Electronic Journal of Differential Equations, Vol. 2022 (2022), No. 18, pp. 1-14.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

k-HESSIAN CURVATURE TYPE EQUATIONS IN SPACE FORMS

JUNDONG ZHOU

Abstract

In this article, we study closed star-shaped (η, k)-convex hypersurfaces in space forms satisfying a class of k-Hessian curvature type equations. Firstly, using the maximum principle, we obtain a priori estimates for the class of Hessian curvature type equations. Secondly, we obtain an existence result by using standard degree theory based on a priori estimates.

1. Introduction

Suppose that M is an immersed hypersurface in Euclidean space \mathbb{R}^{n+1}. Define a (0,2)-tensor η on M by

$$
\eta_{i j}=H g_{i j}-h_{i j},
$$

where $g_{i j}, h_{i j}$ and H are the first, second fundamental forms and mean curvature of M respectively. In fact, η is the first Newton transformation of h with respect to g, see [18]. Let $\kappa=\left(\kappa_{1}, \ldots, \kappa_{n}\right)$ be the vector whose components κ_{i} are the principal curvatures of M. Using $\lambda(\eta)$ to denote the vector whose components are the eigenvalues of η, we have that

$$
\lambda(\eta)=\left(H-\kappa_{1}, \ldots, H-\kappa_{n}\right)
$$

Then k-Hessian equation of $\lambda(\eta)$ can be written as

$$
\begin{equation*}
\sigma_{k}(\lambda(\eta))=f(X, \nu(X)), \quad 1 \leq k \leq n, \quad X \in M \tag{1.1}
\end{equation*}
$$

where ν is the normal vector field along M and σ_{k} is the k-th elementary symmetric function

$$
\sigma_{k}(\lambda)=\sum_{i_{1}<\cdots<i_{k}} \lambda_{i_{1}} \ldots \lambda_{i_{k}}
$$

If $\lambda(\eta)$ is replaced by the principal curvature vector κ of the hypersurface, Equation (1.1) becomes the classical prescribed curvature equation

$$
\begin{equation*}
\sigma_{k}(\kappa)=f(X, \nu), \text { for } \quad X \in M \subset \mathbb{R}^{n}, \tag{1.2}
\end{equation*}
$$

which has been widely studied in [2, 3, 6, 2, 10, 11]. In fact, curvature estimates are the key to the existence of star-shaped k-convex hypersurface satisfying Equation (1.2). In the case $k=2$, Guan, Ren, and Wang [12] obtained a global C^{2} estimate for strictly star-shaped 2-convex hypersurfaces. Spruck and Xiao [23] extended the estimate for 2-convex hypersurfaces to space forms. Further more, Li, Ren, and Wang [17] showed that the convex hypersurface in [12] can be substituted by

[^0]($k+1$)-convex hypersurface. Ren and Wang [19, 20] solved the case $k=n-1$ and $k=n-2$. For $3 \leq k \leq n-3$, the existence of star-shaped k-convex hypersurface satisfying (1.2) is still open.

Equation (1.1) is motivated by some geometric problems. To ensure the ellipticity of (1.1), so called (η, k)-convex hypersurface is introduced in [5]. Namely

$$
\lambda(\eta) \in \Gamma_{k}=\left\{\lambda \in \mathbb{R}^{n}: \sigma_{i}(\lambda)>0, \forall 1 \leq i \leq k\right\} .
$$

For example, when $k=n$, it becomes

$$
\begin{equation*}
\operatorname{det}(\eta(X))=f(X, \nu), \quad \text { for } X \in M \tag{1.3}
\end{equation*}
$$

The (η, n)-convex hypersurface has been studied intensively by Sha [21, 22], Wu [24], Harvey and Lawson [14]. (η, n)-convexity is called $(n-1)$-convexity in [14, 21, 22]. In complex geometry, when $k=n$, Equation 1.1) is called the $(n-1)$ MongeAmpère equation, which is related to the Gauduchon conjecture (see [8]). Compared to (1.2), it is interesting that the curvature estimate of 1.1) can be established for $1 \leq k \leq n$. Chu and Jiao [5] established curvature estimates for (η, k)-convex hypersurface and proved the existence for (1.1). Chen, Tu and Xiang (4] extended it to a class of Hessian quotient equations.

In this article, we give a simpler proof of the result of Chu and Jiao [5], and extend it to space forms. Let $N^{n+1}(K)$ be a space form of sectional curvature $K=-1,0$, or 1 . It is known that the space forms can be viewed as Euclidean space \mathbb{R}^{n+1} equipped with a metric tensor g^{N}, that is,

$$
N^{n+1}(K)=\left(\mathbb{R}^{n+1}, g^{N}\right), g^{N}=d \rho^{2}+\phi^{2}(\rho) d z^{2}
$$

where

$$
\phi(\rho)= \begin{cases}\sin (\rho), \rho \in\left[0, \frac{\pi}{2}\right), & \text { if } K=1 \\ \rho, \rho \in[0,+\infty), & \text { if } K=0 \\ \sinh (\rho), \rho \in[0,+\infty), & \text { if } K=-1\end{cases}
$$

where $d z^{2}$ denotes the standard metric on \mathbb{S}^{n} induced from \mathbb{R}^{n+1}. We define the vector field $V=\phi(\rho) \frac{\partial}{\partial \rho}$. In fact, V is a conformal Killing field in $N^{n+1}(K)$ and V is just the position vector field in \mathbb{R}^{n+1}. We consider the k-Hessian equation of $\lambda(\eta)$ in $N^{n+1}(K)$,

$$
\begin{equation*}
\sigma_{k}(\lambda(\eta))=f(V, \nu), 2 \leq k \leq n \tag{1.4}
\end{equation*}
$$

and obtain the main result as follows.
Theorem 1.1. Let $f(V, \nu) \in C^{2}(\Gamma)$ be a positive function and Γ be an open neighborhood of the unit normal bundle of M in $N^{n+1} \times \mathbb{S}^{n}$. Assume that there exist two positive constants r_{1}, r_{2} and $r_{1}<1<r_{2}$, such that

$$
\begin{gather*}
f\left(V, \frac{V}{|V|}\right) \leq C_{n}^{k}(n-1)^{k}\left(\frac{\phi^{\prime}\left(r_{2}\right)}{\phi\left(r_{2}\right)}\right)^{k}, \quad \text { for } \rho=r_{2} \tag{1.5}\\
f\left(V, \frac{V}{|V|}\right) \geq C_{n}^{k}(n-1)^{k}\left(\frac{\phi^{\prime}\left(r_{1}\right)}{\phi\left(r_{1}\right)}\right)^{k}, \quad \text { for } \rho=r_{1} \tag{1.6}\\
\frac{\partial}{\partial \rho}\left[\phi^{k} f(V, \nu)\right] \leq 0, \quad \text { for } r_{1} \leq \rho \leq r_{2} \tag{1.7}
\end{gather*}
$$

Then there exists a $C^{4, \delta}$ closed star-shaped (η, k)-convex hypersurface satisfying (1.4) for any $\delta \in(0,1)$.

The rest of this article is organized as follows. In Section 2, we give some definitions and important formulas. In Section 3, we prove C^{0}, C^{1} and C^{2} estimates of (1.4). In Section 4, we give the proof for the existence, that is Theorem 1.1.

