ω),

since {ωj}∞j=1 is a basis of H1
0 (Ω). Therefore,∫

Ω

uttω +

∫
Ω

(A∇u · ∇ω + Φω) =

∫
Ω

fω, ∀ω ∈ H1
0 (Ω), (3.10)
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for all t ∈ (0, T ). Using the denseness of H1
0 (Ω) in L2(Ω), we use ut instead of ω in

(3.10) and integrate the result over (0, T ) to obtain∫ T

0

∫
Ω

fut =
1

2

[
‖ut(T )‖22 − ‖u1‖22 +

∫
Ω

A(x, T )∇u(T ) · ∇u(T )
]

− 1

2

∫
Ω

A(x, 0)∇u0.∇u0] +

∫ T

0

∫
Ω

Φut.

(3.11)

Combining (3.9) and (3.11), we infer that∫ T

0

∫
Ω

[Φ− h(z)](ut − z) ≥ lim sup
l

Sl ≥ 0, ∀z ∈ Lm(·)(Ω× (0, T )), (3.12)

since H1
0 (Ω) is dense in Lm(·)(Ω) (see Lemma 2.4).

Now, let z = λω + ut, ω ∈ Lm(·)(Ω × (0, T )). Hence, inequality ((3.12) can be
rewritten as

−λ
∫ T

0

∫
Ω

[Φ− h(λω + ut)]ω ≥ 0, ∀λ 6= 0.

The continuity of h with respect to λ yields∫ T

0

∫
Ω

(Φ− h(ut))ω = 0, ∀ω ∈ Lm(·)(Ω× (0, T )).

Thus, Φ = h(ut) = |ut|m(x)−2ut. Therefore, inequality ((3.10) becomes∫
Ω

uttω +

∫
Ω

A∇u · ∇ω +

∫
Ω

|ut|m(x)−2utω =

∫
Ω

fω, ∀ω ∈ H1
0 (Ω).

Consequently,

utt − div(A∇u) + |ut|m(x)−2ut = f in D′(Ω× (0, T )). (3.13)

Likewise and since H1
0 (Ω) is dense in Lr(·)(Ω) (Lemma 2.4), we obtain

|vlt|r(·)−2vlt → |vt|r(·)−2vt weakly in L
r(·)
r(·)−1 (Ω× (0, T ))

and

vtt − div(B∇v) + |vt|r(x)−2vt = g in D′(Ω× (0, T )). (3.14)

Step 4. Initial conditions.
First, by Lions’ lemma [13, Lemma 1.2, page 7] and since

ul ⇀ u weakly * in L∞((0, T ), H1
0 (Ω)),

ult ⇀ ut weakly * in L∞((0, T ), L2(Ω)),

we deduce that ul → u in C([0, T ], L2(Ω)). Therefore, ul(·, 0) is defined and

ul(·, 0)→ u(·, 0) in L2(Ω).

But, ul(·, 0) = ul0 → u0, in H1
0 (Ω). Then u(·, 0) = u0. Similarly, we obtain

v(·, 0) = v0.
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Second, for any φ ∈ C∞0 (0, T ) and j ≤ l, we obtain from (3.4) that∫ T

0

∫
Ω

ultt(x, t)ωj(x)φ(t) +

∫ T

0

∫
Ω

A∇ul(x, t) · ∇ωj(x)φ(t)

= −
∫ T

0

∫
Ω

|ult(x, t)|m(x)−2ult(x, t)ωj(x)φ(t)

+

∫ T

0

∫
Ω

f(x, t)ωj(x)φ(t).

(3.15)

By routine computations and taking l→ +∞, we find that for all ω ∈ H1
0 (Ω),∫ T

0

∫
Ω

utt(x, t)ω(x)φ(t)

=

∫ T

0

∫
Ω

[div(A∇u(x, t))− |ut(x, t)|m(x)−2ut(x, t) + f(x, t)]ω(x)φ(t),

which means utt ∈ L
m(·)
m(·)−1 ([0, T ), H−1(Ω)) and that u solves the equation

utt − div(A∇u) + |ut|m(x)−2ut = f, in D′(Ω× (0, T )).

So, we have

ut ∈ L∞((0, T ), L2(Ω)), utt ∈ L
m(·)
m(·)−1 ([0, T ), H−1(Ω)).

By Lions’ lemma [13], ut ∈ C([0, T ), H−1(Ω)) and consequently, ut(·, 0) has a mean-
ing and, in addition,

ult(·, 0)→ ut(·, 0), in H−1(Ω).

Since, ult(·, 0) = ul1 → u1 in L2(Ω), this implies that ut(·, 0) = u1. Similarly, one
has vt(·, 0) = v1.

Therefore, (u, v) is the unique local solution of (3.1). �

To state and prove the existence of a solution for problem (1.1), we recall the
following elementary inequalities:∣∣|X|k − |Y |k∣∣ ≤ C|X − Y |(|X|k−1 + |Y |k−1), (3.16)

for some constant C > 0, all k ≥ 1 and all X,Y ∈ R. Also∣∣|X|k′X − |Y |k′Y ∣∣ ≤ C|X − Y |(|X|k′ + |Y |k
′
), (3.17)

for some constant C > 0, all k′ ≥ 0 and all X,Y ∈ R.

Theorem 3.3. Let (u0, u1), (v0, v1) ∈ H1
0 (Ω) × L2(Ω) be given. Assume that the

conditions on p(·), r(·), m(·), A and B, given in Section 1, hold. Then, problem
(1.1) has a unique weak local solution (u, v) on [0, T ), for some T > 0.

Proof. (Existence.) Recall that the source terms are defined for all x ∈ Ω and
(y, z) ∈ R2 by

f1(x, y, z) =
∂

∂y
F (x, y, z), f2(x, y, z) =

∂

∂z
F (x, y, z),

where

F (x, y, z) = a|y + z|p(x)+1 + 2b|yz|
p(x)+1

2 , a, b > 0.

So,

f1(x, y, z) = (p(x) + 1)[a|y + z|p(x)−1(y + z) + by|y|
p(x)−3

2 |z|
p(x)+1

2 ],
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f2(x, y, z) = (p(x) + 1)[a|y + z|p(x)−1(y + z) + bz|z|
p(x)−3

2 |y|
p(x)+1

2 ].

Let y, z ∈ L∞((0, T ), H1
0 (Ω)). Using Young’s inequality (2.1) and the Sobolev

embedding (Lemma 2.5), f1(y, z) and f2(y, z) are in L2(Ω × (0, T )). Indeed, we
have ∫

Ω

|f1(x, y, z)|2dx

≤ 2

∫
Ω

(p(x) + 1)2[a2|y + z|2p(x) + b2|y|p(x)−1|z|p(x)+1]dx

≤ 2(p+ + 1)2
[
a2

∫
Ω

|y + z|2p(x)dx+ b2
∫

Ω

|y|p(x)−1|z|p(x)+1dx
]

≤ C0

[ ∫
Ω

|y + z|2p
+

dx+

∫
Ω

|y + z|2p
−
dx+

∫
Ω

|y|3(p+−1)dx
]

+ C0

[ ∫
Ω

|y|3(p−−1)dx+

∫
Ω

|z| 32 (p++1)dx+

∫
Ω

|z| 32 (p−+1)dx
]
,

(3.18)

where C0 = 2(p+ + 1)2 max{a2, 3b2} > 0. By the embeddings, one can obtain the
following results
• If n = 1, 2, then

1 <
3

2
(p− + 1) ≤ 3

2
(p+ + 1) ≤ 2p+ ≤ 3(p+ − 1) <∞,

since 3 ≤ p− ≤ p(x) ≤ p+ <∞. Therefore, estimate (3.18) leads to∫
Ω

|f1(x, y, z)|2dx

≤ C1

[
‖∇(y + z)‖2p

+

2 + ‖∇(y + z)‖2p
−

2 + ‖∇y‖3(p+−1)
2 + ‖∇y‖3(p−−1)

2

]
+ C1

[
‖∇z‖

3
2 (p++1)
2 + ‖∇z‖

3
2 (p−+1)
2

]
< +∞, C1 = C0Ce

(3.19)

• If n = 3, then the Sobolev embeddings used in (3.19) are also satisfied, since
p ≡ 3 on Ω.

