Electronic Journal of Differential Equations, Vol. 2022 (2022), No. 34, pp. 1-18.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE OF SOLUTION TO CRITICAL KIRCHHOFF-TYPE EQUATION WITH DIPOLE-TYPE POTENTIAL

SAINAN WANG, YU SU

Abstract

Dipole-type potential arises in the area of nonrelativistic molecular physics. In this paper, we establish the existence and nonexistence of solution to critical Kirchhoff-type equation with dipole-type potential.

1. Introduction

We consider the Kirchhoff-type equation

$$
\begin{equation*}
-\left(1+b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u-\mu \frac{\Phi(x /|x|)}{|x|^{2}} u=|u|^{2^{*}-2} u, \quad x \in \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

where $N \geqslant 3, b \geqslant 0$ and $2^{*}=\frac{2 N}{N-2}$ is the Sobolev critical exponent. The function Φ and the parameter μ satisfy the following condition:
(A1) $0 \leq \Phi \in L^{p}\left(\mathbb{S}^{N-1}\right), p \geq \frac{(N-2)^{2}}{2(N-1)}+1$, and $\mu \in\left(0, \Lambda_{\Phi}\right)$, where

$$
\Lambda_{\Phi}:=\frac{(N-2)^{2}}{4}\left|\mathbb{S}^{N-1}\right|^{1 / p}\|\Phi\|_{L^{p}\left(\mathbb{S}^{N-1}\right)}^{-1} .
$$

On the other hand the Laplace operator with dipole-type potential is

$$
\mathcal{L}_{\Phi}:=-\Delta-\mu \frac{\Phi(x /|x|)}{|x|^{2}}, \quad x \in \mathbb{R}^{N}
$$

where $N \geq 3$. This kind of operator arises in the area of nonrelativistic molecular physics. Specifically, the Schrödinger equation for the wave function of an electron interacting with a polar molecule can be written as

$$
H=-\frac{\hbar}{2 m} \Delta+e \frac{x \cdot \mathbf{D}}{|x|^{3}}-E
$$

where \mathbf{D} is the dipole moment of the molecule, e and m denote the charge and the mass of the electron, see [19]. The operator with different kinds of singular potentials have been largely studied, see [7, 8, 3, 10, 23, 26, 28, and references therein.

On the other hand, equation 1.1 is related to the stationary analogue of equation

$$
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{P_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right| \mathrm{d} x\right) \frac{\partial^{2} u}{\partial x^{2}}=0
$$

2020 Mathematics Subject Classification. 35A15, 35J20.
Key words and phrases. Kirchhoff-type equation; dipole-type potential; critical exponent.
(C)2022. This work is licensed under a CC BY 4.0 license.

Submitted June 4, 2021. Published April 22, 2022.
which was proposed by Kirchhoff in [18] as an extension of the classical D'Alembert wave equation for free vibrations of elastic strings. The existence of solution of Kirchhoff-type equation with Laplacian was explored in [3, 25, and with fractional Laplacian was investigated in 21.

Liu-Liao-Tang [20] studied equation (1.1] with $\Phi=0$:

$$
\begin{equation*}
-\left(a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u=|u|^{2^{*}-2} u, \quad x \in \mathbb{R}^{N} \tag{1.2}
\end{equation*}
$$

By using the minimizing of best constant

$$
S:=\inf _{u \in D^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}}{\left(\int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x\right)^{2 / 2^{*}}}
$$

as follows

$$
U_{\varepsilon, y}=[N(N-2)]^{\frac{N-2}{4}} \frac{\varepsilon^{\frac{N-2}{2}}}{\left(\varepsilon^{2}+|x-y|^{2}\right)}
$$

they established the existence and nonexistence of solutions for equation $\sqrt{1.2}$ with respect to parameters N, a and b. The existence of solution of equation 1.2 with p-Laplacian was presented in [17, 22].

For $\Phi=$ Constant, Fiscella-Pucci [11] established the Concentration Compactness Principle with Hardy potential, and then they established the existence of solutions for Kirchhoff-type equations involving Hardy potential and different critical nonlinearities. For more recent work, we refer to [1, 12, 13 .

The case where the potential Φ is a constant was discussed in [11, 17, 20, 22, Therefore, it is natural to ask whether equation (1.1) admits a solution for Φ nonconstant. To the best of our knowledge, there is no result on this problem.

If $b=0$, equation (1.1) becomes

$$
\begin{equation*}
-\Delta u-\mu \frac{\Phi(x /|x|)}{|x|^{2}} u=|u|^{2^{*}-2} u, \quad x \in \mathbb{R}^{N} \tag{1.3}
\end{equation*}
$$

We study the following minimizing problem:

$$
S_{\Phi}:=\inf _{u \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\|u\|_{\Phi}^{2}}{\left(\int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x\right)^{2 / 2^{*}}}
$$

Extremals for S_{Φ} are solutions of the Euler-Lagrange equation (1.3). The following is our first result.

Theorem 1.1. Assume that $N \geq 3$ and (A1) hold. Then equation (1.3) has a radially symmetric solution $\bar{v} \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$, and infinitely many nonradial solutions \bar{v}_{k} such that $\int_{\mathbb{R}^{N}}\left|\bar{v}_{k}\right|^{2^{*}} \mathrm{~d} x \rightarrow \infty$ as $k \rightarrow \infty$.
Remark 1.2. Note that the Sobolev embedding $D^{1,2}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{2^{*}}\left(\mathbb{R}^{N}\right)$ is not compact. Hence, it is hard to show that the minimizing sequence of S_{Φ} has a convergence subsequence. We investigate this problem by two different methods. In the first method, we obtain a radially symmetric solution. In the second method, we obtain infinitely many nonradial solutions.

For $b>0$ and $N=3 \Leftrightarrow 2^{*}>4$, we have
Theorem 1.3. Assume that $N=3, b>0$ and condition (A1) holds. Then 1.1) has a radially symmetric ground state solution $v \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$. Moreover, if $\mu \in$ $\left(0,4 \Lambda_{\Phi} /\left(2^{*}\right)^{2}\right)$, then $v \in L^{2^{*} \cdot \frac{2^{*}}{2}}\left(\mathbb{R}^{N}\right)$.

When $N \geq 4 \Leftrightarrow 2^{*} \leq 4$, equation (1.1) is more complicated.
Theorem 1.4. Assume that $N \geq 4, b>0$ and condition (A1) holds. Then the following statements are true.
(1) For $N=4$ and $b \geq S^{-2}$, equation (1.1) has no nontrivial solution.
(2) For $N>4$ and $b>\frac{2^{*}-2}{2}\left(\frac{\Lambda_{\Phi}-\mu}{\Lambda_{\Phi}}\right)^{\frac{4-2^{*}}{2^{*}-2}}\left(\frac{4-2^{*}}{2}\right)^{\frac{4-2^{*}}{2^{*}-2}} S^{-\frac{2^{*}}{2^{*}-2}}$, equation (1.1) has no nontrivial solution, where Λ_{Φ} and μ are defined in condition (A1).
(3) For $N \geq 4$, there exists $b_{0}>0$ small enough such that for all $b \in\left(0, b_{0}\right)$, equation (1.1) has a radially symmetric.

We summarize of Theorems 1.1 1.4 as follows:
$b=0, N \geq 3\left\{\begin{array}{l}\text { a radially symmetric solution, } \\ \text { infinitely many nonradial solutions, }\end{array}\right.$
$b>0\left\{\begin{array}{l}N=3, \text { a radially symmetric ground state solution, } \\ N=4, b \geq S^{-2}, \text { no nontrivial solution, }, \\ N \geq 5\left\{\begin{array}{l}b>\frac{2^{*}-2}{2}\left(\frac{\Lambda \Phi-\mu}{\Lambda_{\Phi}}\right)^{\frac{4-2^{*}}{2^{*}-2}}\left(\frac{4-2^{*}}{2}\right)^{\frac{4--^{*}}{2+2}} S^{-\frac{2^{*}}{2^{*}-2}}, \text { no nontrivial solution, } \\ b \in\left(0, b_{0}\right) \text { a radially symmetric solution. }\end{array}\right.\end{array}\right.$
This article is organized as follows. In Section 2, we present notation. In Sections $3-5$, we give the proofs of Theorems $1.1,1.4$, respectively.

2. Preliminaries

The space $D^{1,2}\left(\mathbb{R}^{N}\right)$ is the completion of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with respect to the semi-norm

$$
\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}:=\int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x .
$$

We denote by $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$ the space of radial functions in $D^{1,2}\left(\mathbb{R}^{N}\right)$. We define the best constant

$$
S:=\inf _{u \in D^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}}{\left(\int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x\right)^{2 / 2^{*}}} .
$$

We know that S can be attained in \mathbb{R}^{N}, see $[$.
For all $u \in D^{1,2}\left(\mathbb{R}^{N}\right)$, we have the Hardy inequality, see [14],

$$
\frac{(N-2)^{2}}{4} \int_{\mathbb{R}^{N}} \frac{|u|^{2}}{|x|^{2}} \mathrm{~d} x \leq \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x .
$$

We introduce the measure $\mathrm{d} \vartheta$ induced by Lebesgues measure on the unit sphere $\mathbb{S}^{N-1} \subset \mathbb{R}^{N}$. We denote by $\|\cdot\|_{L^{q}\left(\mathbb{S}^{N-1}\right)}$ the quantity

$$
\|\Phi\|_{L^{q}\left(\mathbb{S}^{N-1}\right)}^{q}=\int_{\mathbb{S}^{N-1}}|\Phi(\vartheta)|^{q} \mathrm{~d} \vartheta .
$$

Lemma 2.1 ($[15])$. Let $N \geq 3,0 \leq \Phi \in L^{p}\left(\mathbb{S}^{N-1}\right)$ and $p \geq \frac{(N-2)^{2}}{2(N-1)}+1$. Then

$$
\int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x \geq \Lambda_{\Phi} \int_{\mathbb{R}^{N}} \frac{\Phi(x /|x|)|u|^{2}}{|x|^{2}} \mathrm{~d} x,
$$

where $u \in D^{1,2}\left(\mathbb{R}^{N}\right)$ and $\Lambda_{\Phi}:=\frac{(N-2)^{2}}{4}\left|\mathbb{S}^{N-1}\right|^{1 / p}\|\Phi\|_{L^{p}\left(S^{N-1}\right)}^{-1}$.