2. Preliminaries

In this section, we recall some geometric objects and related formulas on hypersurfaces in space forms. Let M be an immersed star-shaped hypersurface in $N^{n+1}(K)$, which is expressed as

$$
M=\left\{(z, \rho(z)): z \in \mathbb{S}^{n}\right\}
$$

Let ∇^{\prime} and ∇ denote the covariant derivatives with respect to the standard spherical metric and the covariant derivatives with respect to the induced metric on M, respectively. Following the notations in [1], the induced metric, its inverse, unit normal vector and second fundamental form on M are respectively by

$$
\begin{gather*}
g_{i j}=\phi^{2} e_{i j}+\nabla_{i}^{\prime} \rho \nabla_{j}^{\prime} \rho, \quad g^{i j}=\frac{1}{\phi^{2}}\left(e^{i j}-\frac{\rho^{i} \rho^{j}}{\phi^{2}+\left|\nabla^{\prime} \rho\right|^{2}}\right), \tag{2.1}\\
\nu=\frac{-\nabla^{\prime} \rho+\phi^{2} \frac{\partial}{\partial \rho}}{\sqrt{\phi^{4}+\phi^{2}\left|\nabla^{\prime} \rho\right|^{2}}}, \tag{2.2}\\
h_{i j}=\frac{\phi}{\sqrt{\phi^{2}+\left|\nabla^{\prime} \rho\right|^{2}}}\left(-\nabla_{i j}^{\prime} \rho+\frac{2 \phi^{\prime}}{\phi} \nabla_{i}^{\prime} \rho \nabla_{j}^{\prime} \rho+\phi \phi^{\prime} e_{i j}\right) . \tag{2.3}
\end{gather*}
$$

where $e_{i j}$ is the standard spherical metric and $e^{i j}$ is inverse of it. We define $\Phi(\rho)=$ $\int_{0}^{\rho} \phi(r) d r$ and $u=\langle V, \nu\rangle$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a local orthonormal frame on M. By direct calculations, we have the following formulas (see [13, 23]):

$$
\begin{gather*}
\nabla_{i} \Phi=\left\langle V, e_{i}\right\rangle, \quad \nabla_{i j} \Phi=\phi^{\prime} g_{i j}-u h_{i j}, \tag{2.4}\\
\nabla_{i} u=g^{k l} h_{i k} \nabla_{l} \Phi \tag{2.5}\\
\nabla_{i j} u=g^{k l} \nabla_{k} h_{i j} \nabla_{l} \Phi+\phi^{\prime} h_{i j}-u g^{k l} h_{i k} h_{j l}, \tag{2.6}\\
\nabla_{i} \nu=g^{k l} h_{i k} e_{l} \tag{2.7}\\
\nabla_{i j} h_{k l}=\nabla_{k l} h_{i j}-h_{m l}\left(h_{i m} h_{k j}-h_{i j} h_{m k}\right)-h_{m j}\left(h_{m i} h_{k l}-h_{i l} h_{m k}\right) \\
+K h_{m l}\left(\delta_{i j} \delta_{k m}-\delta_{i m} \delta_{k j}\right)+K h_{m j}\left(\delta_{i l} \delta_{k m}-\delta_{i m} \delta_{k l}\right) \tag{2.8}
\end{gather*}
$$

For simplicity, we denote

$$
G(\eta):=\sigma_{k}^{1 / k}(\lambda(\eta)), \quad G^{i j}(\eta):=\frac{\partial G}{\partial \eta_{i j}}, \quad G^{i j, r s}(\eta):=\frac{\partial^{2} G}{\partial \eta_{i j} \eta_{r s}}, \quad F^{i i}=\sum_{k \neq i} G^{k k}
$$

If $\left(h_{i j}\right)$ is diagonal and $h_{11} \geq \cdots \geq h_{n n}$, then

$$
\eta_{11} \leq \cdots \leq \eta_{n n}, \quad G^{11} \geq \cdots \geq G^{n n}, \quad F^{11} \leq \cdots \leq F^{n n}
$$

3. A priori estimates

In this section, we obtain C^{0}, C^{1} and C^{2} estimates for 1.4. Let us consider a family of functions, for $t \in[0,1]$,

$$
\begin{equation*}
f^{t}(V, \nu)=t f(V, \nu)+(1-t) C_{n}^{k}(n-1)^{k}\left[\left(\frac{\phi^{\prime}(\rho)}{\phi(\rho)}\right)^{k}+\varepsilon\left(\left(\frac{\phi^{\prime}(\rho)}{\phi(\rho)}\right)^{k}-\left(\frac{\phi^{\prime}(1)}{\phi(1)}\right)^{k}\right)\right] \tag{3.1}
\end{equation*}
$$

where the constant ε is small sufficiently such that

$$
\min _{r_{1} \leq \rho \leq r_{2}}\left[\left(\frac{\phi^{\prime}(\rho)}{\phi(\rho)}\right)^{k}+\varepsilon\left(\left(\frac{\phi^{\prime}(\rho)}{\phi(\rho)}\right)^{k}-\left(\frac{\phi^{\prime}(1)}{\phi(1)}\right)^{k}\right)\right] \geq c_{0}>0 .
$$

It is easy to see that $f^{t}(V, \nu)$ satisfies (1.5), 1.6) and (1.7) with strict inequalities for $0<t<1$. To prove Theorem 1.1 we consider the family of equations

$$
\begin{equation*}
\sigma_{k}(\lambda(\eta))=f^{t}(V, \nu), \quad 0 \leq t \leq 1 \tag{3.2}
\end{equation*}
$$

3.1. C^{0} estimates. Now, we prove the following proposition which asserts that the solutions of 3.2 have uniform C^{0} bounds.
Proposition 3.1. Let $f^{t}(V, \nu) \in C^{2}\left(N^{n+1} \times \mathbb{S}^{n}\right)$ is a positive function. Under assumptions 1.5 and 1.6, if $M_{t}=\left\{(z, \rho(z)): z \in \mathbb{S}^{n}\right\} \subset N^{n+1(K)}$ is a starshaped (η, k)-convex hypersurface satisfying Equation 3.2 for $0<t<1$, then $r_{1}<\rho_{t}<r_{2}$.

Proof. Suppose that $\rho_{t}(z)$ attains its maximum at $z_{0} \in \mathbb{S}^{n}$ and $\rho_{t}\left(z_{0}\right) \geq r_{2}$. Then $\nabla^{\prime} \rho=0$, at z_{0}. Therefore, from 2.1 and 2.3 we obtain

$$
g^{i j}=\phi^{-2} e^{i j}, \quad h_{i j}=-\nabla_{i j}^{\prime} \rho+\phi \phi^{\prime} e_{i j}
$$

which implies that

$$
h_{j}^{i}=g^{i k} h_{k j}=-\frac{e^{i k} \nabla_{k j}^{\prime} \rho}{\phi^{2}}+\frac{\phi^{\prime}}{\phi} \delta_{j}^{i} \geq \frac{\phi^{\prime}}{\phi} \delta_{j}^{i} .
$$

It follows that

$$
\eta_{j}^{i}=H \delta_{j}^{i}-h_{j}^{i} \geq(n-1) \frac{\phi^{\prime}}{\phi} \delta_{j}^{i}
$$

Noticing that σ_{k} is elliptic in Γ_{k}, we have

$$
\begin{equation*}
\sigma_{k}(\lambda(\eta)) \geq C_{n}^{k}(n-1)^{k}\left(\frac{\phi^{\prime}}{\phi}\right)^{k} \tag{3.3}
\end{equation*}
$$

On the other hand, the unit outer normal vector $\nu=\frac{V}{|V|}$ at z_{0} and $f^{t}(V, \nu)$ satisfies 1.5) with strict inequality for $0<t<1$. If $\rho_{t}\left(z_{0}\right)=r_{2}$, then

$$
\begin{equation*}
C_{n}^{k}(n-1)^{k}\left(\frac{\phi^{\prime}\left(r_{2}\right)}{\phi\left(r_{2}\right)}\right)^{k}>f^{t}\left(V, \frac{V}{|V|}\right)=f^{t}(V, \nu)=\sigma_{k}(\lambda(\eta)) . \tag{3.4}
\end{equation*}
$$

This contradicts (3.3), and shows that $. \sup _{M_{t}} \rho_{t}<r_{2}$. Similarly, we prove $\inf _{M_{t}} \rho_{t}>r_{1}$.