Consequently, under assumption (1.6), for all t ∈ (0, T ), we have∫
Ω

|f1(x, y, z)|2dx <∞

and similarly, ∫
Ω

|f2(x, y, z)|2dx <∞.

Therefore,

f1(y, z), f2(y, z) ∈ L2(Ω× (0, T )).

By Theorem 3.2, there exists a unique weak solution (u, v) for the problem

utt − div(A∇u) + |ut|m(x)−2ut = f1(y, z) in Ω× (0, T ),

vtt − div(B∇v) + |vt|r(x)−2vt = f2(y, z) in Ω× (0, T ),

u = v = 0 on ∂Ω× (0, T ),

u(0) = u0, ut(0) = u1 in Ω,

v(0) = v0, vt(0) = v1 in Ω.

(3.20)
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Now, let G : WT ×WT :→WT ×WT be a map defined by G(y, z) = (u, v), where

WT = {w ∈ L∞((0, T ), H1
0 (Ω))/wt ∈ L∞((0, T ), L2(Ω))}.

Note that WT is a Banach space with respect to the norm

‖w‖2WT
= sup

(0,T )

∫
Ω

|∇w|2dx+ sup
(0,T )

∫
Ω

|wt|2dx.

Our task is to prove that G is a contraction mapping from a bounded ball B(0, d)
into itself, where

B(0, d) =
{

(y, z) ∈WT ×WT /‖(y, z)‖WT0
×WT0

≤ d
}
,

for d > 0 sufficiently large and T0 ≥ T to be fixed later. To do so, let (y, z)
be in B(0, d) and (u, v) be the corresponding solution of system (3.20). Taking
(Φ,Ψ) = (ut, vt) in Definition 3.1 and by (3.3) and (1.8), and then integrating each
identity over (0, t), for all t ≤ T , we obtain

1

2
‖ut‖22 −

1

2
‖u1‖22 +

1

2

∫
Ω

A∇u · ∇udx− 1

2

∫
Ω

A(x, 0)∇u0 · ∇u0dx

+

∫ t

0

∫
Ω

|ut(x, t)|m(x)

≤
∫ t

0

∫
Ω

utf1(y, z) dx ds

(3.21)

and

1

2
‖vt‖22 −

1

2
‖v1‖22 +

1

2

∫
Ω

B∇v · ∇v dx− 1

2

∫
Ω

B(x, 0)∇vk0 · ∇v0 dx

+

∫ t

0

∫
Ω

|vt(x, t)|r(x)

≤
∫ t

0

∫
Ω

vtf2(y, z) dx ds.

(3.22)

Recalling the assumptions on A and B, inequalities (3.21), (3.22) lead to

1

2

(
‖ut‖22 + a0‖∇u‖22

)
≤ 1

2

(
‖u1‖22 + α‖∇u0‖22

)
+

∫ t

0

∫
Ω

utf1(y, z) dx ds,

1

2

(
‖vt‖22 + b0‖∇v‖22

)
≤ 1

2

(
‖v1‖22 + β‖∇v0‖22

)
+

∫ t

0

∫
Ω

vtf2(y, z) dx ds.

Consequently, we arrive at

1

2
‖u‖2WT

≤ λ0 +
1

min {1, a0}
sup
(0,T )

∫ t

0

∫
Ω

utf1(y, z) dx ds,

1

2
‖v‖2WT

≤ β0 +
1

min {1, b0}
sup
(0,T )

∫ t

0

∫
Ω

vtf2(y, z) dx ds,

where,

λ0 =
‖u1‖22 + α‖∇u0‖22

2 min {1, a0}
, β0 =

‖v1‖22 + β‖∇v0‖22
2 min {1, b0}

.
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The addition the last two inequalities yield

1

2
‖(u, v)‖2WT×WT

≤ γ0 + C2 sup
(0,T )

∫ t

0

(
|
∫

Ω

utf1(y, z)dx|+ |
∫

Ω

vtf2(y, z)dx|
)
ds,

(3.23)

where

γ0 = λ0 + β0, C2 =
1

min {1, a0}
+

1

min {1, b0}
.

Under assumption (1.6), we apply Young’s inequality (2.1) and the Sobolev embed-
dings (Lemma 2.5) to obtain, for a.e. t ∈ (0, T ),

|
∫

Ω

utf1(y, z)dx|

≤ (p+ + 1)
[
a

∫
Ω

|ut||y + z|p(x) + b

∫
Ω

|ut| |y|
p(x)−1

2 |z|
p(x)+1

2

]
≤ (p+ + 1)

[ε(a+ b)

2

∫
Ω

|ut|2 +
2a

ε

∫
Ω

|y + z|2p(x) +
2b

ε

∫
Ω

|y|p(x)−1|z|p(x)+1
]

≤ c1
[ε
2
‖ut‖22 + Cε

(∫
Ω

|y + z|2p
+

dx+

∫
Ω

|y + z|2p
−
dx
)]

+ c1Cε

(∫
Ω

|y|3(p(x)−1)dx+

∫
Ω

|z| 32 (p(x)+1)dx
)

≤ c2
[
ε‖ut‖22 + ‖∇y‖2p

−

2 + ‖∇z‖2p
−

2 + ‖∇y‖2p
+

2 + ‖∇z‖2p
+

2

]
+ c2

[
‖∇y‖3(p−−1)

2 + ‖∇y‖3(p+−1)
2 + ‖∇z‖

3
2 (p−+1)
2 + ‖∇z‖

3
2 (p++1)
2

]
,

(3.24)
where ε, c1, c2 are positive constants. Likewise, we obtain∣∣ ∫

Ω

vtf2(y, z)dx
∣∣

≤ (p+ + 1)
[
a

∫
Ω

|vt||y + z|p(x) + b

∫
Ω

|vt|.|z|
p(x)−1

2 |y|
p(x)+1

2

]
≤ c2

[
ε‖vt‖22 + ‖∇y‖2p

−

2 + ‖∇z‖2p
−

2 + ‖∇y‖2p
+

2 + ‖∇z‖2p
+

2

]
+ c2

[
‖∇z‖3(p−−1)

2 + ‖∇z‖3(p+−1)
2 + ‖∇y‖

3
2 (p−+1)
2 + ‖∇y‖

3
2 (p++1)
2

]
.

(3.25)

Combining (3.24) and (3.25), we find

sup
(0,T )

∫ t

0

(∣∣ ∫
Ω

utf1(y, z)dx
∣∣+
∣∣ ∫

Ω

vtf2(y, z)dx
∣∣)ds

≤ εc2T‖(u, v)‖2WT×WT

+ c2T
(
‖(y, z)‖2p

−

WT×WT
+ ‖(y, z)‖2p

+

WT×WT
+ ‖(y, z)‖3(p−−1)

WT×WT

)
+ c2T

(
‖(y, z)‖3(p+−1)

WT×WT
+ ‖(y, z)‖

3
2 (p−+1)

WT×WT
+ ‖(y, z)‖

3
2 (p++1)

WT×WT

)
.

