Electronic Journal of Differential Equations, Vol. 2022 (2022), No. 34, pp. 1–18. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE OF SOLUTION TO CRITICAL KIRCHHOFF-TYPE EQUATION WITH DIPOLE-TYPE POTENTIAL

SAINAN WANG, YU SU

ABSTRACT. Dipole-type potential arises in the area of nonrelativistic molecular physics. In this paper, we establish the existence and nonexistence of solution to critical Kirchhoff-type equation with dipole-type potential.

1. INTRODUCTION

We consider the Kirchhoff-type equation

$$-\left(1+b\int_{\mathbb{R}^{N}}|\nabla u|^{2}\mathrm{d}x\right)\Delta u-\mu\frac{\Phi(x/|x|)}{|x|^{2}}u=|u|^{2^{*}-2}u, \quad x\in\mathbb{R}^{N},$$
(1.1)

where $N \ge 3$, $b \ge 0$ and $2^* = \frac{2N}{N-2}$ is the Sobolev critical exponent. The function Φ and the parameter μ satisfy the following condition:

(A1)
$$0 \le \Phi \in L^p(\mathbb{S}^{N-1}), p \ge \frac{(N-2)^2}{2(N-1)} + 1$$
, and $\mu \in (0, \Lambda_{\Phi})$, where
$$\Lambda_{\Phi} := \frac{(N-2)^2}{4} |\mathbb{S}^{N-1}|^{1/p} ||\Phi||_{L^p(\mathbb{S}^{N-1})}^{-1}.$$

On the other hand the Laplace operator with dipole-type potential is

$$\mathcal{L}_{\Phi} := -\Delta - \mu \frac{\Phi(x/|x|)}{|x|^2}, \quad x \in \mathbb{R}^N,$$

where $N \geq 3$. This kind of operator arises in the area of nonrelativistic molecular physics. Specifically, the Schrödinger equation for the wave function of an electron interacting with a polar molecule can be written as

$$H = -\frac{\hbar}{2m}\Delta + e\frac{x \cdot \mathbf{D}}{|x|^3} - E,$$

where **D** is the dipole moment of the molecule, e and m denote the charge and the mass of the electron, see [19]. The operator with different kinds of singular potentials have been largely studied, see [7, 8, 9, 10, 23, 26, 28] and references therein.

On the other hand, equation (1.1) is related to the stationary analogue of equation

$$\rho \frac{\partial^2 u}{\partial t^2} - \left(\frac{P_0}{h} + \frac{E}{2L} \int_0^L |\frac{\partial u}{\partial x}| \mathrm{d}x\right) \frac{\partial^2 u}{\partial x^2} = 0,$$

²⁰²⁰ Mathematics Subject Classification. 35A15, 35J20.

Key words and phrases. Kirchhoff-type equation; dipole-type potential; critical exponent. ©2022. This work is licensed under a CC BY 4.0 license.

Submitted June 4, 2021. Published April 22, 2022.

which was proposed by Kirchhoff in [18] as an extension of the classical D'Alembert wave equation for free vibrations of elastic strings. The existence of solution of Kirchhoff-type equation with Laplacian was explored in [3, 25], and with fractional Laplacian was investigated in [21].

Liu-Liao-Tang [20] studied equation (1.1) with $\Phi = 0$:

$$-\left(a+b\int_{\mathbb{R}^N}|\nabla u|^2\mathrm{d}x\right)\Delta u=|u|^{2^*-2}u,\quad x\in\mathbb{R}^N.$$
(1.2)

11 11 2

By using the minimizing of best constant

$$S := \inf_{u \in D^{1,2}(\mathbb{R}^N) \setminus \{0\}} \frac{\|u\|_{\tilde{D}^{1,2}(\mathbb{R}^N)}}{(\int_{\mathbb{R}^N} |u|^{2^*} \mathrm{d}x)^{2/2^*}}$$

as follows

$$U_{\varepsilon,y} = [N(N-2)]^{\frac{N-2}{4}} \frac{\varepsilon^{\frac{N-2}{2}}}{(\varepsilon^2 + |x-y|^2)},$$

they established the existence and nonexistence of solutions for equation (1.2) with respect to parameters N, a and b. The existence of solution of equation (1.2) with p-Laplacian was presented in [17, 22].

