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FRACTIONAL KIRCHHOFF HARDY PROBLEMS WITH
WEIGHTED CHOQUARD AND SINGULAR NONLINEARITY

SARIKA GOYAL, TARUN SHARMA

ABSTRACT. In this article, we study the existence and multiplicity of solutions
to the fractional Kirchhoff Hardy problem involving weighted Choquard and
singular nonlinearity

M([[ul*)(=A)*u —

EE
(=) 1 / r(y)|u(y)[? 2
=24 - — 2 dy)r(z)|ulP"“u in §Q,
wt + T U el =y )@

u >0 in £, u:OinRN\Q,

where @ C RV is an open bounded domain with smooth boundary containing
0 in its interior, N > 2s with s € (0,1), 0 < ¢ < 1,0 < g < N, v and A
are positive parameters, § € [1,p) with 1 < p < 2}, _ , where 2, , , is the
upper critical exponent in the sense of weighted Hardy-Littlewood-Sobolev
inequality. Moreover M models a Kirchhoff coefficient, [ is a positive weight
and r is a sign-changing function. Under the suitable assumption on [ and r,
we established the existence of two positive solutions to the above problem by
Nehari-manifold and fibering map analysis with respect to the parameters.The
results obtained here are new even for s = 1.

1. INTRODUCTION

Let © C RY be a bounded domain with smooth boundary containing 0 in its
interior, N > 2s with s € (0,1). We consider the following problem with weighted
Choquard and singular nonlinearity with weight functions

M) (=2 = s
— ()~ 1 M r(@)|ulP~%u in (1.1)
o+ o (| e e )l s

©v>0inQ, w=0inRY\Q,
where M : Ry — R is a continuous function, which is defined as

M(t) =c+dt’, withe>0,d>0,
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A, v are positive parameters, ¢ € (0,1), p € (0,N), 6 € [1,p) with 1 <p <27 _,,
where 27, ., is upper critical exponent in the sense of weighted Hardy—thtlewood—
Sobolev 1nequality. The fractional Laplacian operator (—A)® is defined, up to a

normalization constant, by the Riesz potential as

26(x) — &z +y) —E(x—y)
—-A)° = d
( )*¢() /RN |y|N+2s Yy
where z € RY and ¢ € C°(RY).
We use the following assumptions on [ and r;

A1) 1:Q — Rsuch that I > 0 a.e. in Q and [ € L™(Q), where m = -2 with
(

2t —1+4q
* _ 2N
28 — N-2s

is the fractional critical Sobolev exponents.
2’2
(A2) r : © — R such that r € L?us077(Q) is sign-changing function, where
2 s0 = % is the upper critical exponent in the sense of weighted

Hardy-Littlewood-Sobolev inequality.

Problems of the type (1.1) are motivated by the weighted Hardy-Littlewood-Sobolev
inequality proved by Stein and Weiss in [25].

Theorem 1.1. Let 1 < w,t < 00,0 < u< N,a+8>0,a+8+u <N, and
% + % + Lﬁ,ﬂ‘ = 2. Then there exists a constant C(«a, B, p, N, t, w) independent
of f and h such that

I(@)h(y)
/RN / T2l -yl 0 < Ol B Nt w)flly [kl (1-2)

_1_pr o _ 1
where 1 TN <w<l-—2.

Currently, problems on nonlocal operators emerging an attractive research area,
specifically the fractional Laplacian operator attracts a lot of interest in nonlinear
analysis for references [5, 10, 15 23]. The fractional Laplace operator (—A)® is the
infinitesimal generator of Lévy stable diffusion process which arises in anomalous
diffusions in plasma, flames propagation, chemical reactions in liquids, geophysical
fluid dynamics, and American options in finance, for references [2, [12]. There
is a large amount of literature on the problems related to the fractional elliptic
equations, so we refer here [19] [24] and references therein.

Kirchhoff type problems, which arise in the modeling of various physical phenom-
ena, specifically Kirchhoff in [I7] extended the classical D’Alembert wave equation
by considering the effects of the changes in the length of string during the vibrations
and give a model which is governed by the equation

p%— (/O ‘8u2 )au:()?

([ 15k a) = (2 £ [ 12 )

where p, pg, h, E, L are constants. For further study about the existence of solutions
for fractional Kirchhoff problems, we refer here [I1], [16, 18], 21].

Problem is closely related to the nonlocal Choquard equation, which arise
in the study of Hartree-Fock theory of one component plasma and in the model

where
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of self-gravitating matter. Currently, lots of work has been done on the nonlocal
Choquard equation, for the existence of solutions of such type of equations

—Au+V(2)u= (I, * [ul")|[ulP~?u in RY, (1.3)

where V(x) is an suitable function, I, is Riesz potential and p > 1 is suitable
constant, which is studied in [13} 20]. Moroz and Schaftingen in [20] studied the
existence, qualitative properties and decay asymptotics of ground states for the

problem (1.3]) in case of V' = 1.
In [7], the authors study the critical nonlocal equation with weighted nonlocal

term
1 u(y) P
—Au = 7{1(/ L)la dy) |u|p_2u in RV,
||\ Jrw @ =yl ]y
204 *

where N > 3,0 < u < N, a >0, 2a+p < N and 2 — =2~ <p<2,
with 27, = % The critical exponent 27, , appears here from the weighted
Hardy-Littlewood-Sobolev inequality. Here they prove the existence of a positive
ground state solutions for subcritical cases by using Schwarz symmetrization and
critical cases by a nonlocal version of the concentration-compactness principle.

To manipulate the Hardy potential in (1.1)), we recall the following fractional

Hardy inequality
2
o(y)|
dx d 1.4
[ i< JLL R -

for any ¢ € C§°(Q?), where ~vg is the sharp constant given in [6, 28] as

2(N225)

FQ(NZQS)’

YH = 225
where I' denotes the Gamma function.

Abdellaoui et al. [I] studied the effect of the Hardy potential on the existence
and summability of solutions to a class of nonlocal elliptic problems

) U .
(—A)°u — )\W = f(z,u) in Q,

©v>0inQ, w=0inRY\Q,

for the case f(z,u) = % for t > 0. They prove that for 0 > 1, A < Ay and
h € L(Q), this problem has a positive weak solution, where
2 N42s
AN,s = 228 411:“2(]\[%25*) .
(55)

For the local case (s = 1) with A = 0, in [3], the authors proved that for all
h € LY(2), there exists at least one distributional solution.

Fiscella and Mishra [9] studied the following problem for singular and critical
nonlinearities with Hardy term

u(y)l? u . o
dzdy)(—A)*u — -\ 5 Q
MZN |I7J7y|N+2S x y)( ) U M|$|25 f( ) +g( ) m
©v>0inQ, w=0inRY\Q,

where @ C RV, N > 2s with s € (0,1) and 2} = 28—, M(t) = a + bt?0~2

is a Kirchhoff coeflicients where 6 € [1,2%/2), f is a positive weight while ¢ is
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a sign-changing function. Using the Nehari-manifold technique, they showed the

existence of two positive solutions for the combination of critical Sobolev and Hardy

nonlinearities. Moreover in [8] author studied the above problem with x4 = 0 and

f = g = 1, here author prove the existence of two solutions by using variational
methods with an appropriate truncation argument.