(3.26)
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By substituting (3.26) into (3.23), we obtain, for some c3 > 0,

1

2
‖(u, v)‖2WT×WT

≤ γ0 + εc3T‖(u, v)‖2WT×WT

+ c3T
(
‖(y, z)‖2p

−

WT×WT
+ ‖(y, z)‖2p

+

WT×WT
+ ‖(y, z)‖3(p−−1)

WT×WT

)
+ c3T

(
‖(y, z)‖3(p+−1)

WT×WT
+ ‖(y, z)‖

3
2 (p−+1)

WT×WT
+ ‖(y, z)‖

3
2 (p++1)

WT×WT

)
.

(3.27)

Choosing ε such that εc3T = 1/4 and recalling that ‖(y, z)‖WT×WT
≤ d, for some

d > 1, inequality (3.27) implies, for some c4 > 0,

‖(u, v)‖2WT×WT

≤ 4γ0 + 4c4T
(
‖(y, z)‖2p

−

WT×WT
+ ‖(y, z)‖2p

+

WT×WT
+ ‖(y, z)‖3(p−−1)

WT×WT

)
+ 4c4T

(
‖(y, z)‖3(p+−1)

WT×WT
+ ‖(y, z)‖

3
2 (p−+1)

WT×WT
+ ‖(y, z)‖

3
2 (p++1)

WT×WT

)
≤ 4γ0 + c4d

3(p+−1)T

≤ 4γ0 + c4d
3(p+−1)T0.

Hence, if we take (d, T0) such that d2 >> 4γ0 and T0 <
d2−4γ0

c4d3(p+−1)
, we obtain

‖(u, v)‖2WT×WT
≤ ‖(u, v)‖2WT0

×WT0
≤ d2,

which implies (u, v) ∈ B(0, d). Thus, G : B(0, d)→ B(0, d).
Next, we show that G : B(0, d) → B(0, d) is a contraction. For this, let (y1, z1)

and (y2, z2) be in B(0, d) and set (u1, v1) = G(y1, z1) and (u2, v2) = G(y2, z2).
Then (u, v) = (u1 − u2, v1 − v2) is a weak solution of the problem

utt − div(A∇u) + (|u1t|m(x)−2u1t − |u2t|m(x)−2u2t)

= f1(y1, z1)− f1(y2, z2) in Ω× (0, T ),

vtt − div(B∇v) + (|v1t|r(x)−2v1t − |v2t|r(x)−2v2t)

= f2(y1, z1)− f2(y2, z2) in Ω× (0, T ),

u = v = 0 on ∂Ω× (0, T ),

(u(0), v(0)) = (ut(0), vt(0)) = (0, 0) in Ω,

(3.28)

in the sense of Definition 3.1. Therefore, by taking Φ = ut (in Definition 3.1) and
integrating the result over (0, t), we obtain, for a.e. t ≤ T ,

d

dt

[
‖ut‖22 +

∫
Ω

A∇u · ∇u
]

−
∫

Ω

A′∇u · ∇u+ 2

∫
Ω

ut

(
|u1t|m(x)−2u1t − |u2t|m(x)−2u2t

)
= 2

∫
Ω

ut(f1(y1, z1)− f1(y2, z2))dx.

(3.29)

Integrating over (0, t) and using the initial conditions, the assumptions (1.7), (1.8)
and inequality (3.3), we arrive at

‖ut‖22 + a0‖∇u‖22 ≤ 2

∫ t

0

∫
Ω

ut(f1(y1, z1)− f1(y2, z2)) dx ds,
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for all t ∈ (0, T ). Consequently,

‖u‖2WT
≤ C sup

(0,T )

∫ t

0

∫
Ω

|ut| |f1(y1, z1)− f1(y2, z2)| dx ds, (3.30)

where C = 2/min{1, a0}. By repeating the same computations with Ψ = vt, in the
second equation in Definition 3.1, we obtain

‖v‖2WT
≤ C sup

(0,T )

∫ t

0

∫
Ω

|vt| |f2(y1, z1)− f2(y2, z2)| dx ds, (3.31)

where C = 2/min{1, b0}. Exploiting Young’s inequality (2.1), estimates (3.30) and
(3.31), we arrive at

‖u‖2WT
≤ εCT‖u‖2WT

+ Cε sup
(0,T )

∫ t

0

∫
Ω

|f1(y1, z1)− f1(y2, z2)|2 dx ds,

‖v‖2WT
≤ εCT‖v‖2WT

+ Cε sup
(0,T )

∫ t

0

∫
Ω

|f2(y1, z1)− f2(y2, z2)|2 dx ds.

By addition and choosing ε small enough, we obtain

‖(u, v)‖2WT×WT
≤ Cε sup

(0,T )

∫ t

0

∫
Ω

[|f1(y1, z1)− f1(y2, z2)|2

+ |f2(y1, z1)− f2(y2, z2)|2] dx ds.

(3.32)

Now, we set Y = y1 − y2, Z = z1 − z2 and estimate∫
Ω

|f1(y1, z1)− f1(y2, z2)|2dx and

∫
Ω

|f2(y1, z1)− f2(y2, z2)|2dx.

For this purpose, we recall inequalities (3.16) and (3.17) to obtain the following
estimates satisfied by f1 and f2, respectively (as in [2]).

|f1(y1, z1)− f1(y2, z2)| ≤ C4(|y1 − y2|+ |z1 − z2|)
(
|y1|p(x)−1 + |z1|p(x)−1

+ |y2|p(x)−1 + |z2|p(x)−1
)

+ C5|z1 − z2|.|y1|
p(x)−1

2

(
|z1|

p(x)−1
2 + |z2|

p(x)−1
2

)
+ C5|y1 − y2|.|z2|

p(x)+1
2

(
|y1|

p(x)−3
2 + |y2|

p(x)−3
2

)
,

(3.33)

and

|f2(y1, z1)− f2(y2, z2)| ≤ C4(|y1 − y2|+ |z1 − z2|)
(
|y1|p(x)−1 + |z1|p(x)−1

+ |y2|p(x)−1 + |z2|p(x)−1
)

+ C5|y1 − y2|.|z1|
p(x)−1

2

(
|y1|

p(x)−1
2 + |y2|

p(x)−1
2

)
+ C5|z1 − z2|.|y2|

p(x)+1
2

(
|z1|

p(x)−3
2 + |z2|

p(x)−3
2

)
,

(3.34)

for some constants C4, C5 > 0 and for almost all x ∈ Ω and t ∈ (0, T ). So,∫
Ω

|f1(y1, z1)− f1(y2, z2)|2dx ≤ I1 + I2 + I3 + I4, (3.35)
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where

I1 = C4

∫
Ω

|y1 − y2|2(|y1|2(p(x)−1) + |z1|2(p(x)−1))dx

+ C4

∫
Ω

|y1 − y2|2(|y2|2(p(x)−1) + |z2|2(p(x)−1))dx,

I2 = C4

∫
Ω

|z1 − z2|2(|y1|2(p(x)−1) + |z1|2(p(x)−1))dx

+ C4

∫
Ω

|z1 − z2|2(|y2|2(p(x)−1) + |z2|2(p(x)−1))dx,

I3 = C5

∫
Ω

|z1 − z2|2|y1|p(x)−1
(
|z1|p(x)−1 + |z2|p(x)−1

)
dx,

I4 = C5

∫
Ω

|y1 − y2|2|z2|p(x)+1
(
|y1|p(x)−3 + |y2|p(x)−3

)
dx.