Now, we prove the following uniqueness result.
Proposition 3.2. For $t=0$, there exists unique (η, k)-convex solution of Equation (3.2), namely, M_{0} is an unit sphere in $N^{k}(K)$.

Proof. Let M_{0} be a solution of 3.2 for $t=0$. Assume the height function $\rho(z)$ of M_{0} achieves its maximum $\rho_{\max }$ at $z_{0} \in \mathbb{S}^{n}$, then

$$
\begin{aligned}
& C_{n}^{k}(n-1)^{k}\left[\left(\frac{\phi^{\prime}\left(\rho_{\max }\right)}{\phi\left(\rho_{\max }\right)}\right)^{k}+\varepsilon\left(\left(\frac{\phi^{\prime}\left(\rho_{\max }\right)}{\phi\left(\rho_{\max }\right)}\right)^{k}-\left(\frac{\phi^{\prime}(1)}{\phi(1)}\right)^{k}\right)\right] \\
& =\sigma_{k}(\lambda(\eta)) \\
& \geq C_{n}^{k}(n-1)^{k}\left(\frac{\phi^{\prime}\left(\rho_{\max }\right)}{\phi\left(\rho_{\max }\right)}\right)^{k},
\end{aligned}
$$

which implies

$$
\begin{equation*}
\frac{\phi^{\prime}\left(\rho_{\max }\right)}{\phi\left(\rho_{\max }\right)} \geq \frac{\phi^{\prime}(1)}{\phi(1)} \tag{3.5}
\end{equation*}
$$

Noting that

$$
\frac{\phi^{\prime}(\rho)}{\phi(\rho)}= \begin{cases}\cot (\rho), & \text { if } K=1 \\ \frac{1}{\rho}, & \text { if } K=0 \\ \operatorname{coth}(\rho), & \text { if } K=-1\end{cases}
$$

we obtain $\rho_{\max } \leq 1$. Similarly, $\rho_{\min } \geq 1$. Thus, $\rho=1$ is the unique solution of (3.2) for $t=0$.
3.2. C^{1} estimates. In this section, we follow the ideas in 3] and [10 to obtain C^{1} estimates for the height function ρ.

Proposition 3.3. Let M be a closed star-shaped (η, k)-convex hypersurface in $N^{k}(K)$ satisfying (3.2). Under assumption (1.7), if ρ has positive upper and lower bounds, there exists a constant C depending on $\inf f_{M} \rho, \sup _{M} \rho$, and $\|f\|_{C^{1}(M)}$ such that $|\nabla \rho| \leq C$.
Proof. Since

$$
u=\langle V, \nu\rangle=\frac{\phi^{2}}{\phi^{2}+\left|\nabla^{\prime} \rho\right|^{2}}
$$

it is sufficient to obtain a positive lower bound of u. We consider a test function

$$
\varphi=-\log u+\gamma(\Phi(\rho))
$$

where $\gamma(t)$ is a function which will be chosen later. Assume that φ achieves its maximum value at $z_{0} \in \mathbb{S}^{n}$, we will show that $u\left(z_{0}\right)=\left|V\left(z_{0}\right)\right|$, that is, $V\left(z_{0}\right)=$ $\phi\left(\rho\left(z_{0}\right)\right) \nu\left(z_{0}\right)$, which implies a uniform lower bound for u on M. If not, we may choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ around $\left(z_{0}, \rho\left(z_{0}\right)\right) \in M$ such that $\left\langle V, e_{1}\right\rangle \neq 0$ and $\left\langle V, e_{i}\right\rangle=0, i \geq 2$. Using (2.5), we have at $\left(z_{0}, \rho\left(z_{0}\right)\right) \in M$,

$$
\begin{equation*}
0=\nabla_{i} \varphi=-\frac{\nabla_{i} u}{u}+\gamma^{\prime} \nabla_{i} \Phi=-\frac{h_{i 1}\left\langle V, e_{1}\right\rangle}{u}+\gamma^{\prime}\left\langle V, e_{i}\right\rangle \tag{3.6}
\end{equation*}
$$

It follows from 3.6 that

$$
\begin{equation*}
h_{11}=u \gamma^{\prime}, \quad h_{i 1}=0, \quad i \geq 2 \tag{3.7}
\end{equation*}
$$

Rotate $\left\{e_{2}, \ldots, e_{n}\right\}$ around $\left(z_{0}, \rho\left(z_{0}\right)\right) \in M$ such that $h_{i j}$ is diagonal. Covariantly differentiating φ twice yields

$$
\begin{align*}
0 \geq & F^{i i} \nabla_{i i} \varphi \\
= & -F^{i i} \frac{\nabla_{i i} u}{u}+F^{i i} \frac{\left|\nabla_{i} u\right|^{2}}{u^{2}}+\gamma^{\prime \prime} F^{i i}\left|\nabla_{i} \Phi\right|^{2}+\gamma^{\prime} F^{i i} \nabla_{i i} \Phi \\
= & -\frac{1}{u} F^{i i}\left(h_{i i 1} \nabla_{1} \Phi+\phi^{\prime} h_{i i}-u h_{i i}^{2}\right)+\left(\left(\gamma^{\prime}\right)^{2}+\gamma^{\prime \prime}\right) F^{i i}\left|\nabla_{i} \Phi\right|^{2} \tag{3.8}\\
& +\gamma^{\prime} F^{i i}\left(\phi^{\prime} \delta_{i i}-u h_{i i}\right),
\end{align*}
$$

where the second equality is given by using (2.4, 2.5 and 2.6). Then

$$
\eta_{i i}=\sum_{j \neq i} h_{j j}
$$

implies

$$
\sum_{i} \eta_{i i}=(n-1) \sum_{i} h_{i i}, \quad h_{i i}=\frac{1}{n-1} \sum_{k} \eta_{k k}-\eta_{i i}
$$

which results in

$$
\begin{align*}
\sum_{i} F^{i i} h_{i i}= & \sum_{i}\left(\sum_{k} G^{k k}-G^{i i}\right)\left(\frac{1}{n-1} \sum_{k} \eta_{k k}-\eta_{i i}\right) \tag{3.9}\\
= & \sum_{i} G^{i i} \eta_{i i}=f^{1 / k}(V, \nu), \\
& \sum_{i} F^{i i} h_{i i j}=\sum_{i} G^{i i} \eta_{i i j} . \tag{3.10}
\end{align*}
$$

Notice that (1.4) can be written as

$$
\begin{equation*}
G(\eta)=f^{1 / k}(V, \nu)=\widetilde{f}(V, \nu) \tag{3.11}
\end{equation*}
$$