Wang et al. [26] studied the Choquard-Kirchhoff type problem
q
L(u) = Af(z)u™ + (/ gl
Ry |7 —y[H
u=0in RY\Q,

dy)g(av)uq_1 in Q

where L(u) = (a + b[u]g?zfl)p)(—A)su, with s € (0,1), N > 2,1 <p < &,
1 <q<pjswitha>0,0>0,0¢€[l,29),0<p<1and u € (0,N), where
A, v > 0. Under the above assumptions, the authors obtained the existence of two
positive non-trivial solutions by using the Nehari-manifold approach. We also cite
[T4] where the author investigated the existence, non-existence, and multiplicity of
positive solutions fractional problem with Hardy potential and singular nonlinearity.

Before stating our main result for problem , it is worth noting that the nov-
elty of this work is mainly to obtain the multiple positive solutions for the fractional
Kirchhoff Hardy problem with weighted Choquard and singular nonlinearity using
the Nehari-manifold and fibering map analysis. To the best of our knowledge, there
is no article in the literature that deals with the fractional Kirchhoff Hardy prob-
lem for subcritical weighted Choquard and singular nonlinearity. In fact, results
are even new for the case s = 1 and o = 0. Because of the nonlocal behavior of the
operator, the bounded support of the test function is not preserved which makes
the analysis difficult. Also, because of the singular nature of the problem, the asso-
ciated functional is not differentiable in the sense of Gateaux. The results obtained
here are somehow expected but we show how the results arise out of nature of the
Nehari manifold. Now, we state our results.

Theorem 1.2. Let N > 2s with s € (0,1), 8 € [1,p). ¢ > 0, d > 0 and the
assumptions (A1), (A2) hold. Then (1.1) has at least two positive solutions for
A€ (0,A,).

In above theorem A, := min{A;, Ao}, where

(2p+q—1) 1
A ( 1+g¢ ) zlpt—qz (hc,’y<2p _ 2)) 2(2:—2)1 S% 1 [ 1 ] 2;::12
1= P—
2p —2 2p+q—1 1],y *Cr (v p, N)
and
ptq—1 0+q
% 2\/(1 T q)(29 Tq— 1)hc’7d 2p—0—1
A2 = 974 [ B 1 }
[Cy(a, p, N)|2p=0T P+q—

y [2\/(2p -2)(2p— 26’)hcﬁd}
2p+q—1)l,, '

This article is organized as follows: In section 2, we recall some important results
and useful inequalities. In section 3, we introduce the Nehari-manifold structure
and the fiber map analysis related . Also, we show that the associated energy
functional is bounded below and coercive. A crucial compactness property of the
energy functional and some important Lemmas are proved in section 4. In section
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5, we show the existence of a positive solution in ./\/7Jr » and Ny respectively, which
complete the proof of Theorem
To abbreviate notation, we denote || - || x, by || - ||, and || - || zr (o) by || - |l,-

2. PRELIMINARIES

In this section, we give the variational setting of problem (1.1]) and state impor-
tant results to be used later. Consider the fractional Sobolev space
s u(z) —u(y)
(@) = {ue 12(0): “P =0 e 12(Q)},
[z —yl?
where @ = R?V \ (CQ x CQ) and CQ =RY \ Q. The norm for the space H*(2) is

1/2
2
lullx = (Ml + %)

where ||u||, is the norm for LP(Q) and [u]x = (fQ % dx dy) 12

|z
We define the function space

Xo:={uec H*RY):u=0ae. in RV \Q}

which is a Hilbert space with norm

u(x) — (@) V2
o = ([, |x_y‘ws dody)"”.

The functional space Xy can be equivalently considered as the closure of C§5°(£2)
under the norm |ju|| = [u]x. For further studies on Xy, we refer the reader to [22].
Now if & = 8 and f(x) = |u(x)?, h(y) = |u(y)/?, that is if w = ¢, then by

Theorem [I.1]
P
[ [ reromenr,
RN JRY |I| |x*y|"|y|a

is well defined if 7|u|P € L*(RY), where t = W
embedding theorem, we have 2 < tp < 2%, which gives that

Thus by fractional Sobolev

2N —2a—p (2N —2a — p) .
2up,s,0 = S sp< T (N-—2s5) =2 500
where 27, ., is known as upper critical exponent and 2., s o is lower critical expo-

2*

nent in the sense of weighted Hardy-Littlewood-Sobolev inequality.
r € L%s0o~7 (RY), and Holder inequality, we obtain

Thus from Theorem

/ / A (@)["luy)|? dx dy < Ca, pi, N)||r(@)]ul?|)?
RN JRN ‘ml |:L‘

Y[yl =¥=2a
2
< Clop, N)|Ir|l”_: IIUII2:~

fsa P

Further, the fractional Sobolev inequality yields

() Py ” e
drdy < Cr(a, pt, N)STP||ul| ™, 2.1
L / \x| |x—y|ﬂ\y|a (0, M)~ ] (2.1)
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where C,.(a, i, N) = C(a, pi, N)||r H , and S denotes the best constant of the

s, 2 s aP

fractional Sobolev embedding theorem is defined as

inf fRZN ‘ngl)y\zvv*(fz)bl dz dy
veDs: Z(RN)\{O} (foun [v()[% dx)Q/Q;

where D*2(R™) is the closure of C§°(RY) under the norm ( fpx mivjv(ﬂ‘ dx d )1/2.

S = (2.2)

Lemma 2.1. Let N > 3, g € (1,00) and {u,} is a bounded sequence in LI(R™N).
If up, = u a.e in RY asn — oo, then u, — u weakly in LY(RY).

A proof of the above lemma can be found in [27, Lemma 1.32]. Now we prove
the following Brezis-Lieb type Lemma for singular Choquard in case of fractional.
The idea of the proof comes from [7, Lemma 2.2] where is done in case of s = 1.

Lemma 2.2. Let N >3, a > 0, O<u<N 2a+u<Ncmd1<p<2N_#,

If {u,} is a bounded sequence in Lovre=s (RN) such that u, — u a.e. in RN q
n — oo. Then

)P P _ P
ey Jry 2] — ylrfyle |$—y|“|y|a RN JRN |$| |95—?/|”|y|CY
p p
—>// z)lPluly )|addy.
RN JrN |T]® |$— "]yl

2N
Proof. Since {u,} is a bounded sequence in Liv—2a=0 (RM) such that u,, — u a.e.
in RY as n — oo, then from the Brézis-Lieb Lemma [4], we know that

tn — ulP — [un]? — |u[P  in L7525 (RN). (2.3)

The weighted Hardy-Littlewood-Sobolev inequality (|1.2)) implies that

| [P |wy, — ulP
——dy — ———dy
ry 2|z — ylrlyle ry 2|z — ylrlyl

p
- %dy in L7237 (RV).
rv [2]%z —yly]

Now we consider

1 . 1 "
= K - 2 ,S, — — — 2 ,8, )
/]RN (|a:| * (|x|a [ty |2+ 2l |, — u|?mse) (2.5)

IR 1 N tn — ufZe
2 (1™ ¢ (oo = gl = i) 22 e
By Lemma we obtain
|ty — ufZese — 0 in Lo82a=5 (RY) (2.6)
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Hence from (2.3), (2.4), (2.5) and (2.6)), we obtain the required result. O

Definition 2.3. We say u € X, is a weak solution of the problem (1.1)), if
[(z)(u)"%¢ € LY(Q) and for any ¢ € Xj it holds

(e i) // T _Z(ﬁ(fil_ ity [ e

. . WP o) ,
A, @) ode // |x| |x—y|ﬂ|y|a dody =0.