By using Hölder’s and Young’s inequalities (Lemmas 2.1 and 2.2) and the Sobolev
embeddings (Lemma 2.5), we obtain the following estimate for a typical term in I1
and I2,∫

Ω

|y1 − y2|2|y1|2(p(x)−1)dx

≤ 2
(∫

Ω

|y1 − y2|6dx
)1/3(∫

Ω

|y1|3(p(x)−1)
)2/3

≤ C‖y1 − y2‖26
[( ∫

Ω

|y1|3(p+−1)dx
)2/3

+
(∫

Ω

|y1|3(p−−1)dx
)2/3]

≤ C‖∇(y1 − y2)‖22
(
‖y1‖2(p+−1)

3(p+−1) + ‖y1‖2(p−−1)
3(p−−1)

)
≤ C‖∇Y ‖22

(
‖∇y1‖2(p+−1)

2 + ‖∇y1‖2(p−−1)
2

)
≤ C‖∇Y ‖22

(
‖(y1, z1)‖2(p+−1)

WT×WT
+ ‖(y1, z1)‖2(p−−1)

WT×WT

)
,

(3.36)

since 1 < 3(p− − 1) ≤ 3(p+ − 1) < ∞, when n = 1, 2; and 1 < 3(p− − 1) =
3(p+ − 1) = 6 = 2n

n−2 , when n = 3.
Similarly, we obtain∫

Ω

|z1 − z2|2|y2|2(p(x)−1)dx

≤ C‖∇Z‖22
(
‖(y2, z2)‖2(p+−1)

WT×WT
+ ‖(y2, z2)‖2(p−−1)

WT×WT

)
.

(3.37)

Since (y1, z1), (y2, z2) ∈ B(0, d) and d > 1, estimates (3.36) and (3.37) lead to

I1 ≤ Cd2(p+−1)‖∇Y ‖22 and I2 ≤ Cd2(p+−1)‖∇Z‖22.

Hence,

I1 + I2 ≤ Cd2(p+−1)(‖∇Y ‖22 + ‖∇Z‖22). (3.38)

Similarly, a typical term in I3 can be handled as follows:∫
Ω

|z1 − z2|2|y1|p(x)−1|z1|p(x)−1dx

≤ 2
(∫

Ω

|z1 − z2|6dx
)1/3(∫

Ω

|y1|
3
2 (p(x)−1)|z1|

3
2 (p(x)−1)

)2/3
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≤ C‖z1 − z2‖26
[( ∫

Ω

|y1|3(p(x)−1)dx
)2/3

+
(∫

Ω

|z1|3(p(x)−1)dx
)2/3]

≤ C‖∇(z1 − z2)‖22
(
‖y1‖2(p+−1)

3(p+−1) + ‖y1‖2(p−−1)
3(p−−1) + ‖z1‖2(p+−1)

3(p+−1) + ‖z1‖2(p−−1)
3(p−−1)

)
≤ C‖∇(z1 − z2)‖22

(
‖∇y1‖2(p+−1)

2 + ‖∇y1‖2(p−−1)
2

)
+ C‖∇(z1 − z2)‖22

(
‖∇z1‖2(p+−1)

2 + ‖∇z1‖2(p−−1)
2

)
≤ 2C‖∇Z‖22

(
‖(y1, z1)‖2(p+−1)

WT×WT
+ ‖(y1, z1)‖2(p−−1)

WT×WT

)
.

since 1 < 3(p− − 1) ≤ 3(p+ − 1) < ∞, when n = 1, 2; and 1 < 3(p− − 1) =
3(p+ − 1) = 6 = 2n

n−2 , when n = 3. Therefore,

I3 ≤ Cd2(p+−1)‖∇Z‖22. (3.39)

Using the same arguments, we estimate a typical term in I4, as follows:

Case 1. If n = 1, 2, we have 3 ≤ p− ≤ p+ <∞. So∫
Ω

|y1 − y2|2|z2|p(x)+1|y1|p(x)−3dx

≤ 2
(∫

Ω

|y1 − y2|3dx
)2/3(∫

Ω

|z2|3(p(x)+1)|y1|3(p(x)−3)
)1/3

≤ C‖y1 − y2‖23
[( ∫

Ω

|z2|6(p(x)+1)dx
)1/3

+
(∫

Ω

|y1|6(p(x)−3)dx
)1/3]

≤ C‖∇Y ‖22
(
‖∇z2‖2(p++1)

2 + ‖∇z2‖2(p−+1)
2 + ‖∇y1‖2(p+−3)

2 + ‖∇y1‖2(p−−3)
2

)
≤ 4Cd2(p++1)‖∇Y ‖22,

since (y1, z1), (y2, z2) ∈ B(0, d) and d > 1.

Case 2. If n = 3, then p ≡ 3 on Ω and, hence,∫
Ω

|y1 − y2|2|z2|p(x)+1|y1|p(x)−3dx =

∫
Ω

|y1 − y2|2|z2|4dx

≤ C
(∫

Ω

|y1 − y2|6dx
)1/3(∫

Ω

|z2|6dx
)2/3

≤ C‖y1 − y2‖26.‖z2‖46
≤ C‖∇Y ‖22.‖(y2, z2)‖4WT×WT

.

We deduce that

I4 ≤ Cd2(p++1)‖∇Y ‖22. (3.40)

Finally, by substituting (3.40), (3.39) and ((3.38) in (3.35), we arrive at∫
Ω

|f1(y1, z1)− f1(y2, z2)|2dx ≤ Cd2(p++1)(‖∇Y ‖22 + ‖∇Z‖22), (3.41)

for all t ∈ (0, T ). Similarly, we obtain∫
Ω

|f2(y1, z1)− f2(y2, z2)|2dx ≤ Cd2(p++1)(‖∇Y ‖22 + ‖∇Z‖22). (3.42)
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Now, we replace (3.41) and (3.42) in (3.32) to obtain

‖(u, v)‖2WT×WT
≤ Cεd2(p++1) sup

(0,T )

∫ t

0

(
‖∇Y (s)‖22 + ‖∇Z(s)‖22

)
ds

≤ Cεd2(p++1)T‖(Y,Z)‖2WT×WT

≤ γT0‖(Y,Z)‖2WT×WT
,

where γ = Cεd
2(p++1). So, if we take T0 small enough, we obtain, for 0 < k < 1,

‖(u, v)‖2WT×WT
≤ k‖(Y,Z)‖2WT×WT

.

Thus,

‖G(y1, z1)−G(y2, z2)‖2WT×WT
≤ k‖(y1, z1)− (y2, z2)‖2WT×WT

.

This proves that G : B(0, d) → B(0, d) is a contraction. The Banach-fixed-point
theorem guarantees the existence of a unique (u, v) ∈ B(0, d), such that G(u, v) =
(u, v), which is obviously a local weak solution of (1.1).

Uniqueness. Suppose that (1.1) has two solutions (u1, v1) and (u2, v2), in the
sense of Definition 3.1. Therefore, (u, v) = (u1 − u2, v1 − v2) satisfies the problem

utt − div(A∇u) + (|u1t|m(x)−2u1t − |u2t|m(x)−2u2t)

= f1(u1, v1)− f1(u2, v2) in Ω× (0, T ),

vtt − div(B∇v) + (|v1t|r(x)−2v1t − |v2t|r(x)−2v2t)

= f2(u1, v1)− f2(u2, v2) in Ω× (0, T ),

u = v = 0 on ∂Ω× (0, T ),

(u(0), v(0)) = (ut(0), vt(0)) = (0, 0) in Ω.

By taking (Φ,Ψ) = (ut, vt) in this definition, integrating each equation over (0, t)
(t ≤ T ) and adding the two results, we obtain (as in (3.30) and (3.31)) the following

‖(ut, vt)‖22 + ‖(∇u,∇v)‖22 ≤ C
∫ t

0

∫
Ω

|ut||f1(u1, v1)− f1(u2, v2)| dx dt

+ C

∫ t

0

∫
Ω

|vt||f2(u1, v1)− f2(u2, v2)| dx dt.

Under assumption (1.6) and applying similar arguments as in above, we arrive at

‖(ut, vt)‖22 + ‖(∇u,∇v)‖22 ≤ Cε
∫ t

0

(‖(ut(s), vt(s))‖22 + ‖(∇u(s),∇v(s))‖22)ds,

for all t ∈ (0, T ). Gronwall’s lemma leads to

‖(ut, vt)‖22 + ‖(∇u,∇v)‖22 = 0, for all t ∈ (0, T ).