By (2.7) and covariantly differentiating (3.11) with respect to e_{1}, we have

$$
\begin{equation*}
G^{i i} \eta_{i i 1}=d_{V} \widetilde{f}\left(\nabla_{e_{1}} V\right)+h_{11} d_{\nu} \tilde{f}\left(e_{1}\right) \tag{3.12}
\end{equation*}
$$

Taking (2.4), (3.9, (3.10) and (3.12) in (3.8) yields

$$
\begin{align*}
0 \geq & -\frac{1}{u}\left(d_{V} \tilde{f}\left(\nabla_{e_{1}} V\right)\left\langle V, e_{1}\right\rangle+\phi^{\prime} \tilde{f}+h_{11} d_{\nu} \tilde{f}\left(e_{1}\right)\left\langle V, e_{1}\right\rangle\right) \\
& +\left(\left(\gamma^{\prime}\right)^{2}+\gamma^{\prime \prime}\right) F^{11}\left\langle V, e_{1}\right\rangle^{2}+\gamma^{\prime} \phi^{\prime} \sum_{i} F^{i i}-\gamma^{\prime} u \widetilde{f} \\
\geq & -\frac{1}{u}\left(d_{V} \widetilde{f}\left(\nabla_{e_{1}} V\right)\left\langle V, e_{1}\right\rangle+\phi^{\prime} \tilde{f}\right)-\gamma^{\prime} d_{\nu} \widetilde{f}\left(e_{1}\right)\left\langle V, e_{1}\right\rangle \tag{3.13}\\
& +\left(\left(\gamma^{\prime}\right)^{2}+\gamma^{\prime \prime}\right) F^{11}\left\langle V, e_{1}\right\rangle^{2}+\gamma^{\prime} \phi^{\prime} \sum_{i} F^{i i}-\gamma^{\prime} u \tilde{f},
\end{align*}
$$

where the second inequality is obtained by 3.7). Since $V=\left\langle V, e_{1}\right\rangle e_{1}+\langle V, \nu\rangle \nu$ at z_{0},

$$
\begin{equation*}
d_{V} \widetilde{f}(V)=\left\langle V, e_{1}\right\rangle\left(d_{V} \widetilde{f}\right)\left(\nabla_{e_{1}} V\right)+u\left(d_{V} \widetilde{f}\right)\left(\nabla_{\nu} V\right) \tag{3.14}
\end{equation*}
$$

From this and the assumption (1.7), we see that

$$
\begin{align*}
0 & \geq \frac{\partial}{\partial \rho}\left(\phi^{k} f(V, \nu)\right)=k(\phi \widetilde{f})^{k-1}\left(\phi^{\prime} \widetilde{f}+d_{V} \widetilde{f}(V)\right) \tag{3.15}\\
& =k(\phi \widetilde{f})^{k-1}\left(\phi^{\prime} \widetilde{f}+\left\langle V, e_{1}\right\rangle\left(d_{V} \widetilde{f}\right)\left(\nabla_{e_{1}} V\right)+u\left(d_{V} \widetilde{f}\right)\left(\nabla_{\nu} V\right)\right)
\end{align*}
$$

Combining this with 3.13 gives

$$
\begin{align*}
0 \geq & d_{V} \widetilde{f}\left(\nabla_{\nu} V\right)+\left(\left(\gamma^{\prime}\right)^{2}+\gamma^{\prime \prime}\right) F^{11}\left\langle V, e_{1}\right\rangle^{2}+\gamma^{\prime} \phi^{\prime} \sum_{i} F^{i i} \tag{3.16}\\
& -\gamma^{\prime} u \widetilde{f}-\gamma^{\prime} d_{\nu} \widetilde{f}\left(e_{1}\right)\left\langle V, e_{1}\right\rangle
\end{align*}
$$

Now we choose

$$
\begin{equation*}
\gamma(t)=\frac{\alpha}{t} \tag{3.17}
\end{equation*}
$$

where α is sufficiently large. Recalling that $h_{11}=\gamma^{\prime} u$ at $\left(z_{0}, \rho\left(z_{0}\right)\right)$, we have $h_{11}<0$. Since $H>0$, there exists k_{0} with $2 \leq k_{0} \leq n$ such that $h_{k_{0} k_{0}}>h_{11}$. Combining this with the definitions of $\eta_{i i}$ and $G^{i i}$ yields

$$
\eta_{K_{0} k_{0}}<\eta_{11}, \quad G^{k_{0} k_{0}} \geq G^{11}
$$

Thus,

$$
\begin{equation*}
F^{11}=\sum_{j \neq 1} G^{j j} \geq \frac{1}{2} \sum_{i} G^{i i}=\frac{1}{2(n-1)} \sum_{i} F^{i i} \geq \frac{1}{2}\left(C_{n}^{k}\right)^{1 / k} \tag{3.18}
\end{equation*}
$$

Putting (3.17) and 3.18 in 3.16, we obtain

$$
\begin{align*}
0 \geq & \frac{\left\langle V, e_{1}\right\rangle^{2}}{2(n-1)}\left(\alpha^{2} \Phi^{-4}+4 \alpha^{2} \Phi^{-6}\right) \sum_{i} F^{i i}-\alpha \Phi^{-2} \phi^{\prime} \sum_{i} F^{i i} \tag{3.19}\\
& -\alpha \Phi^{-2}|V|\left|d_{\nu} \widetilde{f}\left(e_{1}\right)\right|-\left|d_{V} \widetilde{f}\left(\nabla_{\nu} V\right)\right|
\end{align*}
$$

which leads to a contradiction when α is large. Therefore $u\left(z_{0}\right)=\left|V\left(z_{0}\right)\right|$.
3.3. C^{2} estimates. To obtain C^{2} estimates for 3.2 , we prove that the principal curvatures have uniform bounds.

Proposition 3.4. Let $M=\left\{(z, \rho(z)): z \in \mathbb{S}^{n}\right\}$ be a closed star-shaped (η, k) convex hypersurface in $N^{k}(K)$ satisfying (3.2), where $f(V, \nu) \in C^{2}(\Gamma)$ is a positive function and Γ is an open neighborhood of the unit normal bundle of M in $N^{n+1} \times$ \mathbb{S}^{n}. If $0<r_{1} \leq \rho(z) \leq r_{2},\|\rho\|_{C^{1}} \leq r_{3}$, then there exists a constant C depending on $n, k, r_{1}, r_{2}, r_{3},\|f\|_{C^{2}(M)}$ and $\inf _{M} f$ such that

$$
\max _{\mathbb{S}^{n}}\left|\kappa_{i}\right| \leq C, \quad \text { for } \quad 1 \leq i \leq n
$$

where $\left(\kappa_{1}, \ldots, \kappa_{n}\right)$ is the principal curvatures vector of M.
Proof. Since $H>0$, it suffices to prove that the largest curvature $\kappa_{\max }$ is uniformly bounded from above. From Propositions 3.1 and 3.3 , we know that

$$
\frac{1}{C} \leq \inf _{M} u \leq u \leq \sup _{M} u \leq C
$$

where the positive constant C depends on $\inf _{M} \rho$ and $\|\rho\|_{C^{1}}$. Taking the auxiliary function

$$
\begin{equation*}
Q=\frac{e^{\beta \Phi} \kappa_{\max }}{u-a} \tag{3.20}
\end{equation*}
$$