For Φ =Constant, Fiscella-Pucci [11] established the Concentration Compactness Principle with Hardy potential, and then they established the existence of solutions for Kirchhoff-type equations involving Hardy potential and different critical nonlinearities. For more recent work, we refer to [1, 12, 13].

The case where the potential Φ is a constant was discussed in [11, 17, 20, 22]. Therefore, it is natural to ask whether equation (1.1) admits a solution for Φ nonconstant. To the best of our knowledge, there is no result on this problem.

If b = 0, equation (1.1) becomes

$$-\Delta u - \mu \frac{\Phi(x/|x|)}{|x|^2} u = |u|^{2^* - 2} u, \quad x \in \mathbb{R}^N.$$
(1.3)

We study the following minimizing problem:

$$S_{\Phi} := \inf_{u \in D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N) \setminus \{0\}} \frac{\|u\|_{\Phi}^2}{\left(\int_{\mathbb{R}^N} |u|^{2^*} \mathrm{d}x\right)^{2/2^*}}.$$

Extremals for S_{Φ} are solutions of the Euler-Lagrange equation (1.3). The following is our first result.

Theorem 1.1. Assume that $N \geq 3$ and (A1) hold. Then equation (1.3) has a radially symmetric solution $\bar{v} \in D^{1,2}_{rad}(\mathbb{R}^N)$, and infinitely many nonradial solutions \bar{v}_k such that $\int_{\mathbb{R}^N} |\bar{v}_k|^{2^*} dx \to \infty$ as $k \to \infty$.

Remark 1.2. Note that the Sobolev embedding $D^{1,2}(\mathbb{R}^N) \hookrightarrow L^{2^*}(\mathbb{R}^N)$ is not compact. Hence, it is hard to show that the minimizing sequence of S_{Φ} has a convergence subsequence. We investigate this problem by two different methods. In the first method, we obtain a radially symmetric solution. In the second method, we obtain infinitely many nonradial solutions.

For b > 0 and $N = 3 \Leftrightarrow 2^* > 4$, we have

Theorem 1.3. Assume that N = 3, b > 0 and condition (A1) holds. Then (1.1) has a radially symmetric ground state solution $v \in D^{1,2}_{rad}(\mathbb{R}^N)$. Moreover, if $\mu \in (0, 4\Lambda_{\Phi}/(2^*)^2)$, then $v \in L^{2^* \cdot \frac{2^*}{2}}(\mathbb{R}^N)$.

When $N \ge 4 \Leftrightarrow 2^* \le 4$, equation (1.1) is more complicated.

Theorem 1.4. Assume that $N \ge 4$, b > 0 and condition (A1) holds. Then the following statements are true.

- (1) For N = 4 and $b \ge S^{-2}$, equation (1.1) has no nontrivial solution.
- (2) For N > 4 and $b > \frac{2^*-2}{2} \left(\frac{\Lambda_{\Phi}-\mu}{\Lambda_{\Phi}}\right)^{\frac{4-2^*}{2^*-2}} \left(\frac{4-2^*}{2}\right)^{\frac{4-2^*}{2^*-2}} S^{-\frac{2^*}{2^*-2}}$, equation (1.1) has no nontrivial solution, where Λ_{Φ} and μ are defined in condition (A1).
- (3) For $N \ge 4$, there exists $b_0 > 0$ small enough such that for all $b \in (0, b_0)$, equation (1.1) has a radially symmetric.