Thanks to the boundary conditions, we obtain u = v = 0 on Ω×(0, T ). This proves
the uniqueness of the solution of (1.1). �

Theorem 3.3 is a generalization of the local existence of Agre and Rammaha [2],
which dealt with constant exponents, to the situation of variable exponents.
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4. Blow up result

To prove our main blow-up result, we give some Lemmas. First we derive the
energy functional associated with the problem.

E(t) =
1

2
(‖ut‖22 + ‖vt‖22) +

1

2

∫
Ω

(A∇u · ∇u+B∇v · ∇v)dx

−
∫

Ω

F (x, u, v)dx,

(4.1)

for all t ∈ [0, T ), and

α1 = (k(p− + 1))
1

1−p− , E1 = (
1

2
− 1

p− + 1
)α2

1, (4.2)

where

k =
(
a2

p−+1
2 + 2b

)( B̃2

c0

) p−+1
2

, c0 = min{a0, b0} > 0

and B̃ is the best constant of the Sobolev embedding H1
0 (Ω) ↪→ Lp(·)+1(Ω).

4.1. Lemmas.

Lemma 4.1 ([6]). The energy functional E is decreasing function and, for a.e.
t ∈ (0, T ), we have

E′(t)

= −
∫

Ω

|ut|m(x)dx−
∫

Ω

|vt|r(x)dx+
1

2

∫
Ω

(A′∇u · ∇u+B′∇v · ∇v)dx.
(4.3)

Lemma 4.2. [16] (1) There exist C1, C2 > 0 such that, for all x ∈ Ω and (u, v) ∈
R2, we have

C1

(
|u|p(x)+1 + |v|p(x)+1

)
≤ F (x, u, v) ≤ C2(|u|p(x)+1 + |v|p(x)+1). (4.4)

(2) For all x ∈ Ω and (u, v) ∈ R2, we have

u f1(x, u, v) + vf2(x, u, v) = (p(x) + 1)F (x, u, v). (4.5)

Lemma 4.3. For any solution (u, v) of the system (1.1), with initial energy

E(0) < E1 (4.6)

and

α1 <
(∫

Ω

(A∇u0 · ∇u0 +B∇v0 · ∇v0)dx
)1/2

≤ (
c0

2B̃2
)1/2,

there exists α2 > α1 such that

α2 ≤
(∫

Ω

(A∇u · ∇u+B∇v · ∇v)dx
)1/2

, ∀t ∈ [0, T ). (4.7)

Proof. From the definition of the energy, it results that

E(t) ≥ 1

2

∫
Ω

(A∇u · ∇u+B∇v · ∇v)dx−
∫

Ω

F (x, u, v)dx.

If we set

α =
(∫

Ω

(A∇u · ∇u+B∇v · ∇v)dx
)1/2

(4.8)
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then

E(t) ≥ 1

2
α2 −

∫
Ω

F (x, u, v)dx. (4.9)

From (1.7), we have

‖∇u‖22 + ‖∇v‖22 ≤
1

c0

∫
Ω

(A∇u · ∇u+B∇v · ∇v)dx.

So

‖∇u‖22 + ‖∇v‖22 ≤
α2

c0
. (4.10)

On the other hand, by the definition of F, we have∫
Ω

F (x, u, v) = a

∫
Ω

|u+ v|p(x)+1dx+ 2b

∫
Ω

|uv|
p(x)+1

2 dx.

Invoking Lemma 2.3, this leads to∫
Ω

F (x, u, v) ≤ amax
{
‖u+ v‖p

−+1
p(·)+1, ‖u+ v‖p

++1
p(·)+1

}
+ 2bmax

{
‖uv‖

p−+1
2

p(·)+1
2

, ‖uv‖
p++1

2
p(·)+1

2

}
.

(4.11)

First, by the embedding (Lemma 2.5), we have

‖u+ v‖p(·)+1 ≤ B̃‖∇(u+ v)‖
2
≤ B̃[(‖∇u‖2 + ‖∇v‖2)2]1/2.

Since
(X + Y )δ ≤ 2δ−1(Xδ + Y δ), for all X,Y ≥ 0 and δ ≥ 1, (4.12)

it follows that
‖u+ v‖p(·)+1 ≤ B̃[2(‖∇u‖

2

2
+ ‖∇v‖22)]1/2.

By (4.10),

‖u+ v‖p(·)+1

(2B̃2α2

c0

)1/2

.

Hence,

‖u+ v‖p
−+1
p(·)+1 ≤

(2B̃2α2

c0

) p−+1
2

, ‖u+ v‖p
++1
p(·)+1 ≤ (

2B̃2α2

c0
)
p++1

2 .

Therefore,

max
{
‖u+ v‖p

−+1
p(·)+1, ‖u+ v‖p

++1
p(·)+1

}
≤ max

{(2B̃2α2

c0

) p−+1
2

,
(2B̃2α2

c0

) p++1
2
}
.

(4.13)

Likewise, Hölder’s and Young’s inequalities (Lemmas 2.1 and 2.2) give

‖uv‖ p(·)+1
2
≤ 2‖u‖p(·)+1‖v‖p(·)+1 ≤ ‖u‖2p(·)+1 + ‖v‖2p(·)+1 ≤ B̃

2(‖∇u‖22 + ‖∇v‖22).

Again, by (4.10), we find that

‖uv‖ p(·)+1
2
≤ B̃2α2

c0
.

So, we have

‖uv‖
p−+1

2
p(·)+1

2

≤
( B̃2α2

c0

) p−+1

2

, ‖uv‖
p++1

2
p(·)+1

2

≤
( B̃2α2

c0

) p++1

2

.
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Therefore,

max
{
‖uv‖

p−+1
2

p(·)+1
2

, ‖uv‖
p++1

2
p(·)+1

2

}
≤ max

{( B̃2α2

c0

) p−+1

2

,
( B̃2α2

c0

) p++1

2
}
. (4.14)

Substituting (4.13) and (4.14) in (4.11), we infer that∫
Ω

F (x, u, v) ≤ amax
{(2B̃2α2

c0

) p−+1
2

,
(2B̃2α2

c0

) p++1
2
}

+ 2bmax
{( B̃2α2

c0

) p−+1
2

,
( B̃2α2

c0

) p++1
2
}
.

(4.15)

By inserting (4.15) into (4.9), we obtain

E(t) ≥ h(α), for all α ≥ 0, (4.16)

where

h(α) :=
1

2
α2 − amax

{(2B̃2α2

c0

) p−+1
2

,
(2B̃2α2

c0

) p++1
2
}

− 2bmax
{( B̃2α2

c0

) p−+1
2

,
( B̃2α2

c0

) p++1
2
}
.

For α in [0, ( c0
2B̃2

)1/2], one can easily check that

B̃2α2

c0
≤ 2B̃2α2

c0
≤ 1.

Consequently,(2B̃2α2

c0

) p−+1
2 ≥

(2B̃2α2

c0

) p++1
2

,
( B̃2α2

c0

) p−+1
2 ≥

( B̃2α2

c0

) p++1
2

.

Thus, (4.16) leads to

E(t) ≥ 1

2
α2 −

(
a2

p−+1
2 + 2b

)( B̃2

c0

) p−+1
2

αp
−+1.

That is,

E(t) ≥ g(α), for all α ∈
[
0,
( c0

2B̃2

)1/2]
, (4.17)

where

g(α) =
1

2
α2 − kαp

−+1.