where $a=\frac{1}{2} \inf _{M} u$ and β is a large constant to be determined later. Assume that $\left(z_{0}, \rho\left(z_{0}\right)\right)$ is the maximum point of the function Q, we can choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ around $\left(z_{0}, \rho\left(z_{0}\right)\right)$ such that $h_{i j}$ is diagonal and $h_{11} \geq \cdots \geq h_{n n}$ at $\left(z_{0}, \rho\left(z_{0}\right)\right)$. In the rest of proof, all computations will be carried out at $\left(z_{0}, \rho\left(z_{0}\right)\right)$. Since $h_{11}=\kappa_{\max }$, the function

$$
\log Q=\log h_{11}-\log (u-a)+\beta \Phi
$$

has a local maximum at $\left(z_{0}, \rho\left(z_{0}\right)\right)$. Therefore,

$$
\begin{gather*}
0=\frac{\nabla_{i} h_{11}}{h_{11}}-\frac{\nabla_{i} u}{u-a}+\beta \nabla_{i} \Phi \tag{3.21}\\
0 \geq \frac{F^{i i} \nabla_{i i} h_{11}}{h_{11}}-\frac{F^{i i}\left(\nabla_{i} h_{11}\right)^{2}}{h_{11}^{2}}-\frac{F^{i i} \nabla_{i i} u}{u-a}+\frac{F^{i i}\left(\nabla_{i} u\right)^{2}}{(u-a)^{2}}+\beta F^{i i} \nabla_{i i} \Phi . \tag{3.22}
\end{gather*}
$$

By (2.4) and (3.9), we have

$$
\begin{equation*}
\beta F^{i i} \nabla_{i i} \Phi=\beta \phi^{\prime} \sum_{i} F^{i i}-\beta u \tilde{f} . \tag{3.23}
\end{equation*}
$$

It follows from 2.6 and 3.12 that

$$
\begin{align*}
-\frac{F^{i i} \nabla_{i i} u}{u-a} & =-\frac{F^{i i} h_{i i j} \nabla_{j} \Phi}{u-a}-\frac{\phi^{\prime} \tilde{f}}{u-a}+\frac{u F^{i i} h_{i i}^{2}}{u-a} \tag{3.24}\\
& \geq-\frac{d_{V} \widetilde{f}\left(\nabla_{e_{i}} V\right) \nabla_{i} \Phi}{u-a}-\frac{h_{i i} d_{\nu} \widetilde{f}\left(e_{i}\right) \nabla_{i} \Phi}{u-a}-\frac{\phi^{\prime} \widetilde{f}}{u-a}+\frac{u F^{i i} h_{i i}^{2}}{u-a}
\end{align*}
$$

Applying 2.8 and 3.9, we obtain

$$
\begin{align*}
F^{i i} \nabla_{i i} h_{11}= & F^{i i} \nabla_{11} h_{i i}-h_{11} F^{i i} h_{i i}^{2}+F^{i i} h_{i i} h_{11}^{2} \\
& -K F^{i i}\left(h_{11} \delta_{1 i}^{2}-h_{11} \delta_{i i}+h_{i i}-h_{i 1} \delta_{i 1}\right) \tag{3.25}\\
= & F^{i i} \nabla_{11} h_{i i}-h_{11} F^{i i} h_{i i}^{2}+\widetilde{f} h_{11}^{2}+K h_{11} \sum_{i} F^{i i}-\tilde{f} K
\end{align*}
$$

Covariantly differentiating (3.11) twice yields

$$
\begin{equation*}
F^{i i} \nabla_{11} h_{i i}=G^{i i} \nabla_{11} \eta_{i i} \geq-G^{i j, r s} \nabla_{1} \eta_{i j} \nabla_{1} \eta_{r s}+\sum_{i} h_{11 i} d_{\nu} \widetilde{f}\left(e_{i}\right)-C_{1}\left(1+h_{11}^{2}\right) \tag{3.26}
\end{equation*}
$$

where the positive constant C_{1} depends on $\|f\|_{C^{2}}$. The concavity of G and Codazzi formula give

$$
\begin{equation*}
G^{i j, r s} \nabla_{1} \eta_{i j} \nabla_{1} \eta_{r s} \geq-2 \sum_{i \geq 2} G^{1 i, i 1}\left|\nabla_{1} \eta_{1 i}\right|^{2}=-2 \sum_{i \geq 2} G^{1 i, i 1}\left|\nabla_{i} h_{11}\right|^{2} \tag{3.27}
\end{equation*}
$$

Combining (3.25) and 3.26 with 3.27), we obtain

$$
\begin{align*}
\frac{F^{i i} \nabla_{i i} h_{11}}{h_{11}} \geq & -\frac{2}{h_{11}} \sum_{i \geq 2} G^{1 i, i 1}\left|\nabla_{i} h_{11}\right|^{2}-F^{i i} h_{i i}^{2}+\frac{h_{11 i} d_{\nu} \tilde{f}\left(e_{i}\right)}{h_{11}} \tag{3.28}\\
& +K \sum_{i} F^{i i}+h_{11} \widetilde{f}-\frac{K \widetilde{f}}{h_{11}}-C_{1}\left(\frac{1}{h_{11}}+h_{11}\right)
\end{align*}
$$

Putting (3.23), 3.24 and 3.28 in 3.22,

$$
\begin{align*}
0 \geq & -\frac{2}{h_{11}} \sum_{i \geq 2} G^{1 i, i 1}\left|\nabla_{i} h_{11}\right|^{2}-\frac{F^{i i}\left|\nabla_{i} h_{11}\right|^{2}}{h_{11}^{2}}+\frac{a}{u-a} F^{i i} h_{i i}^{2}+\frac{F^{i i}\left|\nabla_{i} u\right|^{2}}{(u-a)^{2}} \\
& +\sum_{i}\left(\frac{\nabla_{i} h_{11}}{h_{11}}-\frac{h_{i i} \nabla_{i} \Phi}{u-a}\right) d_{\nu} \widetilde{f}\left(e_{i}\right)+\left(K+\beta \phi^{\prime}\right) \sum_{i} F^{i i}-C_{2}\left(1+h_{11}\right) \tag{3.29}\\
\geq & -\frac{2}{h_{11}} \sum_{i \geq 2} G^{1 i, i 1}\left|\nabla_{i} h_{11}\right|^{2}-\frac{F^{i i}\left|\nabla_{i} h_{11}\right|^{2}}{h_{11}^{2}}+\frac{a}{u-a} F^{i i} h_{i i}^{2}+\frac{F^{i i}\left|\nabla_{i} u\right|^{2}}{(u-a)^{2}} \\
& +\left(K+\beta \phi^{\prime}\right) \sum_{i} F^{i i}-C_{2}\left(\beta+h_{11}\right),
\end{align*}
$$

where C_{2} depends r_{1}, r_{2}, r_{3}, and $\|f\|_{C^{2}}$. The second inequality is obtained by (3.21).

We divide the rest of proof into three steps.
Step 1. We prove that

$$
\begin{equation*}
\frac{a}{2(u-a)} F^{i i} h_{i i}^{2}+\frac{1}{2}\left(K+\beta \phi^{\prime}\right) \sum_{i} F^{i i} \geq C_{2} h_{11} \tag{3.30}
\end{equation*}
$$

The proof of step 1 is split into two cases.