We summarize of Theorems 1.1–1.4 as follows:

 $b = 0, N \ge 3 \begin{cases} a \text{ radially symmetric solution,} \\ \text{infinitely many nonradial solutions,} \end{cases}$

 $b > 0 \begin{cases} N = 3, \text{ a radially symmetric ground state solution,} \\ N = 4, b \ge S^{-2}, \text{ no nontrivial solution,} \\ N \ge 5 \begin{cases} b > \frac{2^* - 2}{2} \left(\frac{\Lambda_{\Phi} - \mu}{\Lambda_{\Phi}}\right)^{\frac{4 - 2^*}{2^* - 2}} \left(\frac{4 - 2^*}{2}\right)^{\frac{4 - 2^*}{2^* - 2}} S^{-\frac{2^*}{2^* - 2}}, \text{ no nontrivial solution,} \\ b \in (0, b_0), \text{ a radially symmetric solution.} \end{cases}$

This article is organized as follows. In Section 2, we present notation. In Sections 3-5, we give the proofs of Theorems 1.1–1.4, respectively.

2. Preliminaries

The space $D^{1,2}(\mathbb{R}^N)$ is the completion of $C_0^{\infty}(\mathbb{R}^N)$ with respect to the semi-norm

$$||u||_{D^{1,2}(\mathbb{R}^N)}^2 := \int_{\mathbb{R}^N} |\nabla u|^2 \mathrm{d}x.$$

We denote by $D^{1,2}_{\rm rad}(\mathbb{R}^N)$ the space of radial functions in $D^{1,2}(\mathbb{R}^N)$. We define the best constant

$$S := \inf_{u \in D^{1,2}(\mathbb{R}^N) \setminus \{0\}} \frac{\|u\|_{D^{1,2}(\mathbb{R}^N)}^2}{(\int_{\mathbb{R}^N} |u|^{2^*} dx)^{2/2^*}}$$

We know that S can be attained in \mathbb{R}^N , see [5].

For all $u \in D^{1,2}(\mathbb{R}^N)$, we have the Hardy inequality, see [14],

$$\frac{(N-2)^2}{4} \int_{\mathbb{R}^N} \frac{|u|^2}{|x|^2} \mathrm{d}x \le \int_{\mathbb{R}^N} |\nabla u|^2 \mathrm{d}x.$$

We introduce the measure $d\vartheta$ induced by Lebesgues measure on the unit sphere $\mathbb{S}^{N-1} \subset \mathbb{R}^N$. We denote by $\|\cdot\|_{L^q(\mathbb{S}^{N-1})}$ the quantity

$$\|\Phi\|^q_{L^q(\mathbb{S}^{N-1})} = \int_{\mathbb{S}^{N-1}} |\Phi(\vartheta)|^q \mathrm{d}\vartheta.$$

Lemma 2.1 ([15]). Let $N \ge 3$, $0 \le \Phi \in L^p(\mathbb{S}^{N-1})$ and $p \ge \frac{(N-2)^2}{2(N-1)} + 1$. Then

$$\int_{\mathbb{R}^N} |\nabla u|^2 \mathrm{d}x \ge \Lambda_{\Phi} \int_{\mathbb{R}^N} \frac{\Phi(x/|x|)|u|^2}{|x|^2} \mathrm{d}x,$$

where $u \in D^{1,2}(\mathbb{R}^N)$ and $\Lambda_{\Phi} := \frac{(N-2)^2}{4} |\mathbb{S}^{N-1}|^{1/p} ||\Phi||_{L^p(\mathbb{S}^{N-1})}^{-1}$.