By using Lemma 2.1 and $\mu \in\left(0, \Lambda_{\Phi}\right)$,

$$
\|u\|_{\Phi}^{2}=: \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x-\mu \int_{\mathbb{R}^{N}} \frac{\Phi(x /|x|)|u|^{2}}{|x|^{2}} \mathrm{~d} x
$$

is an equivalent norm in $D^{1,2}\left(\mathbb{R}^{N}\right)$.
A measurable function $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ belongs to the Morrey space $\|u\|_{\mathcal{L}^{q, \varpi\left(\mathbb{R}^{N}\right)}}$ with $q \in[1, \infty)$ and $\varpi \in(0, N]$ if and only if

$$
\|u\|_{\mathcal{L}^{q, \varpi\left(\mathbb{R}^{N}\right)}}^{q}=\sup _{R>0, x \in \mathbb{R}^{N}} R^{\varpi-3} \int_{B(x, R)}|u(y)|^{q} \mathrm{~d} y<\infty
$$

Lemma 2.2 ([24]). For $N \geq 3$, there exists $C>0$ such that for ι and ϑ satisfying $\frac{2}{2^{*}} \leq \iota<1,1 \leq \vartheta<2^{*}$, we have

$$
\left(\int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x\right)^{1 / 2^{*}} \leq C\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{\iota}\|u\|_{\mathcal{L}^{\vartheta, \frac{\vartheta(N-2)}{2}}\left(\mathbb{R}^{N}\right)}^{1-\iota},
$$

for any $u \in D^{1,2}\left(\mathbb{R}^{N}\right)$.
Equation (1.1) is variational and its solutions are the critical points of the functional defined in $D^{1,2}\left(\mathbb{R}^{N}\right)$ by

$$
I_{b}(u)=\frac{1}{2}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}-\frac{\mu}{2} \int_{\mathbb{R}^{N}} \frac{\Phi(x /|x|)|u|^{2}}{|x|^{2}} \mathrm{~d} x+\frac{b}{4}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4}-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x .
$$

It is easy to see that the functional $I_{b} \in C^{1}\left(D^{1,2}\left(\mathbb{R}^{N}\right), \mathbb{R}\right)$. It is easy to see that if $u \in D^{1,2}\left(\mathbb{R}^{N}\right)$ is a critical point of I_{b}, i.e.,

$$
\begin{aligned}
0= & \left\langle I_{b}^{\prime}(u), \varphi\right\rangle \\
= & \left(1+b\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}\right) \int_{\mathbb{R}^{N}} \nabla u \nabla \varphi \mathrm{~d} x \\
& -\mu \int_{\mathbb{R}^{N}} \Phi\left(\frac{x}{|x|}\right) \frac{u \varphi}{|x|^{2}} \mathrm{~d} x-\int_{\mathbb{R}^{N}}|u|^{2^{*}-2} u \varphi \mathrm{~d} x
\end{aligned}
$$

for all $\varphi \in D^{1,2}\left(\mathbb{R}^{N}\right)$.

3. Proof of Theorem 1.1

We separate the proof of Theorem 1.1 into two parts: (i) radially symmetric solution; (ii) nonradial solution.

Proof of Theorem 1.1. (radially symmetric solution).
Step 1. Note that $\mu \in\left(0, \Lambda_{\Phi}\right)$. Applying Lemma 2.2 with $\vartheta=2$, we obtain

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x\right)^{1 / 2^{*}} \leq C\|u\|_{\Phi}^{2 \iota}\|u\|_{\mathcal{L}^{2}, N-2\left(\mathbb{R}^{N}\right)}^{2(1-\iota)} \tag{3.1}
\end{equation*}
$$

for $u \in D^{1,2}\left(\mathbb{R}^{N}\right)$. Let $\left\{u_{n}\right\} \subset D_{\text {rad }}^{1,2}\left(\mathbb{R}^{N}\right)$ be a minimizing sequence of S_{Φ}, that is

$$
\left\|u_{n}\right\|_{\Phi}^{2} \rightarrow S_{\Phi} \quad \text { as } n \rightarrow \infty
$$

and

$$
\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2^{*}} \mathrm{~d} x=1
$$

According to (3.1), there exists $C>0$ such that for any n it holds

$$
\left\|u_{n}\right\|_{\mathcal{L}^{2, N-2}\left(\mathbb{R}^{N}\right)} \geq C>0
$$

On the other hand, we note that $\left\{u_{n}\right\}$ is bounded in $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$ and

$$
D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{2^{*}}\left(\mathbb{R}^{N}\right) \hookrightarrow \mathcal{L}^{2, N-2}\left(\mathbb{R}^{N}\right)
$$

Then

$$
\left\|u_{n}\right\|_{\mathcal{L}^{2, N-2}\left(\mathbb{R}^{N}\right)} \leq C
$$

Hence, there exists $C_{0}>0$ such that for any n it holds

$$
C_{0} \leq\left\|u_{n}\right\|_{\mathcal{L}^{2, N-2}\left(\mathbb{R}^{N}\right)} \leq C_{0}^{-1}
$$

From above inequality, we deduce that for any $n \in \mathbb{N}$ there exist $\sigma_{n}>0$ and $x_{n} \in \mathbb{R}^{N}$ such that

$$
\frac{1}{\sigma_{n}^{2}} \int_{B\left(x_{n}, \sigma_{n}\right)}\left|u_{n}(y)\right|^{2} \mathrm{~d} y \geq\left\|u_{n}\right\|_{\mathcal{L}^{2, N-2}\left(\mathbb{R}^{N}\right)}^{2}-\frac{C}{2 n} \geq C_{1}>0
$$

Let $v_{n}(x)=\sigma_{n}^{\frac{N-2}{2}} u_{n}\left(\sigma_{n} x\right)$. By scaling invariance, we have

$$
\begin{gathered}
\left\|v_{n}\right\|_{\Phi}^{2} \rightarrow S_{\Phi}, \quad \text { as } n \rightarrow \infty \\
\int_{\mathbb{R}^{N}}\left|v_{n}\right|^{2^{*}} \mathrm{~d} x=1
\end{gathered}
$$

and

$$
\begin{equation*}
\int_{B\left(\frac{x_{n}}{\sigma_{n}}, 1\right)}\left|v_{n}(y)\right|^{2} \mathrm{~d} y=\frac{1}{\sigma_{n}^{2}} \int_{B\left(x_{n}, \sigma_{n}\right)}\left|u_{n}(y)\right|^{2} \mathrm{~d} y \geq C_{1}>0 \tag{3.2}
\end{equation*}
$$

Hence, we assume that

$$
v_{n} \rightharpoonup v \text { in } D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right), \quad v_{n} \rightarrow v \text { a.e. in } \mathbb{R}^{N}, \quad v_{n} \rightarrow v \text { in } L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{N}\right)
$$

for all $q \in\left[2,2^{*}\right)$.
Step 2. We show that $\left\{\frac{x_{n}}{\sigma_{n}}\right\}$ is bounded. Suppose on the contrary that $\frac{x_{n}}{\sigma_{n}} \rightarrow \infty$ as $n \rightarrow \infty$. By the boundedness of $\left\{u_{n}\right\}$ in $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$, we have $\left\|v_{n}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}=$ $\left\|u_{n}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)} \leq C$. It follows from the uniform decay estimates of radial functions that

$$
\left|v_{n}(x)\right| \leq \frac{C}{|x|^{\frac{N-2}{2}}}\left\|v_{n}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)} \leq \frac{C}{|x|^{\frac{N-2}{2}}}, \quad \text { a.e. } \mathbb{R}^{N}
$$

For $\sqrt{\frac{C_{1}}{|B(0,1)|}}>\varepsilon>0$, there exists $M>0$ for any $n>M$ it holds

$$
\left|v_{n}(x)\right| \leq \frac{C_{3}}{\left|\frac{x_{n}}{\sigma_{n}}-1\right|^{\frac{N-2}{2}}} \leq \varepsilon, \quad x \in B^{c}\left(0,\left|\frac{x_{n}}{\sigma_{n}}-1\right|\right)
$$

Note that $B\left(\frac{x_{n}}{\sigma_{n}}, 1\right) \subset B^{c}\left(0,\left|\frac{x_{n}}{\sigma_{n}}-1\right|\right)$. Then

$$
\int_{B\left(\frac{x_{n}}{\sigma_{n}}, 1\right)}\left|v_{n}(y)\right|^{2} \mathrm{~d} y \leq \varepsilon^{2} \int_{B\left(\frac{x_{n}}{\sigma_{n}}, 1\right)} \mathrm{d} y=\varepsilon^{2}\left|B\left(\frac{x_{n}}{\sigma_{n}}, 1\right)\right|=\varepsilon^{2}|B(0,1)|<C_{1}
$$