To obtain a positive solution of (1.1f), we consider the problem

2 s u’t
M ([Jul[*)(=A) u — Tl

ety (f OO (27)

lyllz — y|» || ’
u>0inQ, w=0inRY\Q,

where M(t) = ¢+ dt~! and u* = max{u,0}. Then the function u € Xy, u > 0
in Q is a weak solution of the problem (2.7), if I(z)(u™)"%¢ € L'(Q) and for any
¢ € Xy it holds

oy [ () () @)~ o) [ ute
(e ar=2) [[ e dwdy—+ [ £

) o )Pt @)y
A/” ¢ // |x| o — gyl o ?és)

One can easily see that if u > 0 is a solution to ([2.7)), then it is also a solution to
(1.1). To find a solution to (2.7), we use a variational approach. So, we define the
energy functional 7, x: Xo — R corresponding to problem (2.7)), as

c d y 2 A _
Fyalw) = Sl + —||u||29 - f||u+||H -1 [y

L L [ rereeteraor,,
Qe |

llu HH / [u(z da: for all u € Xj.

Here we denote

Then the functional 7, » is well defined and continuous for any v € (0,cym) by
the fractional Hardy inequality (1.4). We note that the relation v < |v| and (1.4)
yield

2 2
// v(y)| d:vdy—'y/ (v*) // W)| dx dy
R2N |I *y\NHS o lz[* e R2N |5'3*1/|NJr2s
2.9

(2.9)

for any v € Xo \ {0}, and hey = ¢ — 2L > 0 for any v € (0, cym).
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3. FIBERING MAP ANALYSIS

In this section, we show that A i)\ is non-empty and N, = {0}. Moreover 7, x
is bounded below and coercive.

Since the energy functional 7, x is not bounded below on X, but is bounded
below on appropriate subset N, x of Xj. Therefore in order to obtain the existence
results, we introduce the Nehari set

N%A = {uEX() <\7’y)\( >_O}
~{uexo: c||u||2 =t = [ o) o
Q

)P (ut ()P
// |w\ |x—y\ﬂ|y|a ¥ dady =0},

Here we define the fiber map ¢, : RT™ — R as ¢, (t) := J, A (tu) for all ¢ > 0. Then
we have

d 2 Ati—a _
bult) = S ull* + gt”u u” 2T - 1= [
2p + P
[ [y,
el
SO
8,6) = etul* +t29-1d||u||29 — ot = 2 [ )ty
Q
s [ [ HOOE @R,
le Iw—yl“lyla
and
) = clull® + d(20 — 1)~ 2uu||29 vnu*niﬁxqt*q’l [ i@
Q
e

One can easily see that the Neharl—manlfold is closely related to the fibering map
such that tu € N, » if and only if ¢, (t) = 0. In particular, u € N, , if and only if
#,,(1) = 0. So it is reasonable to split A » into three parts corresponding to local
maxima, local minima and point of inflection as

={ueNyn:¢i(1) 20}, N y:={ueN,:e)(1) =0}

For the sign—changing function r, we denote

rem{uex: [ [ 50 |a:\ e s> 0}
T ut p
o= fuexo: [ [ B doas <0}

Lemma 3.1. Let v € (0,¢yy). Then the following holds:

(1) For u € R*, there exist Ay > 0 and a unique tmax = tmax(u) > 0, tT =
tH(u) > 0 and t~ =17 (u) > 0 with t* < tyax <t~ such that ttu € N,

tTu € Ny, for any A € (0,A1). Also Ty x(tTu) = ming< < T\ (tu) and
Ty (™ u) maxy>¢,,.. Jya(tu).
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(2) For u € Rf, v € (0,cyy) and A > 0 there exists a unique t* > 0 such that
*u € N  and T\ (t*u) = infiso Ty oa (tu).

Proof. For fixed u € Xy, define ¥,,: RT — R as
W (t) := tzfzp[CIIUHQ*VIIW||§J]+dt29*2p|\UI|20*At1*q*2p/ la)(u)' " da. (3.1)
Q
We observe that tu € N,y if and only if t is the root of the equation,

o= [ [ rereereraer, ,
T |

Using (3.1]), we notice that ¥, (t) — —oco as t — 07 and ¥, (t) — 0 as t — oo.
Moreover,

_ 2 —_op—
V(1) = (2 = 2p)t" P [efjull — Allu* [[5] + (20 — 2p)¢*° 2P fu*’

Ml —q—2p)t— % /Q I(z)(u™) 9 da.

Since, ¢ < 1 < 20 < 2p, we see that lim,_,o+ U, (t) > 0 and limy_,. W/, (t) < 0.
Then there exists a unique tmax = tmax(w) > 0 such that ¥, (¢) is increasing in
(0, tmax ), decreasing in (tmax,00) and ¥ (tmax) = 0. Now we estimate, U, (max)
given as follows

_ _ 20,20-2p | T ) T
V() = ax W (fmax) = max (dfjul 272 + (1)) > max T, (),

where
) = el = o )22 = 202 [ i)ty
Q
Now by (1.4)), for v € (0, ¢ym ), we can calculate
T >
max W (t) = gu(t),
where
Pult) = heqllul 82727 — Ata=2 / () (u*)' 9 da.
Q

‘We noticed that

2pt+q—1
o 1 9 — 9 2p+q{;1 he 2\ T 1+q
maxBu(t) = ( q+ )( p ) = (heyllull”) .
t>0 2p—2/\2p+q—1 ()\ fQ )(ut)i-a dm) 14

Now using this, (A1), Sobolev inequality (2.2]), and Holder inequality, we obtain

\Ilu(tmax)
1 her (2p — 2)N\ 4 -9

> (o) (a0 20N () 5O g > o0
2p — 2 2p+q—1

Now, according to the behavior of r, we consider two cases

case 1: Let u € RT. Choose
1+gq

1+44¢ ) Py (hc,,y<2p — 2)) (2(223;)1) 5(22122:3;)1) 1 [ 1 ] 2p—2
2p — 2 2p+q—1 2], ~Cr (e, p, N)

)\<A1::(



10 S. GOYAL, T. SHARMA EJDE-2022/25

then there exists a unique t+ := t*( ) < tmax and 7 :=t7 (u) > tmax, such that
ity = [ [ IO WY gy g
|$| |9C—y|”|y|°‘ o

that is t Tu, " u € N, . Now using the relation ¢}, (1) = t?P 10/ (¢), it follows that
W, (t*) > 0 and W, (¢t7) < 0, which yield t*u € N, and t"u € N . Furthermore,
assuming

()Pt (y)?
&, (t) = P~ 1 // dz dy),
" N )
we have ¢!, (t) < 0 for all t € [0,¢T) and ¢ (t) > 0 for all t € (t*,¢7). Therefore,
Fua(t ) = min Ty aftw)

Also, ¢!,(t) > 0 for all t € [t+,¢t7), ¢, (t7) = 0 and ¢, (t) < 0 for all t € (¢, 00)
yield that
Ty A(t7u) = max Jy x(tu).

t>tmax

case 2: Let u € R~. Then using the fact W, (t) — —oo as t — 0T, there exists a
unique t* > 0 such that

+ p

// MCDECHED) drdy for all A > 0.
\Il |33 —ylyl*

As u € R™, we have U, (t*) < 0 and ¥/ (t*) > 0. Now by doing the similar

calculations as in case(1), ¢f, (1) = t2»T1W, (t) with ¥/ (t*) > 0, we deduce that

t‘ue N ;r - This completes the proof. O

Lemma 3.2. Let v € (0,¢yn), then there exists Ay > 0 such that N7, = {0}, for
all X € (0,Az).