By using Lemma 2.1 and $\mu \in (0, \Lambda_{\Phi})$,

$$||u||_{\Phi}^{2} =: \int_{\mathbb{R}^{N}} |\nabla u|^{2} \mathrm{d}x - \mu \int_{\mathbb{R}^{N}} \frac{\Phi(x/|x|)|u|^{2}}{|x|^{2}} \mathrm{d}x$$

is an equivalent norm in $D^{1,2}(\mathbb{R}^N)$. A measurable function $u : \mathbb{R}^N \to \mathbb{R}$ belongs to the Morrey space $||u||_{\mathcal{L}^{q,\varpi}(\mathbb{R}^N)}$ with $q \in [1, \infty)$ and $\varpi \in (0, N]$ if and only if

$$\|u\|_{\mathcal{L}^{q,\varpi}(\mathbb{R}^N)}^q = \sup_{R>0, x\in\mathbb{R}^N} R^{\varpi-3} \int_{B(x,R)} |u(y)|^q \mathrm{d}y < \infty.$$

Lemma 2.2 ([24]). For $N \ge 3$, there exists C > 0 such that for ι and ϑ satisfying $\frac{2}{2^*} \leq \iota < 1, \ 1 \leq \vartheta < 2^*, \ we \ have$

$$\left(\int_{\mathbb{R}^{N}} |u|^{2^{*}} \mathrm{d}x\right)^{1/2^{*}} \leq C \|u\|_{D^{1,2}(\mathbb{R}^{N})}^{\iota} \|u\|_{\mathcal{L}^{\vartheta,\frac{\vartheta(N-2)}{2}}(\mathbb{R}^{N})}^{1-\iota}$$

for any $u \in D^{1,2}(\mathbb{R}^N)$.

Equation (1.1) is variational and its solutions are the critical points of the functional defined in $D^{1,2}(\mathbb{R}^N)$ by

$$I_{b}(u) = \frac{1}{2} \|u\|_{D^{1,2}(\mathbb{R}^{N})}^{2} - \frac{\mu}{2} \int_{\mathbb{R}^{N}} \frac{\Phi(x/|x|)|u|^{2}}{|x|^{2}} dx + \frac{b}{4} \|u\|_{D^{1,2}(\mathbb{R}^{N})}^{4} - \frac{1}{2^{*}} \int_{\mathbb{R}^{N}} |u|^{2^{*}} dx.$$

It is easy to see that the functional $I_b \in C^1(D^{1,2}(\mathbb{R}^N),\mathbb{R})$. It is easy to see that if $u \in D^{1,2}(\mathbb{R}^N)$ is a critical point of I_b , i.e.,

$$0 = \langle I'_{b}(u), \varphi \rangle$$

= $\left(1 + b ||u||^{2}_{D^{1,2}(\mathbb{R}^{N})}\right) \int_{\mathbb{R}^{N}} \nabla u \nabla \varphi dx$
- $\mu \int_{\mathbb{R}^{N}} \Phi\left(\frac{x}{|x|}\right) \frac{u\varphi}{|x|^{2}} dx - \int_{\mathbb{R}^{N}} |u|^{2^{*}-2} u\varphi dx,$

for all $\varphi \in D^{1,2}(\mathbb{R}^N)$.

3. Proof of Theorem 1.1

We separate the proof of Theorem 1.1 into two parts: (i) radially symmetric solution; (ii) nonradial solution.

Proof of Theorem 1.1. (radially symmetric solution). **Step 1.** Note that $\mu \in (0, \Lambda_{\Phi})$. Applying Lemma 2.2 with $\vartheta = 2$, we obtain

$$\left(\int_{\mathbb{R}^{N}} |u|^{2^{*}} \mathrm{d}x\right)^{1/2^{*}} \leq C \|u\|_{\Phi}^{2\iota} \|u\|_{\mathcal{L}^{2,N-2}(\mathbb{R}^{N})}^{2(1-\iota)},$$
(3.1)

for $u \in D^{1,2}(\mathbb{R}^N)$. Let $\{u_n\} \subset D^{1,2}_{rad}(\mathbb{R}^N)$ be a minimizing sequence of S_{Φ} , that is $||u_n||^2_{\Phi} \to S_{\Phi} \quad \text{as } n \to \infty,$