This contradicts (3.2). Hence, $\left\{\frac{x_{n}}{\sigma_{n}}\right\}$ is bounded. There exists $R>0$ such that

$$
\int_{B(0, R)}\left|v_{n}(y)\right|^{2} \mathrm{~d} y \geq \int_{B\left(\frac{x_{n}}{\sigma_{n}}, 1\right)}\left|v_{n}(y)\right|^{2} \mathrm{~d} y \geq C_{1}>0
$$

Since the embedding $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right) \hookrightarrow L_{\mathrm{loc}}^{r}\left(\mathbb{R}^{N}\right), r \in\left[2,2^{*}\right)$ is compact, we deduce that $v \not \equiv 0$.
Step 3. Set

$$
h(t)=t^{2^{*}}, t \geq 0
$$

It is easy to see that $h(t)$ is a convex function. By $h(0)=0$ and $l \in[0,1]$, we know

$$
h(l t)=h(l t+(1-l) \cdot 0) \leq l h(t)+(1-l) h(0)=l h(t)
$$

For $t_{1}, t_{2} \in[0, \infty)$, applying last inequality, we obtain

$$
\begin{aligned}
h\left(t_{1}\right)+h\left(t_{2}\right) & =h\left(\left(t_{1}+t_{2}\right) \frac{t_{1}}{t_{1}+t_{2}}\right)+h\left(\left(t_{1}+t_{2}\right) \frac{t_{2}}{t_{1}+t_{2}}\right) \\
& \leq \frac{t_{1}}{t_{1}+t_{2}} h\left(t_{1}+t_{2}\right)+\frac{t_{2}}{t_{1}+t_{2}} h\left(t_{1}+t_{2}\right) \\
& =h\left(t_{1}+t_{2}\right)
\end{aligned}
$$

Step 4. We claim that $v_{n} \rightarrow v$ strongly in $D^{1,2}\left(\mathbb{R}^{N}\right)$. It follows from Brézis-Lieb type lemma [2] that

$$
\begin{gathered}
\|v\|_{\Phi}^{2}+\lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|_{\Phi}^{2}=\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{\Phi}^{2}=S_{\Phi, \alpha} \\
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|v_{n}\right|^{2^{*}} \mathrm{~d} x=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|v_{n}-v\right|^{2^{*}} \mathrm{~d} x+\int_{\mathbb{R}^{N}}|v|^{2^{*}} \mathrm{~d} x .
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
1 & =\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|v_{n}\right|^{2^{*}} \mathrm{~d} x \\
& =\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|v_{n}-v\right|^{2^{*}} \mathrm{~d} x+\int_{\mathbb{R}^{N}}|v|^{2^{*}} \mathrm{~d} x \\
& \leq S_{\Phi}^{-\frac{2^{*}}{2}} \lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|_{\Phi}^{2^{*}}+S_{\Phi}^{-\frac{2^{*}}{2}}\|v\|_{\Phi}^{2^{*}} \\
& \leq S_{\Phi}^{-\frac{2^{*}}{2}}\left(\lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|_{\Phi}+\|v\|_{\Phi}\right)^{2^{*}}=1
\end{aligned}
$$

Therefore, all the inequalities above have to be equalities. We know that

$$
\lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|_{\Phi}^{2^{*}}+\|v\|_{\Phi}^{2^{*}}=\left(\lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|_{\Phi}+\|v\|_{\Phi}\right)^{2^{*}}
$$

This further gives: either $\lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|_{\Phi}=0$ or $\|v\|_{\Phi}=0$.
From $v \not \equiv 0$, so we have $\|v\|_{\Phi} \neq 0$. Then

$$
\lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|_{\Phi}=0
$$

We can choose $v \geq 0$.
There exists $C>0$ such that $\bar{v}=C v$ satisfies

$$
-\Delta \bar{v}-\mu \frac{\Phi(x /|x|)}{|x|^{2}} \bar{v}=|\bar{v}|^{2^{*}-1}, \quad x \in \mathbb{R}^{N}
$$

The proof is complete.
To study the nonradial solution of equation (1.1), we need the following result.
Lemma 3.1 ([6]). Let X be a closed subspace of $H^{1}\left(\mathbb{S}^{N-1}\right)$. Suppose that the embedding $X \subset L^{q}\left(\mathbb{S}^{N-1}\right)$ is compact. Then the restriction of function K on X, $\left.K\right|_{X}$ satisfies the Palais-Smale condition. Furthermore, if X is infinite dimensional, then $\left.K\right|_{X}$ has a sequence of critical points ϕ_{k} in X, such that $\int_{\mathbb{S}^{N-1}}\left|\phi_{k}\right|^{q} \mathrm{~d} \vartheta \rightarrow \infty$ as $k \rightarrow \infty$.

Proof of Theorem 1.1. (nonradial solutions). It is easy to see that

$$
\begin{equation*}
u(x)=|x|^{\frac{2-N}{2}} \phi\left(\frac{x}{|x|}\right) \tag{3.3}
\end{equation*}
$$

solves equation (1.3), if and only if ϕ is a solution of the equation

$$
\begin{equation*}
-\Delta_{\vartheta} \phi+\frac{(N-2)^{2}}{4} \phi-\mu \Phi \phi=|\phi|^{2^{*}-2} \phi, \quad \text { in } \mathbb{S}^{N-1} \tag{3.4}
\end{equation*}
$$

The energy functional of equation (3.4) is

$$
\begin{aligned}
K(\phi)= & \frac{1}{2} \int_{\mathbb{S}^{N-1}}|\nabla \phi|^{2} \mathrm{~d} \vartheta+\frac{(N-2)^{2}}{8} \int_{\mathbb{S}^{N-1}}|\phi|^{2} \mathrm{~d} \vartheta-\frac{\mu}{2} \int_{\mathbb{S}^{N-1}} \Phi|\phi|^{2} \mathrm{~d} \vartheta \\
& -\frac{1}{2^{*}} \int_{\mathbb{S}^{N-1}}|\phi|^{2^{*}} \mathrm{~d} \vartheta
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle K^{\prime}(\phi), \varphi\right\rangle= & \int_{\mathbb{S}^{N-1}} \nabla \phi \nabla \varphi \mathrm{~d} \vartheta+\frac{(N-2)^{2}}{4} \int_{\mathbb{S}^{N-1}} \phi \varphi \mathrm{~d} \vartheta-\mu \int_{\mathbb{S}^{N-1}} \Phi \phi \varphi \mathrm{~d} \vartheta \\
& -\int_{\mathbb{S}^{N-1}}|\phi|^{2^{*}-2} \phi \varphi \mathrm{~d} \vartheta
\end{aligned}
$$

Suppose that $G=O(k) \times O(m) \subset O(N)$, where $k+m=N$, then $H_{G}^{1}\left(\mathbb{S}^{N-1}\right)$ is an infinite dimensional closed subspace of $H^{1}\left(\mathbb{S}^{N-1}\right)$, and $H_{G}^{1}\left(\mathbb{S}^{N-1}\right)$ is compactly embedded in $L^{q}\left(\mathbb{S}^{N-1}\right)$ for every $q \in\left[1, \frac{2(N-1)}{N-3}\right)$, see [6].

Since $2^{*} \in\left[1, \frac{2(N-1)}{N-3}\right)$, so we have that $H_{G}^{1}\left(\mathbb{S}^{N-1}\right)$ is compactly embedded in $L^{2^{*}}\left(\mathbb{S}^{N-1}\right)$. Applying Lemma 3.1 with $X=H_{G}^{1}\left(\mathbb{S}^{N-1}\right)$ and $q=2^{*}$, then we have that $\left.K\right|_{H_{G}^{1}\left(\mathbb{S}^{N-1}\right)}$ has a sequence of critical points ϕ_{k} in $H_{G}^{1}\left(\mathbb{S}^{N-1}\right)$, such that $\int_{\mathbb{S}^{N-1}}\left|\phi_{k}\right|^{2^{*}} \mathrm{~d} \vartheta \rightarrow \infty$ as $k \rightarrow \infty$.

According to 3.3 , we know that $\bar{v}_{k}(x)=|x|^{\frac{2-N}{2}} \phi_{k}\left(\frac{x}{|x|}\right)$ are solutions of equation (1.3), and $\int_{\mathbb{R}^{N}}\left|\bar{v}_{k}\right|^{2^{*}} \mathrm{~d} x=\int_{\mathbb{S}^{N-1}}\left|\phi_{k}\right|^{2^{*}} \mathrm{~d} \vartheta \rightarrow \infty$ as $k \rightarrow \infty$.

4. Proof of Theorem 1.3

Define

$$
J_{b}=\left.I_{b}\right|_{D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)}, \quad c=\inf _{\Upsilon \in \Gamma} \max _{t \in[0,1]} J_{b}(\Upsilon(t))
$$

where

$$
\Gamma=\left\{\Upsilon \in C\left([0,1], D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)\right) \mid \Upsilon(0)=0, J_{b}(\Upsilon(1))<0\right\}
$$

It is easy to see that J_{b} possesses the mountain pass geometry, there exists $\left\{u_{n}\right\} \subset$ $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$ such that

$$
J_{b}\left(u_{n}\right) \rightarrow c>0 \quad \text { and } \quad J_{b}^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

And $\left\{u_{n}\right\}$ is uniformly bounded in $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$.
The Nehari manifold on $D_{\text {rad }}^{1,2}\left(\mathbb{R}^{N}\right)$ is defined by

$$
\mathcal{N}_{b}=\left\{u \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right) \mid\left\langle J_{b}^{\prime}(u), u\right\rangle=0, u \neq 0\right\}
$$

and

$$
\overline{\bar{c}}=\inf _{u \in \mathcal{N}_{b}} J_{b}(u) \quad \text { and } \bar{c}=\inf _{u \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)} \max _{t \geq 0} J_{b}(t u)
$$

With minor change the proof of [27, Theorem 4.2], we can show that

$$
\overline{\bar{c}}=\bar{c}=c .
$$

Lemma 4.1. Assume the assumptions in Theorem 1.3 hold. Then for each $u \in$ $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}$, there exists a unique $t_{u}>0$ such that $t_{u} u \in \mathcal{N}_{b}$. Moreover, $J_{b}\left(t_{u} u\right)=\max _{t \geq 0} J_{b}(t u)$.