It is easy to verify that g is strictly increasing on [0, α1) and strictly decreasing on
[α1,+∞). Since

E(0) < E1 and E1 = g(α1),

then, we can find α2 > α1 such that g(α2) = E(0). But

α0 =
(∫

Ω

(A∇u0 · ∇u0 +B∇v0 · ∇v0)dx
)1/2

∈
[
α1,
( c0

2B̃2

)1/2]
,

therefore, by (4.17), we obtain g(α2) = E(0) ≥ g(α0).
This implies α0 ≥ α2. Consequently α2 ∈ (α1, (

c0
2B̃2

)1/2].

To establish (4.7), we suppose on the contrary that(∫
Ω

(A∇u(., t∗).∇u(., t∗) +B∇v(., t∗).∇v(., t∗))dx
)1/2

< α2,
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for some t∗ ∈ [0, T ). By the continuity of
( ∫

Ω
A∇u · ∇u + B∇v · ∇vdx

)1/2
and

since α2 > α1, we can choose t∗ such that[ ∫
Ω

(A∇u(., t∗).∇u(., t∗) +B∇v(., t∗).∇v(., t∗))dx
]1/2

> α1.

The g being decreasing of on [α1, (
c0

2B̃2
)1/2] and (4.17) imply that

E(t∗) ≥ g
([ ∫

Ω

(A∇u(., t∗).∇u(., t∗) +B∇v(., t∗).∇v(., t∗))dx
]1/2)

> g(α2) = E(0).

This is impossible since E(t) ≤ E(0), for all t ∈ [0.T ). Thus, (4.17) is established.
�

Now, we set

H(t) = E1 − E(t), for all t ∈ [0, T ). (4.18)

Lemma 4.4. We have

0 < H(0) ≤ H(t) ≤
∫

Ω

F (x, u, v)dx, for all t ∈ [0, T ), (4.19)∫
Ω

F (x, u, v)dx ≥ kαp
−+1

2 . (4.20)

Proof. From Lemma 4.1 and assumption (4.6), we have

0 < E1 − E(0) = H(0) ≤ H(t) (4.21)

and by (4.9), we obtain

H(t) ≤ E1 −
1

2
α2 +

∫
Ω

F (x, u, v)dx.

Since E1 = g(α1) and α ≥ α2 > α1, we obtain

H(t) ≤
(
g(α1)− 1

2
α2

1

)
+

∫
Ω

F (x, u, v)dx

≤ −kαp
−+1

1 +

∫
Ω

F (x, u, v)dx

≤
∫

Ω

F (x, u, v)dx.

Thus, (4.19) is established. To prove (4.20), we note that E is nonincreasing. Hence,

E(0) ≥ E(t) ≥ 1

2
α2 −

∫
Ω

F (x, u, v)dx.

Consequently, ∫
Ω

F (x, u, v)dx ≥ 1

2
α2 − E(0).

But E(0) = g(α2) and α ≥ α2, so∫
Ω

F (x, u, v)dx >
1

2
α2

2 − g(α2) = kαp
−+1

2 .

�
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In what follows and for simplicity, we denote

ρ(u) =

∫
Ω

|u |p(x)+1dx, ρ(v) =

∫
Ω

|v |p(x)+1dx

and we define

Ω+ = {x ∈ Ω : |u(x, t)| ≥ 1}, Ω− = {x ∈ Ω : |u(x, t)| < 1}.

Lemma 4.5. There exists C3 > 0 such that any solution of (1.1) satisfies

‖u‖p
−+1
p−+1 + ‖v‖p

−+1
p−+1 ≤ C3(ρ(u) + ρ(v)). (4.22)

Proof. Since p− ≤ p(·) ≤ p+, one easily sees that

ρ(u) =

∫
Ω+

|u|p(x)+1dx +

∫
Ω−

|u|p(x)+1dx

≥
∫

Ω+

|u|p
−+1dx +

∫
Ω−

|u|p
++1dx

≥
∫

Ω+

|u|p
−+1dx + c1(

∫
Ω−

|u|p
−+1dx)

p++1

p−+1 ,

for some c1 > 0. Thus,

ρ(u) ≥
∫

Ω+

|u|p
−+1dx and

(ρ(u)

c1

) p−+1

p++1 ≥
∫

Ω−

|u|p
−+1dx.

By addition, for some c2 > 0, we obtain

‖u‖p
−+1
p−+1 ≤ ρ(u) + c2(ρ(u))

p−+1

p++1

≤ ρ(u) + ρ(v) + c2(ρ(u) + ρ(v))
p−+1

p++1

= (ρ(u) + ρ(v))
[
1 + c2(ρ(u) + ρ(v))

p−− p+

p++1
]
.

Recalling (4.19) and (4.4), we infer that

0 < H(0) ≤ H(t) ≤ C2(ρ(u) + ρ(v)), (4.23)

then ρ(u) + ρ(v) ≥ H(0)/C2. Therefore,

‖u‖p
−+1
p−+1 ≤ (ρ(u) + ρ(v))

[
1 + c2(H(0)/C2)

p−− p+

p++1
]
.

Hence

‖u‖p
−+1
p−+1 ≤ c3(ρ(u) + ρ(v)),

where c3 = 1 + c2(H(0)/C2)
p−− p+

p++1 > 0. Similarly, we arrive at

‖v‖p
−+1
p−+1 ≤ c3(ρ(u) + ρ(v)).

Therefore, (4.22) is satisfied with C3 = 2c3. �

Corollary 4.6. There exist constants C4, C5 > 0 such that∫
Ω

|u|m(x)dx ≤ C4

[
(ρ(u) + ρ(v))

m+

p−+1 + (ρ(u) + ρ(v))
m−

p−+1
]
, (4.24)∫

Ω

|v|r(x)dx ≤ C5

[
(ρ(u) + ρ(v))

r+

p−+1 + (ρ(u) + ρ(v))
r−

p−+1
]
. (4.25)
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Proof. Since p− ≥ max{m+, r+}, it follows that∫
Ω

|u|m(x)dx ≤
∫

Ω+

|u|m
+

dx +

∫
Ω−

|u|m
−
dx

≤ c1
( ∫

Ω+

|u|p
−+1dx

) m+

p−+1 + c1

(∫
Ω−

|u|p
−+1dx

) m−

p−+1

≤ c1
(
‖u‖m

+

p−+1 + ‖u‖m
−

p−+1

)
, c1 > 0.

Recalling Lemma 4.5, we obtain, for a constant C4 > 0,∫
Ω

|u|m(x)dx ≤ C4

[
(ρ(u) + ρ(v))

m+

p−+1 + (ρ(u) + ρ(v))
m−

p−+1

]
.

Similarly, we obtain, for some C5 > 0,∫
Ω

|v|r(x)dx ≤ C5

[
(ρ(u) + ρ(v))

r+

p−+1 + (ρ(u) + ρ(v))
r−

p−+1

]
.

Thus, (4.23) and (4.24) are proved. �

4.2. Main result. Now, we state and prove our main blow-up result.

Theorem 4.7. Let the assumptions given in Subsection 4.1 hold. Then any solution
of the system (1.1) blows up in finite time.

Proof. We assume that the solution exists for any t > 0 and reach to a contradiction.
This will be established in 4 steps.

Step 1. For small ε > 0 to be fixed later, we define the auxiliary functional

G(t) = H1−σ(t) + ε

∫
Ω

(uut + vvt)dx, t > 0,

where

0 < σ ≤ min
{ p− −m+ + 1

(p− + 1)(m+ − 1)
,

p− − r+ + 1

(p− + 1)(r+ − 1)
,
p− − 1

2(p− + 1)

}
. (4.26)

Our goal is to show that G satisfies a differential inequality which leads to a blow
up in finite time. Now, we have

G′(t) = (1− σ)H−σ(t)H ′(t) + ε(‖ut‖22 + ‖vt‖22)

+ ε

∫
Ω

(uf1(x, u, v) + vf2(x, u, v))dx

− ε
∫

Ω

(A∇u · ∇u+B∇v · ∇v)dx

− ε
∫

Ω

(|ut|m(x)−2utu+ |vt|r(x)−2vtv)dx.