Case 1. $\left|h_{i i}\right| \leq \delta h_{11}$ for all $2 \leq i \leq n, \delta$ is a small constant to be chosen. We obtain

$$
\begin{equation*}
\left|\eta_{11}\right| \leq(n-1) \delta h_{11}, \quad(1-(n-2) \delta) h_{11} \leq \eta_{22} \leq \cdots \leq \eta_{n n} \leq(1+(n-2) \delta) h_{11} \tag{3.31}
\end{equation*}
$$

This shows that

$$
\begin{align*}
\sigma_{k-1}(\eta)= & \sigma_{k-1}(\eta \mid 1)+\eta_{11} \sigma_{k-2}(\eta \mid 1) \\
\geq & C_{n-1}^{k-1}(1-(n-2) \delta)^{k-1} h_{11}^{k-1} \tag{3.32}\\
& -C_{n-1}^{k-2}(1+(n-2) \delta)(1-(n-2) \delta)^{k-2} h_{11}^{k-1}
\end{align*}
$$

Choosing δ sufficiently small and using $k \geq 2$, we have

$$
\begin{equation*}
\sigma_{k-1}(\eta) \geq \frac{1}{2} h_{11}^{k-1} \geq \frac{1}{2} h_{11} \tag{3.33}
\end{equation*}
$$

It follows from 3.33 and the definitions of $G^{i i}$ and $F^{i i}$ that

$$
\begin{align*}
\sum_{i} F^{i i} & =(n-1) \sum_{i} G^{i i}=\frac{(n-1)(n-k+1)}{k} \sigma_{k}^{\frac{1}{k}-1}(\eta) \sigma_{k-1}(\eta) \tag{3.34}\\
& \geq \frac{(n-1)(n-k+1)}{2 k \inf _{M} f^{1-\frac{1}{k}}} h_{11}
\end{align*}
$$

Choosing β sufficiently large gives

$$
\begin{equation*}
\frac{1}{2}\left(K+\beta \phi^{\prime}\right) \sum_{i} F^{i i} \geq C_{2} h_{11} \tag{3.35}
\end{equation*}
$$

Case 2. $h_{22}>\delta h_{11}$ or $h_{n n}<-\delta h_{11}$. We obtain

$$
\begin{align*}
\frac{a}{2(u-a)} F^{i i} h_{i i}^{2} & \geq \frac{a}{2\left(\sup _{M} u-a\right)}\left(F^{22} h_{22}^{2}+F^{n n} h_{n n}^{2}\right) \\
& \geq \frac{a \delta^{2}}{2\left(\sup _{M} u-a\right)} F^{22} h_{11}^{2} \tag{3.36}
\end{align*}
$$

Applying Maclaurin's inequality, we have

$$
\begin{equation*}
F^{22}=\sum_{i \neq 2} G^{i i} \geq \frac{1}{2} \sum_{i} G^{i i} \geq \frac{1}{2}\left(C_{n}^{k}\right)^{1 / k} \tag{3.37}
\end{equation*}
$$

Inserting into (3.36 yields

$$
\begin{equation*}
\frac{a}{2(u-a)} F^{i i} h_{i i}^{2} \geq \frac{a \delta^{2}}{4\left(\sup _{M} u-a\right)}\left(C_{n}^{k}\right)^{1 / k} h_{11}^{2} \geq C_{2} h_{11} \tag{3.38}
\end{equation*}
$$

where the second inequality is obtained from

$$
h_{11} \geq \frac{4\left(\sup _{M} u-a\right)}{a \delta^{2}}\left(C_{n}^{k}\right)^{-\frac{1}{k}} C_{2}
$$

otherwise, the proof is complete.
Step 2. We prove that

$$
\left|h_{i i}\right| \leq \beta C_{3}, \quad \text { for } 2 \leq i \leq n
$$

where C_{3} depends r_{1}, r_{2}, r_{3}, and $\|f\|_{C^{2}}$. Combining step 1 and 3.29 gives

$$
\begin{align*}
0 \geq & -\frac{2}{h_{11}} \sum_{i \geq 2} G^{1 i, i 1}\left|\nabla_{i} h_{11}\right|^{2}-\frac{F^{i i}\left|\nabla_{i} h_{11}\right|^{2}}{h_{11}^{2}}+\frac{a}{2(u-a)} F^{i i} h_{i i}^{2} \tag{3.39}\\
& +\frac{F^{i i}\left|\nabla_{i} u\right|^{2}}{(u-a)^{2}}+\frac{1}{2}\left(K+\beta \phi^{\prime}\right) \sum_{i} F^{i i}-C_{2} \beta .
\end{align*}
$$

From (3.21) and Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
-\frac{F^{i i}\left|\nabla_{i} h_{11}\right|^{2}}{h_{11}^{2}} \geq-\frac{1+\varepsilon}{(u-a)^{2}} F^{i i}\left|\nabla_{i} u\right|^{2}-\left(1+\frac{1}{\varepsilon}\right) \beta^{2} F^{i i}\left|\nabla_{i} \Phi\right|^{2} . \tag{3.40}
\end{equation*}
$$

Note that

$$
\begin{equation*}
-\frac{2}{h_{11}} \sum_{i \geq 2} G^{1 i, i 1}\left|\nabla_{i} h_{11}\right|^{2} \geq 0 \tag{3.41}
\end{equation*}
$$

Using 3.40 and 3.41 in 3.39 yields

$$
\begin{align*}
0 & \geq\left(\frac{a}{2(u-a)}-\frac{\varepsilon|\nabla \Phi|^{2}}{(u-a)^{2}}\right) F^{i i} h_{i i}^{2}-C_{2} \beta \tag{3.42}\\
& +\left(\frac{1}{2}\left(K+\beta \phi^{\prime}\right)-\left(1+\frac{1}{\varepsilon}\right) \beta^{2}|\nabla \Phi|^{2}\right) \sum_{i} F^{i i}
\end{align*}
$$

where $\nabla_{i} u=h_{i i} \nabla_{i} \Phi$. Recalling that

$$
F^{i i} \geq F^{22} \geq \frac{1}{2(n-1)} \sum_{i} F^{i i} \geq \frac{1}{2}\left(C_{n}^{k}\right)^{1 / k}
$$

and choosing ε sufficiently small such that

$$
\frac{a}{2(u-a)}-\frac{\varepsilon|\nabla \Phi|^{2}}{(u-a)^{2}} \geq c_{0}>0
$$

we deduce that

$$
\begin{equation*}
0 \geq \frac{c_{0}}{2(n-1)} \sum_{j \geq 2} h_{j j}^{2}+\left(\frac{1}{2}\left(K+\beta \phi^{\prime}\right)-\left(1+\frac{1}{\varepsilon}\right) \beta^{2}|\nabla \Phi|^{2}\right)-\frac{C_{2} \beta}{\sum_{i} F^{i i}} \tag{3.43}
\end{equation*}
$$

Therefore, $\sum_{i \geq 2} h_{i i}^{2} \leq \beta^{2} C_{3}^{2}$.
Step 3. We show that there exists a constant C depending $r_{1}, r_{2}, r_{3},\|f\|_{C^{2}}$, and $\inf _{M} f$, such that $h_{11} \leq C$.