Proof. For each $u \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}$, and $t \in(0, \infty)$, we set

$$
\begin{gathered}
f_{1}(t)=J_{b}(t u)=\frac{t^{2}}{2}\|u\|_{\Phi}^{2}+\frac{b t^{4}}{4}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4}-\frac{t^{2^{*}}}{2^{*}} \int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x \\
f_{1}^{\prime}(t)=t\|u\|_{\Phi}^{2}+b t^{3}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4}-t^{2^{*}-1} \int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x
\end{gathered}
$$

This implies that $f_{1}^{\prime}(\cdot)=0$ if and only if

$$
t^{2-2^{*}}\|u\|_{\Phi}^{2}+b t^{4-2^{*}}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4}=\int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x
$$

Set

$$
f_{2}(t)=t^{2-2^{*}}\|u\|_{\Phi}^{2}+b t^{4-2^{*}}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4}
$$

We know that $\lim _{t \rightarrow 0} f_{2}(t)=\infty, \lim _{t \rightarrow \infty} f_{2}(t)=0$ and $f_{2}(\cdot)$ is strictly decreasing on $(0, \infty)$. Then there exists a unique $0<t_{u}<\infty$ such that

$$
f_{2}(t) \begin{cases}<\int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x, & t_{u}<t<\infty \\ =\int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x, & t=t_{u} \\ >\int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x, & 0<t<t_{u}\end{cases}
$$

This is showing that $t_{u} u \in \mathcal{N}_{b}$. Moreover,

$$
f_{1}^{\prime}(t) \begin{cases}<0, & t_{u}<t<\infty \\ =0, & t=t_{u} \\ >0, & 0<t<t_{u}\end{cases}
$$

This shows that $f_{1}(\cdot)$ admits a unique critical point t_{u} on $(0, \infty)$ such that $f_{1}(\cdot)$ takes the maximum at t_{u}.

To prove the uniqueness of t_{u}, let us assume that $0<\bar{t}<\overline{\bar{t}}$ satisfy $f_{1}^{\prime}(\bar{t})=$ $f_{1}^{\prime}(\overline{\bar{t}})=0$. We obtain

$$
\int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x=f_{2}(\bar{t})=f_{2}(\overline{\bar{t}})
$$

Since $0<\bar{t}<\bar{t}$, the above equality leads to the contradiction: $u=0$. Hence, for each $u \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}$, there exists a unique $t_{u}>0$ such that $t_{u} u \in \mathcal{N}_{b}$.

Lemma 4.2. Assume that the assumptions in Theorem 1.3 hold. Let $\left\{u_{n}\right\}$ be a $(P S)_{c}$ sequence of J_{b} at $c>0$. Then up to a subsequence, $u_{n} \rightharpoonup u$ in $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$ with $u \not \equiv 0$ being a weak solution of equation 1.1).

Proof. It is easy to see that $\left\{u_{n}\right\}$ is uniformly bounded in $D_{\text {rad }}^{1,2}\left(\mathbb{R}^{N}\right)$. In order to see that u is a weak solution of J_{b}, we recall

$$
u_{n} \rightharpoonup u \text { in } D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right), \quad u_{n} \rightarrow u \text { a.e. in } \mathbb{R}^{N}, \quad u_{n} \rightarrow u \text { in } L_{\mathrm{loc}}^{r}\left(\mathbb{R}^{N}\right)
$$

for all $r \in\left[2,2^{*}\right)$. Moreover, there exists $A \in \mathbb{R}$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}=A \tag{4.1}
\end{equation*}
$$

Then by Fatou's lemma,

$$
\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2} \leq A
$$

We claim that $\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}=A$. To obtain a contradiction, we assume that $\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}<A$. Since $u_{n} \rightharpoonup u$ weakly in $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$, we know that for each $\varphi \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} \nabla u_{n} \nabla \varphi \mathrm{~d} x-\mu \int_{\mathbb{R}^{N}} \Phi\left(\frac{x}{|x|}\right) \frac{u_{n} \varphi}{|x|^{2}} \mathrm{~d} x \tag{4.2}\\
& =\int_{\mathbb{R}^{N}} \nabla u \nabla \varphi \mathrm{~d} x-\mu \int_{\mathbb{R}^{N}} \Phi\left(\frac{x}{|x|}\right) \frac{u \varphi}{|x|^{2}} \mathrm{~d} x
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2^{*}-2} u_{n} \varphi \mathrm{~d} x=\int_{\mathbb{R}^{N}}|u|^{2^{*}-2} u \varphi \mathrm{~d} x \tag{4.3}
\end{equation*}
$$

From $\lim _{n \rightarrow \infty}\left\langle J_{b}^{\prime}\left(u_{n}\right), \varphi\right\rangle=0$, we have

$$
\begin{aligned}
0= & \lim _{n \rightarrow \infty}\left(1+b\left\|u_{n}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}\right) \int_{\mathbb{R}^{N}} \nabla u_{n} \nabla \varphi \mathrm{~d} x-\mu \int_{\mathbb{R}^{N}} \Phi\left(\frac{x}{|x|}\right) \frac{u_{n} \varphi}{|x|^{2}} \mathrm{~d} x \\
& -\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2^{*}-2} u_{n} \varphi \mathrm{~d} x .
\end{aligned}
$$

Applying 4.1), we obtain

$$
0=(1+b A) \int_{\mathbb{R}^{N}} \nabla u_{n} \nabla \varphi \mathrm{~d} x-\mu \int_{\mathbb{R}^{N}} \Phi\left(\frac{x}{|x|}\right) \frac{u_{n} \varphi}{|x|^{2}} \mathrm{~d} x-\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2^{*}-2} u_{n} \varphi \mathrm{~d} x .
$$

By using 4.2, 4.3) and $\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}<A$, we know that

$$
\begin{equation*}
\left\langle J_{b}^{\prime}(u), u\right\rangle<0 . \tag{4.4}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\left\langle J_{b}^{\prime}(t u), t u\right\rangle=f_{1}^{\prime}(t) t=t^{2}\|u\|_{\Phi}^{2}+b t^{4}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4}-t^{2^{*}} \int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x \tag{4.5}
\end{equation*}
$$

Applying Lemma 4.1, there exists a unique $t_{0}>0$ satisfying $f_{1}^{\prime}\left(t_{0}\right)=0$, which implies that

$$
\begin{equation*}
\left\langle J_{b}^{\prime}\left(t_{0} u\right), t_{0} u\right\rangle=f_{1}^{\prime}\left(t_{0}\right) t_{0}=0 \tag{4.6}
\end{equation*}
$$

Now, we show that $t_{0}<1$. Combining (4.4) and 4.5), we know that $f_{1}^{\prime}(1)<0$. Taking $t_{\varepsilon}>0$ small enough in 4.5), we know $f_{1}^{\prime}\left(t_{\varepsilon}\right) t_{\varepsilon}>0$, which implies $f_{1}^{\prime}\left(t_{\varepsilon}\right)>$ 0 . According to Intermediate value theorem, there exists $t_{1} \in\left(t_{\varepsilon}, 1\right)$ such that $f_{1}^{\prime}\left(t_{1}\right)=0$. By using the uniqueness of t_{0}, we have

$$
\begin{equation*}
t_{0}=t_{1} \in\left(t_{\varepsilon}, 1\right) \tag{4.7}
\end{equation*}
$$

From (4.5)-4.7), we obtain

$$
\begin{aligned}
c & =J_{b}\left(t_{0} u\right) \\
& =J_{b}\left(t_{0} u\right)-\frac{1}{4}\left\langle J_{b}^{\prime}\left(t_{0} u\right), t_{0} u\right\rangle \\
& =\frac{t_{0}^{2}}{4}\|u\|_{\Phi}^{2}+\left(\frac{1}{4}-\frac{1}{2^{*}}\right) t_{0}^{2^{*}} \int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x \\
& <\frac{1}{4}\|u\|_{\Phi}^{2}+\left(\frac{1}{4}-\frac{1}{2^{*}}\right) \int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{4} \lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{\Phi}^{2}+\left(\frac{1}{4}-\frac{1}{2^{*}}\right) \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2^{*}} \mathrm{~d} x \\
& =\lim _{n \rightarrow \infty} J_{b}\left(u_{n}\right)-\frac{1}{4} \lim _{n \rightarrow \infty}\left\langle J_{b}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=c
\end{aligned}
$$

which is a contradiction. Then

$$
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}=A=\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}
$$

Thus for any $\varphi \in D^{1,2}\left(\mathbb{R}^{N}\right)$, we obtain

$$
\lim _{n \rightarrow \infty}\left\langle J_{b}^{\prime}\left(u_{n}\right), \varphi\right\rangle=0=\left\langle J_{b}^{\prime}(u), \varphi\right\rangle .
$$

The proof is complete.