(4.27)

From Lemma 4.2, it follows that∫
Ω

(uf1(x, u, v) + vf2(x, u, v))dx =

∫
Ω

(p(x) + 1)F (x, u, v)dx

≥ (p− + 1)

∫
Ω

F (x, u, v)dx.

(4.28)
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By the definition of H and E, we obtain∫
Ω

(A∇u · ∇u+B∇v · ∇v)dx

= 2

∫
Ω

F (x, u, v)dx− ‖ut‖22 − ‖vt‖22 + 2E1 − 2H(t).

(4.29)

If we insert (4.28) and (4.29) into (4.27), we then obtain

G′(t) ≥ (1− σ)H−σ(t)H ′(t) + 2ε(‖ut‖22 + ‖vt‖22) + 2εH(t)

− 2εE1 + ε(p− − 1)

∫
Ω

F (x, u, v)dx

− ε
∫

Ω

(|u||ut|m(x)−1 + |v||vt|r(x)−1)dx.

(4.30)

Using (4.20), we have

E1 ≤ (kαp
−+1

2 )−1E1

∫
Ω

F (x, u, v)dx.

Hence, (4.30) becomes

G′(t)

≥ (1− σ)H−σ(t)H ′(t) + 2ε(‖ut‖22 + ‖vt‖22) + εc1

∫
Ω

F (x, u, v)dx

+ 2εH(t)− ε
∫

Ω

(|u||ut|m(x)−1 + |v| |vt|r(x)−1)dx,

(4.31)

where c1 = p− − 1− 2(kαp
−+1

2 )−1E1 > 0, since α2 > α1.

Step 2. In this step, we estimate the last two terms in the right-hand side of (4.31).
We set

I1 :=

∫
Ω

|u||ut|m(x)−1dx, I2 :=

∫
Ω

|v||vt|r(x)−1dx

and apply the Young inequality

XY ≤ δλ

λ
Xλ +

δ−β

β
Y β , for all X, Y ≥ 0, δ > 0 and

1

λ
+

1

β
= 1,

with

X = |u|, Y = |ut|m(x)−1, λ = m(x), β =
m(x)

m(x)− 1
, δ > 0,

to obtain

I1 ≤
∫

Ω

δm(x)

m(x)
|u|m(x)dx+

∫
Ω

m(x)− 1

m(x)
δ−m(x)/(m(x)−1)|ut|m(x)dx. (4.32)

By taking

δ = [KH−σ(t)]
1−m(x)
m(x) ,

where K is a large constant to be chosen later, we obtain

I1 ≤
K1−m−

m−

∫
Ω

[H(t)]σ(m(x)−1)|u|m(x)dx

+
m+ − 1

m−
KH−σ(t)

∫
Ω

|ut|m(x)dx.

(4.33)
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From Lemma 4.1, we have

H ′(t) =

∫
Ω

|ut|m(x)dx+

∫
Ω

|vt|r(x)dx− 1

2

∫
Ω

(A′∇u · ∇u+B′∇v · ∇v)dx

and by (1.8)), we obtain ∫
Ω

|ut|m(x)dx ≤ H ′(t). (4.34)

On the other hand, since m(x) ≤ m+ and H(t) ≥ H(0) > 0, one has∫
Ω

[H(t)]σ(m(x)−1)|u|m(x)dx =

∫
Ω

[H(t)

H(0)

]σ(m(x)−1)
[H(0)]σ(m(x)−1)|u|m(x)dx

≤ c2[H(t)]σ(m+−1)

∫
Ω

[H(0)]σ(m(x)−1)|u|m(x)dx,

where c2 = 1/[H(0)]σ(m+−1). But [H(0)]σ(m(x)−1) ≤ c3 for all x ∈ Ω, where c3 > 0.
So, for a constant c4 > 0, we obtain∫

Ω

[H(t)]σ(m(x)−1)|u|m(x)dx ≤ c4[H(t)]σ(m+−1)

∫
Ω

|u|m(x)dx. (4.35)

Replacing (4.35) and (4.34)) in (4.33), we infer that

I1 ≤
K1−m−

m−
c4[H(t)]σ(m+−1)

∫
Ω

|u|m(x)dx

+
m+ − 1

m−
KH−σ(t)H ′(t).

(4.36)

Likewise, we obtain, for some c5 > 0,

I2 ≤
K1−r−

r−
c5[H(t)]σ(r+−1)

∫
Ω

|v|r(x)dx +
r+ − 1

r−
KH−σ(t)H ′(t). (4.37)

Also, from (4.19), we have, for some c6 > 0,

[H(t)]σ(m+−1) ≤ c6(ρ(u) + ρ(v))σ(m+−1).

This inequality and estimate (4.24) imply that for some c7 > 0,

[H(t)]σ(m+−1)

∫
Ω

|u|m(x)dx

≤ c7(ρ(u) + ρ(v))
σ(m+−1)+ m+

p−+1 + c7(ρ(u) + ρ(v))
σ(m+−1)+ m−

p−+1 .

(4.38)

Now, if we use (4.26) and the algebraic inequality

zτ ≤ z + 1 ≤ (1 +
1

a
)(z + a), for all z ≥ 0, 0 < τ ≤ 1 and a > 0, (4.39)

with

z = ρ(u) + ρ(v), a = H(0), τ = σ(m+ − 1) +
m+

p− + 1

and then with τ = σ(m+ − 1) + m−

p−+1 , respectively, we obtain

(ρ(u) + ρ(v))
σ(m+−1)+ m+

p−+1 ≤ [1 +
1

H(0)
](ρ(u) + ρ(v) +H(0))

≤ γ(ρ(u) + ρ(v) +H(t))

(4.40)
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and

(ρ(u) + ρ(v))
σ(m+−1)+ m−

p−+1 ≤ γ(ρ(u) + ρ(v) +H(t)) (4.41)

where γ = 1 + 1
H(0) . Combining (4.41) and (4.40) with (4.38), we obtain that for

some c8 > 0,

[H(t)]σ(m+−1)

∫
Ω

|u|m(x)dx ≤ c8(ρ(u) + ρ(v) +H(t)). (4.42)

Similarly, we have for some c9 > 0,

[H(t)]σ(r+−1)

∫
Ω

|v|r(x)dx ≤ c9(ρ(u) + ρ(v) +H(t)). (4.43)

Substituting (4.42) into (4.36), we find that

I1 ≤
K1−m−

m−
c10(ρ(u) + ρ(v) +H(t)) +

m+ − 1

m−
KH−σ(t)H ′(t), (4.44)

and substituting (4.43) into (4.37), we obtain

I2 ≤
K1−r−

r−
c11(ρ(u) + ρ(v) +H(t)) +

r+ − 1

r−
KH−σ(t)H ′(t), (4.45)

where c10 and c11 are two positive constants.

Step 3. Now, we estimate G′. By inserting (4.44) and (4.45) into (4.31), we arrive
at

G′(t) ≥ (1− σ − εM)H−σ(t)H ′(t) + 2ε(‖ut‖22 + ‖vt‖22) + 2εH(t)

+ c12(ρ(u) + ρ(v))− εK
1−m−

m−
c10(ρ(u) + ρ(v) +H(t))

− εK
1−r−

r−
c11(ρ(v) + ρ(u) +H(t)),

where c12 > 0 and M = K(m
+−1
m− + r+−1

r− ). Therefore,

G′(t) ≥ (1− σ − εM)H−σ(t)H ′(t) + 2ε(‖ut‖22 + ‖vt‖22)

+ ε
(

2− K1−m−

m−
c10 −

K1−r−

r−
c11

)
H(t)

+ ε
(
c12 −

K1−m−

m−
c10 −

K1−r−

r−
c11

)
(ρ(u) + ρ(v)).