Proof. Arguing by contradiction argument, we suppose that there exists u € NWO, A\
{0} for all A € (0,A3). Then we have

0 2 _
cllull” + djjull® *VIIU+IIH*/\/QZ($)(U+)1 dx

L S =0

cllull® +d(20 = 1)]u]* —VIWIIH + /\q/ﬂl(fv)(uﬂl“’da?

) Ha)P )P
—Cr 1// |x| |x—y|u|y|a =0

Now we consider two cases:
Case 1: [, [, T(I)T(‘i)‘fﬁ;rfz)llp‘;“:(y))p dzx dy = 0. Using this (3.2)), (3.3), 20 > 1 >
1—g¢, and v € (0,cyy) with (2.9), we obtain
2 2 26
0= 1+ q)ellull” = vu™[] + d(20 + g — 1)||u|
> he (L4 q)Jul® + (20 + ¢ = 1) u]*

which gives a contradiction.

(3.2)

(3.3)
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Case 2: [, fQ ‘L?(’l‘l (Z)\Z‘DIEJI‘* )" o dy # 0. Equations (3.2)) and (3.3)) yield
2
(2p = 2)[ellull* = vllut ) + d(2p — 26) |u]**
(3.4)
2p+q—1/l M=t gy =0,
0
(1+q) [ellul? —vnu*nH} +d<ze+q— Dlful?
—(2p+q—1) / / S@)Pt)r (3:5)
|w\ |$ —yl*fyl

Let us define &, y: N, x» — R as

2
1+ @)leful® = yllut]5]) + d(20 + g — 1)]ju|*’
(2p +q—1)

[ [ ey,
aJa |9C\ |$—y\”|y|a '

Then from (3.5)), it follows that £,y = 0 for all u € J\/ﬁ/\. Also using (2.1), (2.9)),
and (a 4 b) > 2v/ab, for any a,b > 0, we obtain

2/(T+ q)(20 + ¢ — Dhedl|ul”

Eyn =

£n > i ~ Oy, 1, N)S P,
a2 DRO R0 = Dhead (o s
@+ Dl T |

Now using (2.9), Sobolev inequality (2.2] -, A.M > G.M and Hoélder inequality in
(3.4), we have

(1 q) 1

ful < [22E )7
2,/2p —2)(2p — 20)h.d
Thus,
A< Ay = %+ {2\/(1+Q)(20+q—1)hcwdr,ﬂ%
[CT(O%/%N)}Z’P*% 2p+q—1
" [2\/(219 —2)(2p— 29)hcﬁd}
2p+q— DI, '

Hence &, x(u) > 0 for all u € /\/,87)\ \ {0}, which gives a contradiction. 0

Lemma 3.3. Let vy € (0,cyy) and X € (0,As), then there exists a gap structure in
Ny such that

U] > Ao > Ay > [[ul],
for any u € N,:f)\, U eN,,, where

- [2\/(1+q)(20+q— l)hmd}m
T @+ g 1O, N)SP )
_ [A(2p+q—1)5 ( ]
L2/ -2)2p — 20)hed
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Proof. 1f u € N7, C N, x, then
2 2 20
(2p = 2)[eflull” = yllu™|I] + d(2p — 20)||ul]
CA@ptg- 1)/ 1) (ut)—dz < 0.
Q
Using (A1), (2.2), and Hélder inequality in (3.6), it follows that
2 2 20
(20 = 2)ellull” = yllu™* 5] + d(2p - 20)||u]
—(-q) _
<A2p+q =D, S flul' T
This and (2.9) yield
2 20 —(1-q) 1—
(2p = 2heqllull” +d(2p = 20)[[ul ™ < AM2p+q = DI, ST [lu ™ (3.7)
At this moment, applying the condition AM > GM in (3.7)), we have

—(1-q

A2p+q—1)S > IIZIIm} T4
2./(2p —2)(2p — 20)h,d ' '

Now, if U € Ny, then using (2.1), we have

Jull < |

2 0
A+ Q)e|UN? =TT )] +d26 + g - DU
< (2p+q—1)Cp(a, u, N)S7PU .
By this, (2.9), and AM > GM, we obtain

20/ (1+9)(26 + ¢ — Dherd|U| < (2 + ¢ — 1), (0, . N)SP|T>.

Thus

2/ (1 +q)(20 + ¢ — Dheyd) 5o
(2p+q—1)Cr(a, pu, N)SP '
It is easy to check that Ay > A; for all A € (0, Ag). Thus we conclude that

= Aop.

i > |

Ul > Ao > Ay > [|u|| for all w e Nf\, U € N,

This completes the proof. O

Lemma 3.4. Let v € (0,cyy), then NA/_/\ is a closed set in Xy topology for all
A€ (0,Az).

Proof. Assume {ug}r be any sequence in /\/;:A, such that ux — u strongly in Xj.
Then u € N;A U {0}. Now by Lemma E we obtain

lul| = lim |Juk|| > Ao > A1 > 0.
k—o0
Thus the above inequality, yields u # 0. Hence u € N . O
Lemma 3.5. Let u € Nf»\ with v € (0,cym) and A > 0. Then there is a € >

0 and a continuous function &: Bc(0) — RT such that £&(v) > 0, £(0) = 1 and
E)(u+w) e Njf)\ for all v € B.(0), where B.(0) = {v € Xq : ||v| < €}.
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Proof. Here we only give the proof for the case u € /\/:r y» While the proof of the
case N follows similarly. Define F': Xy x R* — R as

F(v,2) i= 24 (clu ol =l + 01 + 21 0 da+ o]
—)\/l (u+v)") gy
Lo [ [ R@It T @),

|z |z = yl#]yl

Since u € N.Fy C N, .y, it follows that
YA s

F(0,1) = cllul* + dnuH” - vnu*ni A [ ) e
oy RO TUTD I
oAb

2 2 20
(0,1) = (L +g)(cllul” — V|\U+HH) + d(29 =1+ q)|lull
Pyt P
—(2p+q—1) // (z)) (“a(y)) dzdy > 0.
aJa \35| |x—y|ﬂ|y|
Now applying the Implicit function theorem to the function F at (0,1), there exists
€ > 0 such that for every v € Xy with [|v]| <€, then F(v,z) = 0 has a unique solu-

tion z = £(v) > 0. From (3.8), we have £(0) = 1. This together with F(v,£(v)) =0
for any v € X with |jv|| < € yields that

0= (@)™ (ellu+vl* = yl(u+ ) 15 ) + @)~ dlu + o)
—)\/l( ) (w4 v)* )Hdm
2p+q 1 u—l—v) ( )) ((u+v)+(?/))p "
L 2z — yllyle e dy
c u~+v)||° — v)(u~+ o)t — D (EW) (u+ ) de
— q()(ng( Dt 0l =€)+ o = A [ 1) (€))7
+d|jé(v <u+v>|\29
/ / o) (u+0)* (@) (@) u+v) W) )
o]z — ylrfyle '
This implies, £(v)(u 4+ v) € N ) for any v € X with |[v]| <€ We notice that

oF
0z

(3.8)

and
oF

9= (3.9)

(v:€(v))

= zmarey [+ 9) (eI +0)IP =) +0)* 1)

+ (20~ 1+ g)dlé(v <u+v>u
“prq-y [ [ T GIHOEDOI ]

]| —yl#]yl
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Now using (3.9), take e > 0 such that e < €, for any v € X, with ||v|| < €, we obtain

(1+0) (ellé()u+ 0)I” = 1)+ 0) ) + (20 = 1+ q)dlE(w) (u + v)]*
g [ [ IO V@) €t W)

|lz]@ |z — y|rly|®

that is £(v)(u +v) € Nj)\ for all v € B.(0). O

Lemma 3.6. Let v € (0,cym) and X > 0, then the functional J, x is coercive and
bounded from below on N .