The following result implies the non-vanishing of $(P S)_{c}$ sequence.
Lemma 4.3. Assume that all the assumptions descripted in Theorem 1.3 hold. Let $\left\{u_{n}\right\}$ be a $(P S)_{c}$ sequence of J_{b} at $c>0$. Then

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2^{*}} \mathrm{~d} x>0
$$

Proof. It is easy to see that $\left\{u_{n}\right\}$ is uniformly bounded in $D_{\text {rad }}^{1,2}\left(\mathbb{R}^{N}\right)$. Then there exists a constant $0<C<\infty$ such that $\left\|u_{n}\right\|_{\Phi} \leq C$.

Suppose on the contrary that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2^{*}} \mathrm{~d} x=0 \tag{4.8}
\end{equation*}
$$

According to 4.8 and the definition of $(P S)_{c}$ sequence, we obtain

$$
c+o(1)=\frac{1}{2}\left\|u_{n}\right\|_{\Phi}^{2}+\frac{b}{4}\left\|u_{n}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4} \quad \text { and } \quad o(1)=\left\|u_{n}\right\|_{\Phi}^{2}+b\left\|u_{n}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4} .
$$

This implies $c+o(1)=-\frac{1}{4}\left\|u_{n}\right\|_{\Phi}^{2}$, which contradicts $0<c$.
Proof of Theorem 1.3. (i) Note that $\left\{u_{n}\right\}$ is a bounded sequence of J_{b} at level c in $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$. Up to a subsequence, we assume

$$
u_{n} \rightharpoonup u \text { in } D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right), \quad u_{n} \rightarrow \text { ua.e. in } \mathbb{R}^{N}, \quad u_{n} \rightarrow u \text { in } L_{\mathrm{loc}}^{r}\left(\mathbb{R}^{N}\right)
$$

for all $r \in\left[2,2^{*}\right)$. Let $v_{n}(x)=\sigma_{n}^{\frac{N-2}{2}} u_{n}\left(\sigma_{n} x\right)$. We assume that

$$
v_{n} \rightharpoonup v \text { in } D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right), \quad v_{n} \rightarrow v \text { a.e. in } \mathbb{R}^{N}, \quad v_{n} \rightarrow v \text { in } L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{N}\right)
$$

for all $q \in\left[2,2^{*}\right)$. From Lemma 4.3, we have

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2^{*}} \mathrm{~d} x>0
$$

Similar to the proof of Theorem 1.1 Steps 1 and 2 , we deduce that $v \not \equiv 0$. From Lemma4.2, we know $v \in \mathcal{N}_{b}$. We show that $v_{n} \rightarrow v$ strongly in $D_{\text {rad }}^{1,2}\left(\mathbb{R}^{N}\right)$. Applying

Brézis-Lieb lemma [2], we obtain

$$
\begin{align*}
c & =\lim _{n \rightarrow \infty} J_{b}\left(v_{n}\right)-\lim _{n \rightarrow \infty} \frac{1}{2^{*}}\left\langle J_{b}^{\prime}\left(v_{n}\right), v_{n}\right\rangle \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{2^{*}}\right)\left\|v_{n}\right\|_{\Phi}^{2}+\lim _{n \rightarrow \infty}\left(\frac{1}{4}-\frac{1}{2^{*}}\right)\left\|v_{n}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4} \tag{4.9}\\
& \geq\left(\frac{1}{2}-\frac{1}{2^{*}}\right)\|v\|_{\Phi}^{2}+\left(\frac{1}{4}-\frac{1}{2^{*}}\right)\|v\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4} \\
& =J_{b}(v) \geq c .
\end{align*}
$$

Thus, the inequalities above have to be equalities. We know that

$$
\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{\Phi}^{2}=\|v\|_{\Phi}^{2}
$$

By Brézis-Lieb lemma again, we have

$$
\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{\Phi}^{2}-\lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|_{\Phi}^{2}=\|v\|_{\Phi}^{2}
$$

which implies

$$
\lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|_{\Phi}^{2}=0
$$

Using (4.9) again, we know that $J_{b}(v)=c$. This implies that v attains the minimum of J_{b} at c. Moreover, we can choose $v \geq 0$. The principle of symmetric criticality implies that the critical point of J_{b} is also a critical point of I_{b}.
(ii) For each $L>1$, define

$$
v_{L}(x)= \begin{cases}v(x) & \text { if } v(x) \leq L \\ L & \text { if } v(x)>L\end{cases}
$$

For $\beta=2^{*} / 2>1$. Set $\phi=v v_{L}^{2(\beta-1)}$. It is easy to see that $\phi \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$.
We know that v is a nonnegative solution of equation 1.1). Then

$$
\left(1+b\|v\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}\right) \int_{\mathbb{R}^{N}} \nabla v \nabla \varphi \mathrm{~d} x-\mu \int_{\mathbb{R}^{N}} \Phi\left(\frac{x}{|x|}\right) \frac{v \varphi}{|x|^{2}} \mathrm{~d} x=\int_{\mathbb{R}^{N}}|v|^{2^{*}-2} v \varphi \mathrm{~d} x .
$$

Plugging ϕ into above equation, we obtain

$$
\left(1+b\|v\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}\right) \int_{\mathbb{R}^{N}} \nabla v \nabla \phi \mathrm{~d} x-\mu \int_{\mathbb{R}^{N}} \Phi\left(\frac{x}{|x|}\right) \frac{v \phi}{|x|^{2}} \mathrm{~d} x=\int_{\mathbb{R}^{N}}|v|^{2^{*}-2} v \phi \mathrm{~d} x .
$$

A direct calculation yields

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \nabla v \nabla \phi \mathrm{~d} x \geq \int_{\mathbb{R}^{N}} v_{L}^{2(\beta-1)}|\nabla v|^{2} \mathrm{~d} x \tag{4.10}
\end{equation*}
$$

Notice that

$$
\left|\nabla\left(v v_{L}^{\beta-1}\right)\right|^{2}=v_{L}^{2(\beta-1)}|\nabla v|^{2}+(\beta-1)^{2} v^{2} v_{L}^{2(\beta-2)}\left|\nabla v_{L}\right|^{2}+2(\beta-1) v v_{L}^{2 \beta-3} \nabla v \nabla v_{L}
$$

Then one has

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} v^{2} v_{L}^{2(\mu-2)}\left|\nabla v_{L}\right|^{2} \mathrm{~d} x \leq \int_{\mathbb{R}^{N}} v_{L}^{2(\mu-1)}|\nabla v|^{2} \mathrm{~d} x \\
& \int_{\mathbb{R}^{N}} v v_{L}^{2 \mu-3} \nabla v \nabla v_{L} \mathrm{~d} x \leq \int_{\mathbb{R}^{N}} v_{L}^{2(\mu-1)}|\nabla v|^{2} \mathrm{~d} x
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|\nabla\left(v v_{L}^{\beta-1}\right)\right|^{2} \mathrm{~d} x \leq \beta^{2} \int_{\mathbb{R}^{N}} v_{L}^{2(\beta-1)}|\nabla v|^{2} \mathrm{~d} x \tag{4.11}
\end{equation*}
$$

It follows from 4.10 and 4.11 that

$$
\frac{1}{\beta^{2}} \int_{\mathbb{R}^{N}}\left|\nabla\left(v v_{L}^{\beta-1}\right)\right|^{2} \mathrm{~d} x \leq \int_{\mathbb{R}^{N}} \nabla v \nabla \phi \mathrm{~d} x
$$

Hence,

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}|v|^{2^{*}-2}\left|v v_{L}^{\beta-1}\right|^{2} \mathrm{~d} x & =\left(1+b\|v\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}\right) \int_{\mathbb{R}^{N}} \nabla v \nabla \phi \mathrm{~d} x-\mu \int_{\mathbb{R}^{N}} \Phi\left(\frac{x}{|x|}\right) \frac{v \phi}{|x|^{2}} \mathrm{~d} x \\
& \geq \int_{\mathbb{R}^{N}} \nabla v \nabla \phi \mathrm{~d} x-\mu \int_{\mathbb{R}^{N}} \Phi\left(\frac{x}{|x|}\right) \frac{v \phi}{|x|^{2}} \mathrm{~d} x \\
& \geq \frac{1}{\beta^{2}} \int_{\mathbb{R}^{N}}\left|\nabla\left(v v_{L}^{\beta-1}\right)\right|^{2} \mathrm{~d} x-\mu \int_{\mathbb{R}^{N}} \Phi\left(\frac{x}{|x|}\right) \frac{\left|v v_{L}^{\beta-1}\right|^{2}}{|x|^{2}} \mathrm{~d} x \\
& \geq\left(\frac{1}{\beta^{2}}-\frac{\mu}{\Lambda_{\Phi}}\right)\left\|v v_{L}^{\beta-1}\right\|_{\Phi}^{2}
\end{aligned}
$$

Then, combining above inequality and Moser iteration technique, we deduce that $v \in L^{2^{*} \cdot \frac{2^{*}}{2}}\left(\mathbb{R}^{N}\right)$.