From (3.21) and Cauchy-Schwarz inequality, we obtain

$$
\begin{align*}
& -\frac{F^{i i}\left|\nabla_{i} h_{11}\right|^{2}}{h_{11}^{2}} \\
& \geq-\frac{1+\varepsilon}{(u-a)^{2}} F^{11}\left|\nabla_{1} u\right|^{2}-\left(1+\frac{1}{\varepsilon}\right) \beta^{2} F^{11}\left|\nabla_{1} \Phi\right|^{2}-\sum_{i \geq 2} \frac{F^{i i}\left|\nabla_{i} h_{11}\right|^{2}}{h_{11}^{2}} \tag{3.44}
\end{align*}
$$

Choosing ε sufficiently small, we obtain

$$
\begin{equation*}
-\frac{\varepsilon}{(u-a)^{2}} F^{11}\left|\nabla_{1} u\right|^{2}=-\frac{\varepsilon\left|\nabla_{1} \Phi\right|^{2}}{(u-a)^{2}} F^{11} h_{11}^{2} \geq-\frac{a}{16(u-a)} F^{i i} h_{i i}^{2} \tag{3.45}
\end{equation*}
$$

Without loss of generality, we assume that

$$
h_{11}^{2} \geq \max \left\{\frac{32\left(\sup _{M} u-a\right) \beta^{2}}{a \varepsilon}|\nabla \Phi|^{2}, \frac{\beta^{2} C_{3}^{2}}{\alpha^{2}}\right\}
$$

where α will be determined later $(\alpha<1)$. This gives

$$
\begin{equation*}
-\left(1+\frac{1}{\varepsilon}\right) \beta^{2} F^{11}\left|\nabla_{1} \Phi\right|^{2} \geq-\frac{2}{\varepsilon} \beta^{2} F^{11}|\nabla \Phi|^{2} \geq-\frac{a}{16(u-a)} F^{i i} h_{i i}^{2} \tag{3.46}
\end{equation*}
$$

By step 2,

$$
\begin{equation*}
\left|h_{i i}\right| \leq \alpha h_{11}, \quad \text { for } i \geq 2 \tag{3.47}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\frac{1}{h_{11}} \leq \frac{1+\alpha}{h_{11}-h_{i i}} . \tag{3.48}
\end{equation*}
$$

Noting that

$$
-G^{1 i, i 1}=\frac{G^{11}-G^{i i}}{\eta_{i i}-\eta_{11}}=\frac{F^{i i}-F^{11}}{h_{11}-h_{i i}}
$$

we have

$$
\begin{align*}
-\sum_{i \geq 2} \frac{F^{i i}\left|\nabla_{i} h_{11}\right|^{2}}{h_{11}^{2}} & \geq-\sum_{i \geq 2} \frac{F^{i i}-F^{11}}{h_{11}^{2}}\left|\nabla_{i} h_{11}\right|^{2}-\sum_{i \geq 2} \frac{F^{11}\left|\nabla_{i} h_{11}\right|^{2}}{h_{11}^{2}} \\
& \geq-\frac{1+\alpha}{h_{11}} \sum_{i \geq 2} \frac{F^{i i}-F^{11}}{h_{11}-h_{i i}}\left|\nabla_{i} h_{11}\right|^{2}-\sum_{i \geq 2} \frac{F^{11}\left|\nabla_{i} h_{11}\right|^{2}}{h_{11}^{2}} \tag{3.49}\\
& =\frac{1+\alpha}{h_{11}} \sum_{i \geq 2} G^{i 1,1 i}\left|\nabla_{i} h_{11}\right|^{2}-\sum_{i \geq 2} \frac{F^{11}\left|\nabla_{i} h_{11}\right|^{2}}{h_{11}^{2}}
\end{align*}
$$

Using (3.21, (3.47), and Cauchy-Schwarz inequality we have

$$
\begin{align*}
& -\sum_{i \geq 2} \frac{F^{11}\left|\nabla_{i} h_{11}\right|^{2}}{h_{11}^{2}} \\
& \geq-2 \sum_{i \geq 2} \frac{F^{11}\left|\nabla_{i} u\right|^{2}}{(u-a)^{2}}-2 \beta^{2} \sum_{i \geq 2} F^{11}\left|\nabla_{i} \Phi\right|^{2} \tag{3.50}\\
& \geq-\frac{2(n-1) \alpha^{2}|\nabla \Phi|^{2}}{a^{2}} \frac{a F^{11} h_{11}^{2}}{u-a}-\frac{\varepsilon(u-a)}{16\left(\sup _{M} u-a\right)} \frac{a F^{11} h_{11}^{2}}{u-a}
\end{align*}
$$

Choosing α sufficiently small gives

$$
\begin{equation*}
-\sum_{i \geq 2} \frac{F^{11}\left|\nabla_{i} h_{11}\right|^{2}}{h_{11}^{2}} \geq-\frac{a F^{11} h_{11}^{2}}{8(u-a)} \geq-\frac{a F^{i i} h_{i i}^{2}}{8(u-a)} \tag{3.51}
\end{equation*}
$$

Putting (3.44), (3.45), (3.46), (3.49), and (3.51) in (3.39) yields

$$
\begin{equation*}
0 \geq \frac{F^{i i}\left|\nabla_{i} u\right|^{2}}{4(u-a)^{2}}+\frac{1}{2}\left(K+\beta \phi^{\prime}\right) \sum_{i} F^{i i}-C_{2} \beta \geq \frac{C_{2}}{2} h_{11}-C_{2} \beta \tag{3.52}
\end{equation*}
$$

Thus $h_{11} \leq 2 \beta$.

4. Existence

In this section, we use the degree theory for nonlinear elliptic equation developed in [16] to prove Theorem 1.1. After establishing the a priori estimates in Propositions 3.1, 3.3 and 3.4 , we know that (3.2) is uniformly elliptic. From Evans-Krylov estimates 7, 15], and Schauder estimates, we obtain

$$
\begin{equation*}
\|\rho\|_{C^{4, \delta}} \leq C \tag{4.1}
\end{equation*}
$$

for any (η, k)-convex solution $M=\left\{(z, \rho(z)): z \in \mathbb{S}^{n}\right\}$ to 1.4 . We consider a family of the mappings for $t \in[0,1], F(\cdot ; t): C_{0}^{4, \delta}\left(\mathbb{S}^{n}\right) \rightarrow C^{2, \delta}\left(\mathbb{S}^{n}\right)$, defined by

$$
F(z, \rho(z) ; t)=\sigma_{k}(\lambda(\eta))-f^{t}(V, \nu)
$$

where

$$
f^{t}(V, \nu)=t f(V, \nu)+(1-t) C_{n}^{k}(n-1)^{k}\left[\left(\frac{\phi^{\prime}(\rho)}{\phi(\rho)}\right)^{k}+\varepsilon\left(\left(\frac{\phi^{\prime}(\rho)}{\phi(\rho)}\right)^{k}-\left(\frac{\phi^{\prime}(1)}{\phi(1)}\right)^{k}\right)\right]
$$

where the constant ε is sufficiently small such that

$$
\min _{r_{1} \leq \rho \leq r_{2}}\left[\left(\frac{\phi^{\prime}(\rho)}{\phi(\rho)}\right)^{k}+\varepsilon\left(\left(\frac{\phi^{\prime}(\rho)}{\phi(\rho)}\right)^{k}-\left(\frac{\phi^{\prime}(1)}{\phi(1)}\right)^{k}\right)\right] \geq c_{0}>0
$$

for some positive constant c_{0}. We set

$$
\mathcal{O}_{R}=\left\{\rho \in C_{0}^{4, \delta}\left(\mathbb{S}^{n}\right):\|\rho\|_{C^{4, \delta}\left(\mathbb{S}^{n}\right)}<R\right\}
$$

which is an open set of $C_{0}^{4, \delta}\left(\mathbb{S}^{n}\right)$. If R is sufficiently large, $F(z, \rho(z) ; t)=0$ has no solution on $\partial \mathcal{O}_{R}$ by the a priori estimates in 4.1). Therefore, the degree of $\operatorname{deg}\left(F(\cdot ; t), \mathcal{O}_{R}, 0\right)$ is well-defined. Using the homotopic invariance of the degree, we have

$$
\operatorname{deg}\left(F(\cdot ; 1), \mathcal{O}_{R}, 0\right)=\operatorname{deg}\left(F(. ; 0), \mathcal{O}_{R}, 0\right)
$$