Proof. Let u € N . Then this together with (2.9)), (f1), (2.2)), and Holder inequal-
ity with the condition 20 < 2p, give

Fyata) = (5 = 30) (ellal® =2l 1) + (55 - 55 )l

- A(ilq - %) /S)Z(z)(uﬂl*qu

1 1 2 1 1 ~(-q) 1—
> (5 = g el = A( = = 55 ) ItlnS ™ Il

2 2p
since 2 > 1 — ¢. Hence J,, » is coercive on ./\/%)\.
let
1 1 2 1 1 —(1—q)
£) = (f——)h tf—)\(———) I ==,
9(t) = (5 = 55 et ™™ =M= = 55 ) Wl

which has minimum at

—(1-q) 1—gq

()\(229 +q- 1)SleHm)ﬁ
(2p - 2)hc,'y

tmin 1=

So, we have

—(-q) T
_ —(+a) (epra-nsT )
=) (2 = 2)hes)
where C' > 0. Hence 7,5 is bounded below on N ». O

Ty (u) = —C(let),

4. A COMPACTNESS RESULT FOR 7, )

By Lemma N»j:x U{0} and NV, are two closed sets in X for A < A». Hence
the Ekeland’s Variational principle can be applied to the problem of finding the
infimum of 7, x both on V77, U {0} and N

We define

Jr . —_ .
m, = inf  J,a(u) and m_,:= inf J,a(u).
A 7, A ,
v ueNF ufo} w uEN

By Ekeland’s variational principle, we can find a minimizing sequence {up} C
N U{0}(N,) for T, » such that

1 1
7 and Tya(u) 2 Fyalwe) + e —ugll. (4.1)

mf;/\ < Tya(ug) < miA + A
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In view of Lemma we see that {ug}y is a bounded sequence in N, ) with
lugl] < Cy with Cy > 0. Therefore up to a subsequence still denoted by {u}, we
may assume that there exists ug € Xy such that

ur — ug weakly in Xj. (4.2)
To prove our main result we need the following Lemmas.

Lemma 4.1. Let {uy}r, C N, satisfy (£2) with v € (0,cyu) and X € (0, A1),
where Ay is given in Lemma . Then there exists a constant Co > 0 such that

(1) if {ug} C N /\ for each k € N, we have

(1 + g)lellux]* = Aljeif ||H1+d<ze+q—1>||uk||”
Pyt (y))P
—2p+q¢-1) / / z))# (Ui(y)) dzdy > Cs,
|33\ |’I—y\ lyl
(2) if {ur} C N, for each k € N, we have

1+ @)leflurl® = yluy IIH] + d(20 +q— 1)]lugl*
p(,+
@t // 2 (@) (uf (y))? drdy < —Cy.
0 le \w—yl“ly\“

Proof. We present the proof of (1) only, the proof of (2) follows similarly. Since
{ughr CN. )\, it is enough to show that

timinf [(2p — 2) (clluel® — 1l I57) + d(2p — 26) i
<A2p+4q-—-1) A () (ug ) dx.

For this, we argue by contradiction, so we assume that
tim in [(2p — 2) (clfus |2 — 7l ) + (2 — 26) s |
=A2p+q-—1) /Q () (ud ) da.

Since {ug}tr € N /\, we have

2 _
(2 =2) (cllwnl” = sl 1) + d(2p = 26) ¥ < Ap+a=1) [ 1)) 1da,

25
Now by | € L% -+4(Q) and by Vitali’s convergence theorem, we can show that

lim l(x)(uz)lfqu:/l(x)(ug)lfqdm.
Then
tim n [(2p — 2) (el > — v 1) + (2 — 26) ][>

< timsup [(2p = 2)(clfuel” = 7l 15) + 20 = 20) el

<A@ptq-1) /Q (@) (u) 7,
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which yields
Jim (2 = 2)(cljunl* = Al 17,) + d(2p = 26) ¥
=A2p+q— 1)/ () (ud) 1dw.
Q

From (4.3), it is clear that there exists A > 0 and A, > 0 with k., < A, < cA for
v € (0,¢cvm), by (2.9) such that

2 2 2
cllugll® — 'y||u§||H = A, |ul" = A as k— .

(4.3)

Then, we have
(2p — 2)A, +d(2p — 20)A® = \(2p+q — 1) / I(z)(ud) !~ dz,
Q

which gives that

_ 2p —2)A d(2p — 20) A?
A/qu“qcix:( T . 4.4
o () 2p+a-1)  (@2p+q-1) “4)
By Lemma [3.1] for A € (0, A1), we have
1 2p—2 \ e
— 1 2ptq q
0<( +q)( P ) T (e ) (0 /z §) )
2 — 2 2p+q—1 (45)
iyt P
w [ [ ORGP, ,
g |$| \a?—y|“|y\”‘
Using {ug }r C N'%A C N, and -, we obtain
iyt 2
i [ [ MO,
k=00 |$| \x—y|“|y\°‘
1+g¢ 20+q—1
= A, () +dA’ ().
2p+q—1 2p+q—1
Now using (4.3)), (4.5) in (4.4), together with h.,A < A, we obtain
Ae(w) <0,
2p+q—1
which is a contradiction. Thus the proof is complete. (|

Fix ¢ € Xy with ¢» > 0. Consider the constants C; > 0 with [Jug| < C; and
C5 > 0 given in the Lemma Then for k € N sufficiently large such that
(1-9)Cy
k

By Lemma we can extract a sequence of functions (&) such that £ (0) = 1
and & (1Y) (ux + t) € N,Yi’)\ for ¢ > 0 sufficiently small. Using u; € N, and
&k (t) (ug + t) € N\, we have

2 _
ellurll? + dlfue]® — Al I3 - A /Q ) (uf )~ da

Ny R G

\l’l Ix = yl*fyl

< (Cs. (46)

(4.7)
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and

&2t0) (cllun + t011* = 7l (e + ) * )

— AT (t) @) (<uk + twm)l*q dz + de3 (1) |ug + t])? 48
(4.8)
e ) (s + t9)* @) (wn+ 0) @)
() / / 2]z — iyl dardy = 0.

Now denote &},(0) is the derivative of & at point 0 with (£.(0),¢) € [—o0, c0] for any
¢ € Xo. If it does not exist then & (0) can be replace by pi(0) = limy_ o0 %
for some (t) such that ¢, — 0 as k — oo and t; > 0.

Lemma 4.2. Let A € (0,A1), v € (0,¢ym) and let {ug}r C N. )\ satisfying (4.1))
and (4.2)). Then (£;.(0),4) is uniformly bounded for every ¢ € XO with ¥ > 0.

Proof. Here we prove only for the case Nj y- The case J\f  can be prove in a
similar manner. Let {ug}r C ./\/';r)\ and & (1Y) (ug, + t) € ./\/';r . Then in view of

and (L8], we obtain
0 = g3 () — 1] (cllu + 11" =7l (un + 1) 113
o+ (clluk + 1> =l (s + ) |3
= (cllunl® = Al 15,) + A(1627 () = 1l + 6] + g + 60l = )
—A/Ql(x)[((uk+tw)+)l_q— (W) de

CNE () — 1] / l<x>(<uk )Y T de

- y) (up, 4 t) ()P (ur, + t) T (y))? .