5. Proof of Theorem 1.4

5.1. Perturbation equation. In this subsection, we look equation 1.1 as a perturbation of 1.3 . The energy functional of equation 1.3 is

$$
I_{0}(u)=\frac{1}{2}\|u\|_{\Phi}^{2}-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x
$$

Set

$$
J_{0}=\left.I_{0}\right|_{D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)}
$$

and define

$$
c_{0}=\inf _{\Upsilon \in \Gamma_{0}} \max _{t \in[0,1]} J_{0}(\Upsilon(t))
$$

where $\Gamma_{0}=\left\{\Upsilon \in C\left([0,1], D_{\text {rad }}^{1,2}\left(\mathbb{R}^{N}\right)\right) \mid \Upsilon(0)=0, J_{0}(\Upsilon(1))<0\right\}$. The Nehari manifold is

$$
\mathcal{N}_{0}=\left\{u \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right) \mid\left\langle J_{0}^{\prime}(u), u\right\rangle=0, u \neq 0\right\}
$$

and

$$
\bar{c}_{0}=\inf _{u \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)} \max _{t \geq 0} J_{0}(t u) \quad \text { and } \quad \overline{\bar{c}}_{0}=\inf _{u \in \mathcal{N}_{0}} J_{0}(u)
$$

We can show that $c_{0}=\bar{c}_{0}=\overline{\bar{c}}_{0}$.
Lemma 5.1. Assume that the assumptions in Theorem 1.4 hold. Then the energy functional J_{0} satisfies the following properties
(M1) There exist $\rho, \iota>0$ such that if $\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}=\rho$, then $J_{0}(u) \geq \iota$, and $e_{0} \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$ exists such that $\left\|e_{0}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}>\rho$ and $J_{0}\left(e_{0}\right)<0$.
(M2) There exists $v_{0} \not \equiv 0$ such that $J_{0}\left(v_{0}\right)=c_{0}:=\min _{\Upsilon \in \Gamma_{0}} \max _{t \in[0,1]} J_{0}(\Upsilon(t))$, where $\Gamma_{0}=\left\{\Upsilon \in C\left([0,1], D_{\text {rad }}^{1,2}\left(\mathbb{R}^{N}\right)\right) \mid \Upsilon(0)=0, J_{0}(\Upsilon(1))<0\right\}$.
$(\mathrm{M} 3) c_{0}=\inf \left\{J_{0}(u) \mid\left\|J_{0}^{\prime}(u)\right\|_{D^{-1,2}\left(\mathbb{R}^{N}\right)}=0, u \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}\right\}$.
(M4) There exists a path $\Upsilon_{0}(t) \in \Gamma_{0}$ passing through v_{0} at $t=t_{0}$ and satisfying

$$
J_{0}\left(v_{0}\right)>J_{0}\left(\Upsilon_{0}(t)\right) \quad \text { for all } t \neq t_{0}
$$

(M5) The set $\mathcal{S}:=\left\{u \in D_{\text {rad }}^{1,2}\left(\mathbb{R}^{N}\right) \mid\left\|J_{0}^{\prime}(u)\right\|_{D^{-1,2}\left(\mathbb{R}^{N}\right)}=0, J_{0}(u)=c_{0}\right\}$ is compact in $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$ with the strong topology up to dilations in \mathbb{R}^{N}.

Proof. As in Theorem 1.3, we have (M1)-(M4).
(M5) Note that J_{0} is invariant by dilations. It follows from Theorem 1.3 that the weak convergence of the dilated subsequence can be upgraded into strong convergence. This further implies that the set \mathcal{S} is compact in $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$ with the topology up to dilations in \mathbb{R}^{N}.
5.2. Perturbation method. We define a modified mountain pass level of J_{b}

$$
c_{b}:=\min _{\Upsilon \in \Gamma_{M}} \max _{t \in[0,1]} J_{b}(\Upsilon(t)),
$$

where

$$
\begin{array}{cl}
\Gamma_{M}=\left\{\Upsilon \in \Gamma_{0}: \sup _{t \in[0,1]}\|\Upsilon(t)\|_{D^{1,2}\left(\mathbb{R}^{N}\right)} \leq M\right\} & \text { with } \\
M=2\left\{\sup _{u \in \mathcal{S}}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}, \sup _{t \in[0,1]}\|\Upsilon(t)\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}\right\} \quad \text { fixed. }
\end{array}
$$

By the choice of $M, \Upsilon_{0} \in \Gamma_{M}$, we have $c_{0}=\min _{\Upsilon \in \Gamma_{M}} \max _{t \in[0,1]} J_{0}(\Upsilon(t))$. becasue $\Gamma_{M} \subsetneq \varsubsetneqq \Gamma_{0}$, the standard mountain pass theorem becomes unavailable.

Lemma 5.2. Let $b>0$. Then $\lim _{b \rightarrow 0} c_{b}=c_{0}$.
Proof. For $b>0$, it is easy to obtain $c_{b} \geq c_{0}$. We take $e_{0}=T v_{0}$ in $\left(M_{1}\right)$, where $T>\left(2^{*} / 2\right)^{\frac{1}{2^{*}-1}}$. Then $\Upsilon_{0}(t) \in C\left([0,1], D_{\text {rad }}^{1,2}\left(\mathbb{R}^{N}\right)\right)$ defined as

$$
\Upsilon_{0}(t)=t e_{0}=t T v_{0},
$$

and $t_{0}=\frac{1}{T}$ in (M4). We know that

$$
\lim _{b \rightarrow 0} c_{b}=\lim _{b \rightarrow 0} J_{b}\left(\Upsilon_{0}(t)\right) \leq J_{0}\left(\Upsilon_{0}(t)\right)+\lim _{\lambda \rightarrow 0} \frac{b}{4}\left\|\Upsilon_{0}(t)\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4}=J_{0}\left(v_{0}\right)=c_{0}
$$

For any $d>0$, and any subset A of $D_{\text {rad }}^{1,2}\left(\mathbb{R}^{N}\right)$, we set

$$
A^{d}:=\bigcup_{u \in A} B_{d}(u)
$$

where $B_{d}(u):=\left\{v \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right) \mid\|u-v\|_{D^{1,2}\left(\mathbb{R}^{N}\right)} \leq d\right\}$.
Lemma 5.3. Let $d>0$ and $\left\{u_{j}\right\} \subset \mathcal{S}^{d}$. Then there exists $\left\{\sigma_{j}\right\}$ such that

$$
\left\|\bar{u}_{j}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}=\left\|u_{j}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}
$$

where $\bar{u}_{j}(x)=\sigma_{j}^{\frac{N-2}{2}} u_{j}\left(\sigma_{j} x\right)$. Up to a subsequence, $\bar{u}_{j} \rightharpoonup \bar{u} \in \mathcal{S}^{2 d}$.
Proof. Let $\left\{u_{j}\right\} \subset \mathcal{S}^{d}$. From \mathcal{S}^{d} and Lemma 5.1 (M5), there exists $w_{j} \in \mathcal{S}$ such that

$$
\left\|u_{j}-w_{j}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)} \leq d
$$

From (M5), there exists $\left\{\sigma_{j}\right\}$ such that $\bar{w}_{j} \in \mathcal{S}$, where $\bar{w}_{j}(x)=\sigma_{j}^{\frac{N-2}{2}} w_{j}\left(\sigma_{j} x\right)$. It is easy to prove that $\bar{w}_{j} \rightarrow \bar{w} \in \mathcal{S}$. And

$$
\left\|\bar{u}_{j}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}=\left\|u_{j}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}, \quad\left\|\bar{u}_{j}-\bar{w}_{j}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}=\left\|u_{j}-w_{j}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)} \leq d
$$

For j large enough, we have

$$
\begin{aligned}
\left\|\bar{u}_{j}-\bar{w}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)} & =\left\|\bar{u}_{j}-\bar{w}_{j}+\bar{w}_{j}-\bar{w}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)} \\
& \leq\left\|\bar{u}_{j}-\bar{w}_{j}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}+\left\|\bar{w}_{j}-\bar{w}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)} \leq 2 d .
\end{aligned}
$$

This shows that $\left\{\bar{u}_{j}\right\}$ is bounded. Up to a subsequence, we assume that $\bar{u}_{j} \rightharpoonup \bar{u}$ in $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$. Note that $B_{2 d}(\bar{w})$ is weakly closed in $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$. We obtain $\bar{u} \in$ $B_{2 d}(\bar{w}) \subset \mathcal{S}^{2 d}$.

Lemma 5.4. Let $d_{1}:=\frac{1}{2} \sqrt{\frac{2 \cdot 2^{*}}{2^{*}-2} c_{0}}$ and $d \in\left(0, d_{1}\right)$. Suppose that there exist sequences $b_{j}>0, b_{j} \rightarrow 0$, and $\left\{u_{j}\right\} \subset \mathcal{S}^{d}$ satisfying

$$
\lim _{j \rightarrow \infty} J_{b_{j}}\left(u_{j}\right) \leq c_{0} \quad \text { and } \quad \lim _{j \rightarrow \infty}\left\|J_{b_{j}}^{\prime}\left(u_{j}\right)\right\|_{D^{-1,2}\left(\mathbb{R}^{N}\right)}=0
$$

Then there exists a sequence $\left\{\sigma_{j}\right\}$ such that $\left\|\bar{u}_{j}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}=\left\|u_{j}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}$, where $\bar{u}_{j}(x)=\sigma_{j}^{\frac{N-2}{2}} u_{j}\left(\sigma_{j} x\right)$. Up to a subsequence, $\left\{\bar{u}_{j}\right\}$ converges to $\bar{u} \in \mathcal{S}$.

Proof. Let $\lim _{j \rightarrow \infty}\left\|J_{b_{j}}^{\prime}\left(u_{j}\right)\right\|_{D^{-1,2}\left(\mathbb{R}^{N}\right)}=0$ and $\left\{u_{j}\right\}$ be bounded. From Lemma 5.3. up to a subsequence, $\bar{u}_{j} \rightharpoonup \bar{u} \in \mathcal{S}^{2 d}$. From d_{1}, we know that $\bar{u} \not \equiv 0$.