For a large value of K, we can find c13 > 0 such that

G′(t) ≥ (1− σ − εM)H−σ(t)H ′(t)

+ εc13(‖ut‖22 + ‖vt‖22 +H(t) + ρ(u) + ρ(v)).

Once K is fixed, we select ε small enough so that

1− σ − εM ≥ 0 and G(0) = H1−σ(0) + ε

∫
Ω

(u0u1 + v0v1)dx > 0.

From Lemma 4.1, we have H ′(t) ≥ 0. Therefore, there exists h > 0 satisfying

G′(t) ≥ εh(H(t) + ‖ut‖22 + ‖vt‖22 + ρ(u) + ρ(v)). (4.46)

Consequently,
G(t) ≥ G(0) > 0, for t > 0.
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Step 4. Finally, we complete the proof of the blow up result. By the definition of
G and using (4.12), it follows that

G1/(1−σ)(t) ≤
(
H1−σ(t) + ε

∫
Ω

|uut + vvt|dx
)1/(1−σ)

≤ 2σ/(1−σ)
(
H(t) + (ε

∫
Ω

(|uut|+ |vvt|)dx)1/(1−σ)
)

≤ c14

(
H(t) + (

∫
Ω

(|u||ut|+ |v||vt|)dx)1/(1−σ)
)
,

where c14 = 2σ/(1−σ) max{1, ε1/(1−σ)}. Also, we have(∫
Ω

(|u||ut|+ |v||vt|)dx
)1/(1−σ)

≤ 2σ/(1−σ)
(∫

Ω

|u‖ut|dx
)1/(1−σ)

+ 2σ/(1−σ)
(∫

Ω

|v||vt|dx
)1/(1−σ)

.

(4.47)

Since p− ≥ 2, Hölder’s and Young’s inequalities yield, for c15, c16 > 0,(∫
Ω

|u‖ut|dx
)1/(1−σ)

≤ ‖u‖1/(1−σ)
2 ‖ut‖1/(1−σ)

2

≤ c15‖u‖1/(1−σ)
p−+1 ‖ut‖1/(1−σ)

2

≤ c16(‖u‖µ/(1−σ)
p−+1 + ‖ut‖β/(1−σ)

2 ),

where 1
µ + 1

β = 1. If we set β = 2(1−σ), we obtain µ/(1−σ) = 2/(1− 2σ). Hence,(∫
Ω

|u‖ut|dx
)1/(1−σ)

≤ c16(‖u‖2/(1−2σ)
p−+1 + ‖ut‖

2

2). (4.48)

By Lemma 4.4, estimate (4.48) becomes(∫
Ω

|u‖ut|dx
)1/(1−σ)

≤ c17((ρ(u) + ρ(v))τ + ‖ut‖22),

where c17 > 0 and τ = 2/(p−+1)(1−2σ). Again, by (4.26), (4.39) and since τ ≤ 1,
we obtain, for some c18 > 0,(∫

Ω

|u||ut|dx
)1/(1−σ)

≤ c18(ρ(u) + ρ(v) +H(t) + ‖ut‖
2

2). (4.49)

Similar computations lead to( ∫
Ω

|v||vt|dx
)1/(1−σ)

≤ c18(ρ(u) + ρ(v) +H(t) + ‖vt‖
2

2). (4.50)

By adding (4.49) and (4.50), estimate (4.47) yields, for some c19 > 0,(∫
Ω

(|u||ut|+ |v||vt|)dx
)1/(1−σ)

≤ c19

(
ρ(u) + ρ(v) + ‖ut‖

2

2 + ‖vt‖
2

2 +H(t)
)
.

Therefore, for some c20 > 0, we arrive at

G1/(1−σ)(t) ≤ c20(ρ(u) + ρ(v) +H(t) + ‖ut‖
2

2 + ‖vt‖
2

2). (4.51)

Combining (4.51) and (4.46), we deduce that

G′(t) ≥ ΓG1/(1−σ)(t), for all t > 0,
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where Γ = εh
c20

. A simple integration over (0, t) yields

Gσ/(1−σ)(t) ≥ 1

G
−σ
1−σ (0)− σΓt

1−σ

,

which implies that G(t) → +∞, as t → T ∗, where T ∗ ≤ 1−σ
σΓ[G

σ
(1−σ) (0)]

. Conse-

quently, the solution of problem (1.1) blows up in finite time. �

5. Numerical tests

In this section, we show some numerical experiments to illustrate the theoretical
results in Theorem 4.7. We solve the system (1.1) under specific initial data and
Dirichlet boundary conditions. We use a numerical scheme based on the finite
element method in space and the Newmark method in time [24, 23].

We consider problem (1.1) in two space-dimensions and take the functions m, r
and p fulfilling the assumptions (1.2), (1.3) and (1.6). Precisely, we have

m(x, y) = 2 +
1

1 + x2
, r(x, y) = 2 +

1

1 + y2
, p(x, y) = 3 +

2

1 + x2 + y2
,

and the source terms are given by (1.4) and (1.5) with a = b = 1. Whereas, the
matrices A and B are given as follows

A = (1 + e−t)

(
2 1
0 1

)
, B = (1 +

1

1 + t
)

(
3 0
1 2

)
.

Test 1. We consider the circular domain Ω1 = {(x, y) : x2 + y2 < 1} with a
triangulation discretization (see the mesh-grid in Figure 1) which consists of 281
triangles and 162 degrees of freedoms [20] and use the initial conditions

u0(x, y) = 2(1− x2 − y2), v0(x, y) = 3(1− x2 − y2), u1 = v1 = 0.

We run our code with a time step ∆t = 10−3, which is small enough to catch the
below-up behavior.

Figure 1. Uniform mesh grid of Ω1.

Figure 2 shows the approximate numerical results of the solution (u, v) at differ-
ent time iterations t = 0, t = 0.02, t = 0.023, and t = 0.024, where the left column
shows the approximate values of u and the right column shows the approximate
values of v. Note that the blow-up is occurring at instant t = 0.024.
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(A) t = 0

(B) t = 0.02

(C) t = 0.023

(D) t = 0.024

Figure 2. Numerical results of Test 1 at different times.

Figure 3. Test 1: Blow-up of H in finite time.

Figure 3 presents the numerical values of the functional H(t) defined by (4.18)
during the time iterations. It shows the blow-up of the energy of system (1.1).



EJDE-2021/91 EXISTENCE AND BLOW UP FOR WAVE EQUATIONS 31

Figure 4. Uniform mesh grid of Ω2.

(A) t = 0

(B) t = 0.02

(C) t = 0.0205

(D) t = 0.021

Figure 5. Numerical results of Test 2 at different times.

Test 2. We consider the elliptical domain Ω2 = {(x, y) : x2

4 + y2 < 1} with a
triangulation discretization (see the mesh-grid in Figure 4) which consists of 311
triangles and 180 degrees of freedom [20] and take the initial conditions

u0(x, y) = 2(1− x2

4
− y2), v0(x, y) = 3(1− x2

4
− y2), u1 = v1 = 0.
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Figure 6. Test 2: Blow-up of H in finite time.

We run our code with a time step ∆t = 5 · 10−4, which is small enough to catch
the below-up behavior.

In Figure 5, we show the approximate numerical results of the solution (u, v)
at different time iterations t = 0, t = 0.02, t = 0.0205 and t = 0.021, where the
left column shows the approximate values of u and the right column shows the
approximate values of v. Note that the blow-up takes place at instant t = 0.021.

For Test 2, the numerical values of the functional H(t) are presented in Figure
6. Observe the blow-up of the energy from t = 0.02.
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