At $t=0$, by Proposition 3.2, $\rho_{0}=1$ is the unique solution of (3.2) in \mathcal{O}_{R}. Direct calculations yields

$$
F(z, \rho ; 0)=-\varepsilon C_{n}^{k}(n-1)^{k}\left(\left(\frac{\phi^{\prime}(\rho)}{\phi(\rho)}\right)^{k}-\left(\frac{\phi^{\prime}(1)}{\phi(1)}\right)^{k}\right)
$$

By the definition of $\phi(\rho)$, we obtain

$$
\begin{aligned}
\delta_{\rho_{0}} F\left(z, \rho_{0} ; 0\right) & =\left.\frac{d}{d s}\right|_{s=1} F\left(z, s \rho_{0} ; 0\right) \\
& =-\varepsilon k C_{n}^{k}(n-1)^{k}\left(\frac{\phi^{\prime}(1)}{\phi(1)}\right)^{k-1} \frac{\phi^{\prime \prime}(1) \phi(1)-\phi^{\prime}(1) \phi^{\prime}(1)}{(\phi(1))^{2}}>0
\end{aligned}
$$

where $\delta F\left(z, \rho_{0} ; 0\right)$ is the linearized operator of F at ρ_{0}. Then $\delta F\left(z, \rho_{0} ; 0\right)$ takes the form
$\delta_{\varphi} F\left(z, \rho_{0} ; 0\right)=-a^{i j} \nabla_{i j}^{\prime} \varphi+b^{i} \nabla_{i}^{\prime} \varphi-\varepsilon k C_{n}^{k}(n-1)^{k}\left(\frac{\phi^{\prime}(1)}{\phi(1)}\right)^{k-1} \frac{\phi^{\prime \prime}(1) \phi(1)-\phi^{\prime}(1) \phi^{\prime}(1)}{(\phi(1))^{2}}$,
where $\left(a^{i j}\right)$ is a positive definite matrix. Clearly, $\delta_{\rho_{0}} F\left(z, \rho_{0} ; 0\right)$ is an invertible operator. Therefore,

$$
\operatorname{deg}\left(F(. ; 1), \mathcal{O}_{R}, 0\right)=\operatorname{deg}\left(F(. ; 0), \mathcal{O}_{R}, 0\right) \neq 0
$$

It implies that there is a solution of Equation 3.2 at $t=1$. This completes the proof of Theorem 1.1.

Acknowledgments. This research was supported by Quality Enginering Projects of Anhui Province Education Department (Nos. 2018jyxm0491, 2019mooc205, 2020szsfkc0686), by the Natural Science Foundation of Anhui Province Education Department (No. KJ2021A0659), and by the Science Research Project of Fuyang Normal University (No. 2021KYQD0011)

The author would like to thank Prof. Xi-Nan Ma for the constant encouragement in this subject, Dr. Xin-Qun Mei and Prof. Song-ting Yin for their helpful discussions, and the referees for the helpful comments that made this paper more readable.

References

[1] J. Barbosa, J. Lira, V. Oliker; A priori estimates for starshaped compact hypersurfaces with prescribed m th curvature function in space forms, in: Nonlinear Problems of Mathematical Physics and Related Topics I, Int.Math. Ser. (N. Y.), 1 (2002), 35-52.
[2] L. Caffarelli, L. Nirenberg, J. Spruck; Dirichlet problem for nonlinear second order elliptic equations I. Monge-Ampère equation, Commun. Pure Appl. Math., 37 (1984), 369-402.
[3] L. Caffarelli, L. Nirenberg, J. Spruck; Nonlinear second order elliptic equations IV, Star shaped compact Weigarten hypersurfaces, Curr. Top. PDEs, (1986), 1-26.
[4] X. Chen, Q. Tu, N. Xiang; A class of Hessian quotient equations in Euclidean space, J. Differential Equations, 269 (2020), 11172-11194.
[5] J. Chu, H. Jiao; Curvature estimates for a class of Hessian type equations, Calc. Var. Partial Differential Equations, 60:90 (2021), 1-18 .
[6] F. de Lima, A. Ramalho, M. Velasquez; Solutions to mean curvature equations in weighted standard static spacetimes, Electron. J. Differential Equations, 2020 (2020), No. 83, 1-19.
[7] L. Evans; Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math., 35 (1982), 333-363.
[8] P. Gauduchon; La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., 267 (1984), 495-518.
[9] B. Guan, P. Guan; Convex hypersurfaces of prescribed curvatures, Ann. Math., 156 (2002), 655-673.
[10] P. Guan, C. Lin, X. Ma; The Existence of Convex Body with Prescribed Curvature Measures, Int. Math. Res. Not., (2009), 1947-1975.
[11] P. Guan, J. Li, Y. Li; Hypersurfaces of prescribed curvature measure, Duke Math. J., 161(2012), 1927-1942.
[12] P. Guan, C. Ren, Z. Wang; Global C^{2}-estimates for convex solutions of curvature equations, Comm. Pure Appl. Math., 68(2015), 1287-1325.
[13] P. Guan, J. Li; A mean curvature type flow in space forms. Int. Math. Res. Not., 13(2015), 4716-4740.
[14] F. Harvey and H. Lawson, p-convexity, p-plurisubharmonicity and the Levi problem, Indiana Univ. Math. J., 62(2013), 149-169.
[15] N. Krylov; Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat., 47(1983),75-108.
[16] Y. Li; Degree theory for second order nonlinear elliptic operators and its applications, Comm. Partial Differential Equations, 14(1989), 1541-1578.
[17] M. Li, C. Ren,Z. Wang; An interior estimate for convex solutions and a rigidity theorem, J. Funct. Anal., 270(2016), 2691-2714.
[18] R. Reilly; Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differ. Geom., 8(1973), 465-477.
[19] C. Ren, Z. Wang; On the curvature estimates for Hessian equations, Amer. J. Math., 141 (2019), 1281-1315.
[20] C. Ren, Z. Wang; The global curvature estimate for the n-2 Hessian equation, preprint, arXiv:2002.08702.
[21] J. Sha; p-convex Riemannian manifolds, Invent. Math., 83 (1986), 437-447.
[22] J. Sha; Handlebodies and p-convexity, J. Differential Geom., 25 (1987), 353-361.
[23] J. Spruck, L. Xiao; A note on starshaped compact hypersurfaces with a prescribed scalar curvature in space forms, Rev. Mat. Iberoam., 33(2017), 547-554.
[24] H. Wu; Manifolds of partially positive curvature, Indiana Univ. Math. J., 36 (1987), 525-548. Jundong Zhou
School of Mathematics and Statistics, Fuyang Normal University, Fuyang 236037, Anhui, China.
School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China

Email address: zhou109@mail.ustc.edu.cn

[^0]: 2020 Mathematics Subject Classification. 53A99, 35J60.
 Key words and phrases. A priori estimate; curvature type equation; (η, k)-convex; star-shape; space form.
 (C)2022. This work is licensed under a CC BY 4.0 license.

 Submitted April 1, 2021. Published March 10, 2022.