Let $\bar{u}_{j}(x)=\sigma_{j}^{\frac{N-2}{2}} u_{j}\left(\sigma_{j} x\right)$. We have

$$
\lim _{j \rightarrow \infty} J_{b_{j}}\left(\bar{u}_{j}\right)=\lim _{j \rightarrow \infty} J_{b_{j}}\left(u_{j}\right) \leq c_{0}
$$

For all $\varphi \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$, we obtain

$$
\begin{aligned}
\left|\left\langle J_{b_{j}}^{\prime}\left(\bar{u}_{j}\right), \varphi\right\rangle\right| & \\
& =\left|\left\langle J_{b_{j}}^{\prime}\left(u_{j}\right), \bar{\varphi}\right\rangle\right| \\
& \leq\left\|J_{b_{j}}^{\prime}\left(u_{j}\right)\right\|_{D^{-1,2}\left(\mathbb{R}^{N}\right)}\|\bar{\varphi}\|_{D^{1,2}\left(\mathbb{R}^{N}\right)} \\
& =o(1)\|\bar{\varphi}\|_{D^{1,2}\left(\mathbb{R}^{N}\right)},
\end{aligned}
$$

where $\bar{\varphi}=\sigma_{j}^{-\frac{N-2}{2}} \varphi\left(x / \sigma_{j}\right)$. Note that $\|\bar{\varphi}\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}=\|\varphi\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}$. We know that

$$
\left\|J_{b_{j}}^{\prime}\left(\bar{u}_{j}\right)\right\|_{D^{-1,2}\left(\mathbb{R}^{N}\right)} \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

which further implies

$$
\left\langle J_{0}^{\prime}(\bar{u}), \varphi\right\rangle=\lim _{j \rightarrow \infty}\left\langle J_{b_{j}}^{\prime}\left(\bar{u}_{j}\right), \varphi\right\rangle-\frac{b_{j}}{4}\left\|\bar{u}_{j}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4}=0
$$

This shows that $\left\|J_{0}^{\prime}(\bar{u})\right\|_{D^{-1,2}\left(\mathbb{R}^{N}\right)}=0$.
It follows from $\bar{u}_{j} \in \mathcal{S}^{2 d}$ that

$$
\begin{aligned}
\lim _{j \rightarrow \infty}\left\langle J_{0}^{\prime}\left(\bar{u}_{j}\right), \varphi\right\rangle & =\lim _{j \rightarrow \infty}\left\langle J_{b_{j}}^{\prime}\left(\bar{u}_{j}\right), \varphi\right\rangle-\lim _{j \rightarrow \infty} b_{j}\left\|\bar{u}_{j}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2} \int_{\mathbb{R}^{N}} \nabla \bar{u}_{j}(x) \nabla \varphi(x) \mathrm{d} x \\
& =o(1)\|\varphi\|_{D^{1,2}\left(\mathbb{R}^{N}\right)} .
\end{aligned}
$$

On the other hand,

$$
\begin{align*}
c_{0} & \geq \lim _{j \rightarrow \infty} J_{b_{j}}\left(\bar{u}_{j}\right) \\
& =\lim _{j \rightarrow \infty} J_{0}\left(\bar{u}_{j}\right)+\lim _{j \rightarrow \infty} \frac{b_{j}}{4}\left\|\bar{u}_{j}\right\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4} \tag{5.1}\\
& =\lim _{j \rightarrow \infty} J_{0}\left(\bar{u}_{j}\right)
\end{align*}
$$

So $\left\{\bar{u}_{j}\right\}$ is a $(P S)_{m}$ sequence for J_{0} with $m:=\lim _{j \rightarrow \infty} J_{0}\left(\bar{u}_{j}\right)$. Up to a subsequence, $\bar{u}_{j} \rightharpoonup \bar{u}$ and

$$
J_{0}(\bar{u})=\frac{1}{2}\|\bar{u}\|_{\Phi}^{2}-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}}|\bar{u}|^{2^{*}} \mathrm{~d} x
$$

$$
\begin{aligned}
& =\left(\frac{1}{2}-\frac{1}{2^{*}}\right)\|\bar{u}\|_{\Phi}^{2} \\
& \leq\left(\frac{1}{2}-\frac{1}{2^{*}}\right) \liminf _{j \rightarrow \infty}\left\|\bar{u}_{j}\right\|_{\Phi}^{2} \\
& =\liminf _{j \rightarrow \infty}\left(J_{0}\left(\bar{u}_{j}\right)-\frac{1}{2^{*}}\left\langle J_{0}^{\prime}\left(\bar{u}_{j}\right), \bar{u}_{j}\right\rangle\right)=m
\end{aligned}
$$

It follows from (M3) that $m \geq J_{0}(\bar{u}) \geq c_{0}$. From 5.1), one has $m=J_{0}(\bar{u})=c_{0}$, which implies $\bar{u} \in \mathcal{S}$.

Set

$$
\begin{equation*}
m_{b}:=\max _{t \in[0,1]} J_{b}\left(\Upsilon_{0}(t)\right) . \tag{5.2}
\end{equation*}
$$

Then $c_{b} \leq m_{b}$. It is easy to see that $\lim _{b \rightarrow 0} m_{b} \leq c_{0}$. From this inequality and Lemmas 5.2 and 5.4 , one has

$$
\lim _{b \rightarrow 0} c_{b}=\lim _{b \rightarrow 0} m_{b}=c_{0}
$$

We define

$$
J_{b}^{m_{b}}=\left\{u \in D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right) \mid J_{b}(u) \leq m_{b}\right\}
$$

Proposition 5.5. Let $d_{2}, d_{3}>0$ satisfying $d_{3}<d_{2}<d_{1}$. Then there exist $\iota>0$ and $\tilde{b}>0$ depending on d_{2}, d_{3} such that for $b \in(0, \tilde{b})$, it holds

$$
\left\|J_{b}^{\prime}(u)\right\|_{D^{-1,2}\left(\mathbb{R}^{N}\right)} \geq \iota, \quad u \in J_{b}^{m_{b}} \cap\left(\mathcal{S}^{d_{2}} \backslash \mathcal{S}^{d_{3}}\right)
$$

Proof. Suppose on the contrary that $d_{2}, d_{3}>0$ satisfying $d_{3}<d_{2}<d_{1}$, there exist sequences $\left\{b_{j}\right\}$ with $\lim _{j \rightarrow \infty} b_{j}=0$, and $\left\{u_{j}\right\} \in J_{b_{j}}^{m_{b_{j}}} \cap\left(\mathcal{S}^{d_{2}} \backslash \mathcal{S}^{d_{3}}\right)$ such that

$$
\lim _{j \rightarrow \infty} J_{b_{j}}\left(u_{j}\right) \leq c_{0} \quad \text { and } \quad \lim _{j \rightarrow \infty}\left\|J_{b_{j}}^{\prime}\left(u_{j}\right)\right\|_{D^{-1,2}\left(\mathbb{R}^{N}\right)}=0
$$

From (M5), there exists sequence $\left\{\sigma_{j}\right\}$ such that

$$
\begin{gathered}
\left\{\bar{u}_{j}\right\} \in J_{b_{j}}^{m_{b_{j}}} \cap\left(\mathcal{S}^{d_{2}} \backslash \mathcal{S}^{d_{3}}\right), \quad \lim _{j \rightarrow \infty} J_{b_{j}}\left(\bar{u}_{j}\right) \leq c_{0} \\
\lim _{j \rightarrow \infty}\left\|J_{b_{j}}^{\prime}\left(\bar{u}_{j}\right)\right\|_{D^{-1,2}\left(\mathbb{R}^{N}\right)}=0
\end{gathered}
$$

where $\bar{u}_{j}(x)=\sigma_{j}^{\frac{N-2}{2}} u_{j}\left(\sigma_{j} x\right)$. Hence, we can apply Lemma 5.4 and the existence of $\bar{u} \in \mathcal{S}$ such that $\bar{u}_{j} \rightarrow \bar{u}$ in $D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)$. As a consequence, $\operatorname{dist}\left(\bar{u}_{j}, \mathcal{S}\right) \rightarrow 0$ as $j \rightarrow \infty$. This is a contradiction with $\bar{u}_{j} \notin \mathcal{S}^{d_{3}}$.

Proposition 5.6. For any $d>0$, there exists $\delta>0$ such that if $b>0$ small enough, then

$$
J_{b}\left(\Upsilon_{0}(t)\right) \geq c_{b}-\delta \text { implies } \Upsilon_{0}(t) \in \mathcal{S}^{d}, \quad t \in[0,1]
$$

The proof of the above proposition follows by repeating the proof of [16, Propositions 4].

Proposition 5.7. For any $d \in\left(0, d_{1}\right)$, there exist $b_{0}>0$ and a sequence $\left\{u_{j}\right\} \subset$ $J_{b}^{m_{b}} \cap \mathcal{S}^{d}$ such that $\left\|J_{b}^{\prime}\left(u_{j}\right)\right\|_{D^{-1,2}\left(\mathbb{R}^{N}\right)} \rightarrow 0$ as $j \rightarrow \infty$, for all $b \in\left(0, b_{0}\right)$.

The proof of the above proposition follows from a discussion in [4, Propositions 5.3], by Propositions 5.5 and 5.6 .