~ () — 1] / | et e dy

- [ [ )" 0+ 00 )
FEFEPLE

_ k(w))p(@(y))p} dn dy
]| =yl |y| '

Now dividing the above estimate by ¢t > 0 and taking the limit ¢ — 0™, we obtain

0 = (€(0), 9) [2 (cllunll® = w5 ) + d26]ux]

A1) / l(m)((um)l‘q

) ()i W)
2 / / |x| |x—y|ﬂ|y|a dady]

N 42
| —yl"

p—1 p
- [ - / / \m| |x))—y|5)|§/|3( S ety
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This together with (4.7)) yields

0 < (.0),4)[(1+9) (e ||uk||2 —vnu*ni) (204 g — 1) g [*

VW)
~r-arn [ [ R |x—y\ﬂ|y|a i
(20 + 20d]jug |2 / / U (@ _lu’“(y)y)&(zf)_m” da dy
- n )" @) iw)
o [ mrae 2 [, [ PO ey

Then by Lemma 1) and boundedness of the sequence {uy} in above, we obtain
(€,.(0),9) is bounded from below for any ¢ € X, with ¢ > 0.

Now we show that (£.(0), ) is bounded from above. Arguing by contradiction,
we assume that (£}.(0),1) = oo. Note that

1€k (t) = lluell + &k (t)[[E0]] = (160 (100) (ur + t1)) — ur| (4.9)
and & (ty) > £, (0) = 1 for sufficiently large k. Then by the definition of &, (0) and
with u = & (t) (ug, + ) € Nj&\’ we obtain

IIWII

[l

(€ (ty) = 1= + &(ty) = —

> %ka(t?ﬁ)(uk + ) — Uk“
> Tya(ur) = Ty (Er(t) (up + t))

= (= = 2 ) [ (el + 0P = G+ 1)) 12,) = (el = st 2]

1—q 2

(1 = o)+ 001 = e )

N (1% _ %)d[&,ﬁg(tw) — 1)k + ]|

+(1% 2 )i —1]( o 0] = s+ 20 )

(e - | / o |xz3|)ﬂ|;(|zk)+(y)) el

D [
( ?

+ +

M 0 (S W g,
||| — yl#|y|

Dividing above estimate by ¢t > 0 and passing the limit ¢ — 0, we obtain

1 //RZN e —Uk )|J(Vii(2f) ¥(y)) dxdy_v/ ﬁ;/) dx)

(6.0, >(c||uk|| ot 1)+ (5 ), )

_I_\/

+-a
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20+q 20—2 (ug(z) —uk(y)) (P(z) — ¥(y))
+ (2D g // e dady

C@ta-1) )" () (uf ()"
1—q /s/z |:c| |x—y|ﬂ|y|a
(2p+q ) ((ug)* (y))”
/ / |x| \m—yww ey
><f(””§’>[<1+ >(c||uk|| —vnuk [ ) +(20 4+ g
) " () W)
—@pta-t // |x\ |z—y\u|y|a dady]
1+q (ug(z) — ur(y)) (Y (x)
i) // |a:fy|N+25 Drdy - /
+< 9—|—q d|| ”29 2// (ug(z —r;k_ y|N+(25) P(y ))
C@ptg—1) )’ (@) (uf ()"
(1-gq) // le Ix—yl"lyla '

This implies that

[l - (€(0). ) )
i [<1+q>< e = sl 1 ) 20+ q— 1)d]u]*’

I:EI Iw - yl“lyla

1+q ug(z) — ur(y)) (Y(x) — P(y))
dz dy —
+<1—q //Rw Iw—le”s YT

|
( 9+q d|| e 2// (un(z _Uk Niigg) Y(y)) dz dy

C@pta-1) / / lw(@(uz(y))”.

(1-4q) Iw\ Iw—y\”lyla

+

which is impossible under the assumption that (£;.(0),%) = co. Now by Lemma
3.6{(1), boundedness of {uy}r and (4.6), we have

[+ a) (ellusll” = HH) (26 + g — 1w’
ur)t(y))” u
e / [ e el

>02*(1*Q)?>0

Hence (£,.(0), ) is uniformly bounded for sufficiently large k& with any ¢ € X, and
¥ =>0. O
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Lemma 4.3. Let v € (0,¢vm), A € (0,A1) and {ur}y C Nj;\ verify (4.1) and
(4.2). Then for every ¢ € Xo, we have l(x)(u"’)_qw € LY(Q), and

(c+ dljur)* // (u (@) = ur(y) (@) =¥ @) 4

‘x—y|N+25
- o e |21€d$—)\/ﬂl(x)(u )" Ypda (4.10)
1 T ’LL+ P
// |a?| |x—y|;p|?5|(z( k(y)) dxdy = H(ug, ) = o(1)

as k — oo.
Proof. Let ¢ € Xo with ¢ > 0. Then (4.1)) and (4.9), we have

) — 1120 4y 1201

> Tya(ug) — Ty oz (fk(t@/’)(“k + 1))

(
_ %( Jol? = st 1) — D) g

= ST a0l = e+ 1) 1) = (elluel” = A1)
20
= S ) — o]
A& () — 1) 1
+’€1fq/gz<x) ((u, +t)*) ? dz
/l ((up +t)* ((uk)+)1_q]dm
W )—1 ((ug, + ) * ()" ((us + 1) (y))"
// el — gl o dy
u U * b
//W P (ot 40 @) (ot 00 0)
— () @)" () ()" ] da dy.
Dividing by ¢ > 0 and passing the limit ¢ — 0, we obtain
et o), pyilael o 12
> —((0), w>[(c||uk||2 —vnu*nQ )= A / @) (uf )0+ dl i |
/ / P W) )
|x| |x—y|ﬂ|y|a
= (c+ dlunl?) // (unle) =D W) = 00D gy 1 [ 2L
/ / )@ W)
|x| |x—y|u\y|a
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+ lim inf : i 7 /Q I() {((uzC )t - (ug)l—q}

dx.
t—0+ t
—u x) — u+

—(c+d||uk||29 2 // k<y>y>|1(vligs> YWD 4oy 4 / |;|§f o

/ / ) (uif ()" (@) (uf ()" ddy

le |z — y|# |y

A U@ [((ug ) ) T = () )

+t1—l>%l+ inf 1 fq/Q t - dz,

since {ug i € Ny a. Applying the above inequality, we have

dx

t—0+ t

g [ {0 09 -
Q

is finite. Now, it follows from I(z)[((ug + t) 7)™ — (uf)179] > 0 and {uy}y is
bounded in Xy, Fatou’s lemma and Lemma [£.1] that

3 [ ) s
< lim inf A / l(x )[((UkthzZJ)*)l*q,(u;:)kq} ]

t—0t 1,q .
< GO Bl + v @) @) ()"
R =L o ey
g2 [ D) ) W) b)) g, [ i
(e hnd™) ff T i1 [
< 0103;‘||¢|| ( T dfjus]?- 2 // (ug(z _Uk@i,)V(\;i(?f)_w(y)) dz dy

- @) @) ()"
/ afze -~ / |:c| |x—y|u|y|a ey

where C3 > 0 is given for the boundedness of (£,.(0),%) and ||ug| < Cy. At the
moment, taking limit k — oo, we obtain

(c+ d||uk||29_2) //RzN (u(z) — uk(y)) () —P(y))

|z — y|N+2s ey
qu
. |’“|§i’ da - / () )
/ / F(@)" (@) (uf ()"

Iw\ Iﬂf —yl#fyl

(4.11)

dx dy

Next, we prove that the equation (4.11]) holds for any ¢ € Xy. For this, in (4.11)),
we choose 1) = ¥ for € > 0 as test function with ¥, = u: + €y then as limit
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k — oo, we obtain

EJDE-2022/25

) —uk(y)) (W (z) — ¥ (y))

o)) < (e dfu)?) [[ (i (@

uke
L |2sd A/l

|z _y|N+2s dz dy

q\II+dz

(@) (uft ()"
-/, / |x| |x—y|ﬂ|y|a drdy
- <c+d||u 20- 2) (4.12)
up(z) —up(y)) (Ve + V7 )(2) — (Ve + V) (y))
//]RZN |z — y|N+2s d dy
(et ) (u
7/ |x|23 da /\/l DU, + 0 )de
) (g (1)) (B + 07)
/ / |a:| |x—y|ﬂ|y|a e dy.
We notice that for a.e. z,y € RY,
(ur (@) — ur(®)) (up () = uj, (1)) < —lug (x) = uj @), (4.13)
(u(z) — un(y)) (uf () — uf (1) < lurle) — up(y)]*. (4.14)
Applying , we have
[, nle) — ) (B + ¥ )0) — (e 80N o,
R2N |z — y|N+2s Y
U —u + —U+
//]RzN k Tl‘ - |N+(25) - (y)) dx dy
+€//]RQN ug(z _Uk y|qu-(25) 1/’(?/)) dz dy
ur(z) —ur(y)) (¥ (x) — ¥ (y))
//sz \x - yIN“S by
//RM |UT$ |N+25 d dy
£V
ug(z —Uk (Vo () =V (y)
//RQN y|N+25 dz dy. (4.15)
Also,
wf (Ve +0;) uil® uf v
A EEI / B /||2s / P
i ut apy 1
=, rEke ) Ar d“e/m e
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where Q, = {z € RY : U, < 0}. Now using (4.16)), ([4.15), and ([4.12), yield

_ 2 _
of1) < [(o+duukn2" 2) ||uk\|2ﬂuu+quA [ @) s

/ / ) (wtw)” dy}
le Ix—yl“lyl"
e (et dlurl // (@) = ur(y) () = W) 4 4

ks —yIN”g
L/‘||25d$" /Q )" pda
)" () (uf ()"
/:/ \ﬂlw—yWWP S dady]
c+d||u ||29 ? // Uk —~ uTx — ﬁlv-s-(Qs) — \Ilé_(y)) dxdil/

—efy/ " ;ﬁ d:c—l—/\/ W) (uf) ™ (uy + etp)da
// (@) (i + D)@ W)"

|$| |z =yl |yl
Using that {ug}r € N, x, we deduce that

o(1 )<€ c+d||u ”29 2 // (ur(x) — ur(y)) (Y(x) —P(y)) da dy

|x_y|N+2s

ugw

— T dx—/\/Ql(x)(u )" Ypdx
// )" (@) (uf ()" dxdy]

IxI \w - yl“ly\o‘

B (4.17)
(u —u (v — 0.
+ (e + dlur|**7?) // k( Tm— |N+(25) W) g dy
up
- |x|25
e D+ )@ (W),
|33| |z —yl#y|* '

Now the symmetry of the fractional kernel and

(up (@) = un(®)) (uf (@) = wf () > ug (@) = uf @),

yield

[[ (@) -uo)m -,
RN xRN

o =y

] eE@-u e -s6),,
Qe X0

o =y

" (ur () — ug () (U= () — U= (4)
—1-2//Q e dx dy

|Z’ _ y|N+25
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YR SRR P

. |z — y|NF2s
(ur () —ur(y)) (¥(x) = ¥(y))
+2//Q X (RN \Q,) |1-_y|N+25 d(Edy)

(ur(z) —uk(y)) W(2) —¥(y))
- 26//526><RN ’ |z — y|N+2s |d:vdy

Now by Hoélder inequality and boundedness of {u}x in Xy, we have

/ / (ur(z) — ur(y)) (P(x) — ¥(y))
Qe xRN

|£L’ _ y|N+28
(U(x) —d(y)) 2 1/2
<O el o)

% € L?(R*Y), Now for v > 0 there exists R, sufficiently large such

// ’MJ\%’dedy<z.
(supp ) xRN\ Bp, | | [T — y|(NF2s 2

Now by the definition of €., we have Q. C suppy and |2 x Bg,| — 0 as ¢ — 0.
So by ‘@&%% € L*(R?N), there is a §, > 0 and ¢, > 0 such that for any

dzx dy

(4.18)

Here
that

e € (0,¢,], we have Qe x Bg, | <4, and [f,, 5 |%| dz dy < %. Hence
for € € (0,¢,], we obtain

. () —P(y)) 2
1 — " drdy = 0. 4.1
15 [ = el et = o
Hence by (4.18)),
. (ur(z) —uk(y) W (z) — ¥(y))
1 dr dy = 0.
et //sz‘xRN | [z — y[V+2s | dz dy
Now we claim that
uf
lim dr = 0. (4.20)

e—0 Q. |$‘25
Using that for x € €, we have uk + ety < 0, which imply that ¢ (z) < 0. Hence,

by (L.4)
|uf || / WP . ||¢||
dr <e P
/Q R [ da < el <

O<|/

As € — 0, we prove claim (4.20)).

Next, we show that

1 (ur @)" (f + ) @) (uf ()"
lim /Q /Q drdy =0 (4.21)

| =yl ly|

For this, consider

/ / @) (@) (o + )@@ w)”

lealff =yl |yl

/ / uf @) (W)

val va —yltfyl
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L / / (@)@ @ )"

III |z —yl+ly|

/ / uf @) (e @) o
le Ix—y|”|y|a
r(@)r(y) (uf (@) o) (uf (1)"~
v/,

|z |z —y[*|y|*

// :v))p(u:(y))l’ dxdy>1/2
|x| ‘x—yl“ly\“ .

< CCr(Oc,/i,N)</Q (Ui(m)) : dx>p/25

(it @) @) o)™

p/2;

1

¥(y)

dx dy) 2

+Oecr(a,u7N>(/

Qe

< C’C’,.(oz,u,N)(/Q (uZ(x))T dx)

s

+ CeCT(a,,u,N)(/ (uz(x))Q d:]j) (p—1)/2: (/Q ()| dm) 1/2;

QE
. /23
< CCr(a,u,N)ep(/Q [(x % dac)p .

)z dx)m: —&-éeCT(a,u,N)ep(/Q (x)

Dividing the above estimate by ¢ and using |Q. — 0 as ¢ — 07, we can easily
deduce (4.21)).

Now dividing by e together with (4.19), (4.20), (4.21), and || — 0 as
€ — 0%, we deduce that

o(1) < (c—|—d||uk||20_2) //RZN (ur(z) — uk(y)) V(@) —¥(y)) da dy

|z — y|N+2s

=7 m“’ ) /Q L) ()"

/ / L) @),

I:Zfl va = yl#fyl

which prove (4.11)). In consonance with the arbitrariness of 1, we derive that (4.10)
holds for any 9 € Xj. O

Lemma 4.4. Let A\ € (0,A1), v € (0,cvm) and {ug}r C Njf)\ with Jy a(ug) — ¢,
then the sequence {uy}r contains a subsequence strongly convergent to ug in Xo.