Proof of Theorem 1.4. (i) Suppose on the contrary that $u \in D^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ is a solution of 1.1. It follows from $2^{*}=4$ and $b \geq S^{-2}$ that

$$
\begin{aligned}
\left\langle I_{b}^{\prime}(u), u\right\rangle & =\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}-\mu \int_{\mathbb{R}^{N}} \frac{\Phi(x /|x|)|u|^{2}}{|x|^{2}} \mathrm{~d} x+b\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4}-\int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x \\
& \geq\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}-\mu \int_{\mathbb{R}^{N}} \frac{\Phi(x /|x|)|u|^{2}}{|x|^{2}} \mathrm{~d} x+b\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4}-S^{-2}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4} \\
& \geq\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}-\mu \int_{\mathbb{R}^{N}} \frac{\Phi(x /|x|)|u|^{2}}{|x|^{2}} \mathrm{~d} x>0 .
\end{aligned}
$$

This is a contradiction.
(ii) Suppose on the contrary that $u \in D^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ is a solution of 1.1). Applying Young's inequality and

$$
b>\frac{2^{*}-2}{2}\left(\frac{\Lambda_{\Phi}-\mu}{\Lambda_{\Phi}}\right)^{\frac{4-2^{*}}{2^{*}-2}}\left(\frac{4-2^{*}}{2}\right)^{\frac{4-2^{*}}{2^{*}-2}} S^{-\frac{2^{*}}{2^{*}-2}}
$$

we have

$$
\begin{aligned}
& \left(1-\frac{\mu}{\Lambda_{\Phi}}\right)\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}+b\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4} \\
& \leq\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}-\mu \int_{\mathbb{R}^{N}} \frac{\Phi(x /|x|)|u|^{2}}{|x|^{2}} \mathrm{~d} x+b\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4} \\
& =\int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x \\
& \leq S^{-\frac{2^{*}}{2}}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2^{*}} \\
& =\left[S^{-\frac{2^{*}}{2}}\left(\frac{2 b}{2^{*}-2}\right)^{\frac{2-2^{*}}{2}}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4-2^{*}}\right]\left[\left(\frac{2 b}{2^{*}-2}\right)^{\frac{2^{*}-2}{2}}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2\left(2^{*}-2\right)}\right] \\
& \leq \frac{4-2^{*}}{2}\left[S^{-\frac{2^{*}}{2}}\left(\frac{2 b}{2^{*}-2}\right)^{\frac{2-2^{*}}{2}}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4-2^{*}}\right]^{\frac{2}{4-2^{*}}} \\
& \quad+\frac{2^{*}-2}{2}\left[\left(\frac{2 b}{2^{*}-2}\right)^{\frac{2^{*}-2}{2}}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2\left(2^{*}-2\right)}\right]^{\frac{2}{2^{*}-2}} \\
& =\frac{4-2^{*}}{2} S^{-\frac{2^{*}}{4-2^{*}}\left(\frac{2^{*}-2}{2 b}\right)^{\frac{2^{*}-2}{4-2^{*}}}\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}+b\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{4} .}
\end{aligned}
$$

which is a contradiction.
(iii) Taking $d \in\left(0, d_{1}\right)$, by Proposition 5.7, there exists $b_{0}>0$ such that for all $\lambda \in\left(0, b_{0}\right)$, there exists a Palais-Smale sequence $\left\{u_{j}\right\} \subset \mathcal{S}^{d / 2}$. By applying (M5), there exists sequence $\left\{\sigma_{j}\right\}$ such that $\left\{\bar{u}_{j}\right\} \subset \mathcal{S}^{d / 2}$ where $\bar{u}_{j}(x)=\sigma_{j}^{\frac{3-2 s}{2}} u_{j}\left(\sigma_{j} x\right)$. Clearly, $\left\{\bar{u}_{j}\right\}$ is bounded in $D_{\text {rad }}^{1,2}\left(\mathbb{R}^{N}\right)$. Then by Lemma 5.4, up to a subsequence, there exists $\bar{u} \in \mathcal{S}^{\frac{d}{2} \cdot 2}=\mathcal{S}^{d}$ such that $\bar{u}_{j} \rightharpoonup \bar{u}$. Then we obtain $\left\|J_{b}^{\prime}(\bar{u})\right\|_{D^{-1,2}\left(\mathbb{R}^{N}\right)}=0$. It follows from $d \in\left(0, d_{1}\right)$ that $\bar{u} \not \equiv 0$. Hence \bar{u} is a nontrivial critical point of J_{b}. The principle of symmetric criticality implies that the critical point of J_{b} is also a critical point of I_{b}.

Acknowledgments

This research is supported by the University-level key projects of Anhui University of Science and Technology (xjzd2020-23), and by the Key Program of University Natural Science Research Fund of Anhui Province (Grant No. KJ2021A0452).

References

[1] V. Ambrosio, A. Fiscella, T. Isernia; Infinitely many solutions for fractional Kirchhoff-Sobolev-Hardy critical problems, Electron. J. Qual. Theory Differ. Equ., (2019), Paper No. 25.
[2] H. Brézis, E. Lieb; A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), no. 3, 486-490.
[3] D. Cassani, Z. Liu, C. Tarsi, J. Zhang; Multiplicity of sign-changing solutions for Kirchhofftype equations, Nonlinear Anal., 186 (2019), 145-161.
[4] G. Cerami, X. Zhong, W. Zou; On some nonlinear elliptic PDEs with Sobolev-Hardy critical exponents and a Li-Lin open problem, Calc. Var. Partial Differential Equations, 54 (2015), no. 2, 1793-1829.
[5] A. Cotsiolis, N. Tavoularis; Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), no. 1, 225-236.
[6] W. Ding; On a conformally invariant elliptic equation on \mathbb{R}^{N}, Comm. Math. Phys., 107 (1986), no. 2, 331-335.
[7] V. Felli, A. Ferrero, S. Terracini; Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential, J. Eur. Math. Soc. (JEMS), 13 (2011), no. 1, 119-174.
[8] V. Felli, E. Marchini, S. Terracini; On Schrödinger operators with multisingular inversesquare anisotropic potentials, Indiana Univ. Math. J., 58 (2009), no. 2, 617-676.
[9] Z. Feng, Y. Su; Ground state solution to the biharmonic equation, Z. Angew. Math. Phys., 73 (2022), no. 1, 1-24.
[10] Z. Feng, Y. Su; Lions-type theorem of the fractional Laplacian and applications, Dyn. Partial Differ. Equ., 18 (2021), no. 3, 211-230.
[11] A. Fiscella, P. Pucci; Kirchhoff-Hardy Fractional Problems with Lack of Compactness, Adv. Nonlinear Stud., 17 (2017), no. 3, 429-456.
[12] A. Fiscella, P. Pucci, B. Zhang; p-fractional Hardy-Schrödinger-Kirchhoff systems with critical nonlinearities, Adv. Nonlinear Anal., 8 (2019), no. 1, 1111-1131.
[13] A. Fiscella, H. Mirzaee; Fractional p-Laplacian problems with Hardy terms and critical exponents, Z. Anal. Anwend., 38 (2019), no. 4, 483-498.
[14] R. Frank, R. Seiringer; Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255 (2008), no. 12, 3407-3430.
[15] T. Hoffmann-Ostenhof, A. Laptev; Hardy inequalities with homogeneous weights, J. Funct. Anal., 268 (2015), no. 11, 3278-3289.
[16] W. Jeong, J. Seok; On perturbation of a functional with the mountain pass geometry: applications to the nonlinear Schrödinger-Poisson equations and the nonlinear Klein-GordonMaxwell equations, Calc. Var. Partial Differential Equations, 49 (2014), no. 1-2, 649-668.
[17] X. Ke, J. Liu, J. Liao; Positive solutions for a critical p-Laplacian problem with a Kirchhoff term, Comput. Math. Appl., 77 (2019), no. 9, 2279-2290.
[18] G. Kirchhoff; Mechanik, Leipzig, 1883.
[19] J. Lévy-Leblond; Electron capture by polar molecules, Phys. Rev., 153 (1967), 1-4.
[20] J. Liu, J. Liao, C. Tang; Positive solutions for Kirchhoff-type equations with critical exponent in \mathbb{R}^{N}, J. Math. Anal. Appl., 429 (2015) 1153-1172.
[21] Z. Liu, M. Squassina, J. Zhang; Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension, NoDEA Nonlinear Differential Equations Appl., 24 (2017), 50.
[22] O. Miyagaki, L. Paes-Leme, B. Rodrigues; Multiplicity of positive solutions for the Kirchhofftype equations with critical exponent in \mathbb{R}^{N}, Comput. Math. Appl., 75 (2018), no. 9, 32013212.
[23] B. Noris, M. Nys, S. Terracini; On the Aharonov-Bohm operators with varying poles: the boundary behavior of eigenvalues, Comm. Math. Phys., 339 (2015), no. 3, 1101-1146.
[24] G. Palatucci, A. Pisante; Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), no. 3-4, 799-829.
[25] J. Sun, T. Wu; Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations, 256 (2014), 1771-1792.
[26] S. Terracini; On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), no. 2, 241-264.
[27] M. Willem; Minimax theorems, in "Progress in Nonlinear Differential Equations and their Applications", vol. 24, Birkhäuser Boston, 1996.
[28] P. C. Xia, Y. Su; p-Laplacian equation with finitely many critical nonlinearities, Electron. J. Differential Equations, 2021 (2021), no. 102, 1-11.

Sainan Wang
School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, Anhui 232001, China

Email address: snwang@aust.edu.cn
Yu Su
School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, Anhui 232001, China

Email address: yusumath@aust.edu.cn