Proof. By (4.2), {ur}r and {uj }, are both bounded in X,. Taking ¢ = u, as
410

k — oo in (4.10), we have

i (e dlonl™?) / / () — ) (o ) —wg ) 0

o =y

which together with ¢ > 0 yields that ||u, || = 0 as & — oo. So, we can assume
that {ug}r is a sequence of non-negative functions. Furthermore by Lemma
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and (1.4]), we can extract a subsequence still denote by {ug}x such that

up — ug  weakly in L% (Q), |jug| — v

ug — uo in LP(Q?) for any p € (1,2}
k 0 (€2) ype( ) (4.22)
up = ugin L2 2] 7%, fugl|y — 1

up — ug  a.e. in Q  wup < ha.e. in €,

as k — oo with h € LP(Q) for a fixed p € [1, 2%).

Now if v = 0 in , then we can easily see that uiy — 0 strongly in X, as
k — oo. Hence we assume v > 0. Now by Brézis-Lieb Lemma [4] and Lemma
we obtain

lwel® = llur — uoll® + [[uoll® + o(1), (4.23)
|Uk||H = ||uk uoll 3 + lluollz; + o(1), (4.24)
// ()" (ur(y))” dz dy
|$| |x = y[*y[*
_ / / ((ur, = uo)(®))" (up — uo)(y))” dz dy (4.25)
aJa \$|a|$ —yl#lyl .
()" (uo(y))”
/ / |x\ |x—y|”|y|0‘ dz dy + o(1).

Now by (4.23] - - and -, we have
( ) _ <c+ d||u ”29 2 // uk - uk<y>) ((uk - UO)(x) - (uk - uo)(y)) dz dy

o = g

ug (ug — ug e — uo)da
_W/Qde—/\/Ql(x)(uk) (ug 0)d
P )

&//1 pﬂ@—ywma (= o) ey

= (c+dv*?) (0 = JJuol*) =7 @wﬁ—wﬂ@
—)\/l( )(uk) "9 (up — ug)d // x_y|1>\f)+gEUk(y))p dz dy

[ [ e Y g,

= (c+dv®?) lup — uol|® — |uk — uOHiI - )\/ U(z) (ug) ™9 (ug — uo)dz
Q

[ [ ) e ()= w0 g o
||| — yl#|y| '
Taking limit as k& — oo, we have
(c+ dv*~?) kli_g)lo g — uol)® — ’ykli_{IOlo lug — u0||§{
=\ hm l( Y(ug) " U(uk — ug)dx (4.26)
. ugle) — uo @) (g (9) ~ w0 )"
*Lm//‘ FRrEEE ded
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Since ¢ € (0,1) and [ € L= it (€2), we conclude from Vitali’s convergence theorem
that

Jim Qz(@(u;)l—wx:/Qz(x)(ug)l—wx

In view of Lemma we obtain {(z)u, ‘uy € L*(Q) for each k € N. It follows from
Fatou’s lemma that

/l(m)ué_q dmgliminf/ l(z)uy, "upda.
Q Q

k—o0
23
Now for r € L%ws.a77 (Q) using Vitali’s convergence theorem, one can noticed that

r(a)ur — uol? = 0 strongly in = LZuee ().
It follows from (2.1)) that

, r(@)r(y) (g () — uo(2)))” (g (y) — vo(¥)))” _
lim / /Q dxdy = 0. (4.27)

k=00 Jq |z | — [yl

Using (4.27) in (4.26]), we have

0> (c+ dv*?) Jim[fu — uol)® — y Jim {juy, - uo )

: _ 2 7y . 2 20—2 1 _ 2
e e e | R e o
This and (2.9) yield
0> hery lim Jlug, —uol® + dv® =2 lim |ug — uol|®
k—o0 k—o00
which implies that
. 2 20—2
0> kll)rrgo luk — wol|” [he,y + dv?* 2] >0,

a contradiction. Hence v = 0. Thus ui — ug strongly in Xj. ([

5. PROOF OF THE MAIN THEOREM
In this section we prove the existence of solutions in /\/'7Jr » and N7y

Theorem 5.1. Let 0 < A < A, = min(Ay, Az). Assume f and g satisfies (A1) and
(A2) respectively. Then the problem (2.7) has a positive solution in N+>\.

Proof. We first show that m,JYr’)\ = infueNjA Jya(u) < 0. Since u € N 2 C Ny

we have

1 1 1 1

Tralw) = (5 - 1—_(1>[c||u||2 - v\luﬂlf{] + (55— 7=l

R @) @)
5T o e ey
— 7#{1) [(1 + q)[c||u|| — »y||u+||H} + (204 q— 1)d||u||2o

2p(1
~(p+q-1) // T W) ) <o

le \l‘ —ylHly|~

. +
since u € ./\/'%)\. Hence m%)\ <0.
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Now for fix A < A, = min (Ay, A2). Then by Ekeland’s variational principle and
Lemma there exists a minimizing sequence {uy }r C N. j , U{0}, satisfying (4.1)
and ([£.2). Hence 7, x(ux) — m+>\ < 0 as n — 0o, which gives that {uy}r C N

Subsequently using Lemma with ¢ = Trﬁ)\7 we know that ur — ug in Xj, upto
a subsequence. Moreover, by Lemma and ., we have

(1+q) [elluoll —wnuouH] +d<ze+q— 1)lfuol|*

—(@2p+q- / / ug (1)) (g (3)" dz dy > 0,

le"\w =yl lyl*

which implies that uy € N \» and m S s attained at ug by ‘77 ,\ is continuous
on Xy. Take limit as &k — oo together with Fatou’s lemma in , we obtain
H(ug,) > O[where H is defined in (4.10)] for ¢ € X, with ¢ > O.

Now letting a test function 1 = ¥ with ¥, = uar—i—ew and ¢ € Xg. Following the
same process for ug in place of uy from to , we know that H (ug, ) >
0 for ¢ € X, which produce that M(z)(ug) % € L(Q) and uy € N;f/\. So
accordingly Lemma ug # 0. Furthermore, by with ¢ = ug together with
([A13), we obtain |jug || = 0. Hence uy is a positive solution of ([L.T). O

Theorem 5.2. Let 0 < A < A, = min(A1,A2). Assume [ satisfies (Al) and r
satisfies (A2). Then problem (2.7) has a positive solution in N

Proof. Since N. A is a closed set in Xy, we can extract a minimizing sequence
{Uk}r C N . satisfying the Ekeland’s variational principle for inf, N j7 Alu),

since {Uk};€ is bounded in Xy, then suppose {Ux}r — Uy in Xy, Now by Lemma
. {Ur}r — Up in X up to a subsequence because ./\/'7_)\ is closed then Uy € ./\/7_/\

with J, A(Up) = m, 5, Now repeating the same argument as in Theorem 5.1} Uy

verify H(Up,%) > 0 (for H one can see (d.10)), so that \(x)(U;" )~ %) € Ll(Q)
for any ¥ € Xy and Up in ./\/ Bmdmg this with Lemma we obtain Uj is a

positive solution to the problem

Proof of Theorem[I.4 By above Theorems [5.1] and [5.2] we can see that problem
(1.1) admits two positive solutions ug and Uo7 since N% ﬂ/\/; , = 0. Hence these
solutions are distinct. O
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