and

$$\int_{\mathbb{R}^N} |u_n|^{2^*} \mathrm{d}x = 1.$$

According to (3.1), there exists C > 0 such that for any n it holds

$$||u_n||_{\mathcal{L}^{2,N-2}(\mathbb{R}^N)} \ge C > 0.$$

 $\mathbf{5}$

On the other hand, we note that $\{u_n\}$ is bounded in $D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N)$ and

$$D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N) \hookrightarrow L^{2^*}(\mathbb{R}^N) \hookrightarrow \mathcal{L}^{2,N-2}(\mathbb{R}^N).$$

Then

$$\|u_n\|_{\mathcal{L}^{2,N-2}(\mathbb{R}^N)} \le C,$$

Hence, there exists $C_0 > 0$ such that for any n it holds

$$C_0 \le ||u_n||_{\mathcal{L}^{2,N-2}(\mathbb{R}^N)} \le C_0^{-1}.$$

From above inequality, we deduce that for any $n\in\mathbb{N}$ there exist $\sigma_n>0$ and $x_n\in\mathbb{R}^N$ such that

$$\frac{1}{\sigma_n^2} \int_{B(x_n,\sigma_n)} |u_n(y)|^2 \mathrm{d}y \ge \|u_n\|_{\mathcal{L}^{2,N-2}(\mathbb{R}^N)}^2 - \frac{C}{2n} \ge C_1 > 0.$$

Let $v_n(x) = \sigma_n^{\frac{N-2}{2}} u_n(\sigma_n x)$. By scaling invariance, we have $\|v_n\|_{\Phi}^2 \to S_{\Phi}, \text{ as } n \to \infty,$

$$v_n \|_{\Phi}^2 \to S_{\Phi}, \quad \text{as } n \to \infty$$

$$\int_{\mathbb{R}^N} |v_n|^{2^*} \mathrm{d}x = 1,$$

and

$$\int_{B(\frac{x_n}{\sigma_n},1)} |v_n(y)|^2 \mathrm{d}y = \frac{1}{\sigma_n^2} \int_{B(x_n,\sigma_n)} |u_n(y)|^2 \mathrm{d}y \ge C_1 > 0.$$
(3.2)

Hence, we assume that

$$v_n \rightharpoonup v \text{ in } D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N), \quad v_n \to v \text{ a.e. in } \mathbb{R}^N, \quad v_n \to v \text{ in } L^q_{\mathrm{loc}}(\mathbb{R}^N)$$

for all $q \in [2, 2^*)$.

Step 2. We show that $\{\frac{x_n}{\sigma_n}\}$ is bounded. Suppose on the contrary that $\frac{x_n}{\sigma_n} \to \infty$ as $n \to \infty$. By the boundedness of $\{u_n\}$ in $D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N)$, we have $||v_n||_{D^{1,2}(\mathbb{R}^N)} = ||u_n||_{D^{1,2}(\mathbb{R}^N)} \leq C$. It follows from the uniform decay estimates of radial functions that

$$|v_n(x)| \le \frac{C}{|x|^{\frac{N-2}{2}}} ||v_n||_{D^{1,2}(\mathbb{R}^N)} \le \frac{C}{|x|^{\frac{N-2}{2}}}, \quad \text{a.e. } \mathbb{R}^N.$$

For $\sqrt{\frac{C_1}{|B(0,1)|}} > \varepsilon > 0$, there exists M > 0 for any n > M it holds

$$|v_n(x)| \le \frac{C_3}{|\frac{x_n}{\sigma_n} - 1|^{\frac{N-2}{2}}} \le \varepsilon, \quad x \in B^c(0, |\frac{x_n}{\sigma_n} - 1|)$$

Note that $B(\frac{x_n}{\sigma_n}, 1) \subset B^c(0, |\frac{x_n}{\sigma_n} - 1|)$. Then

$$\int_{B(\frac{x_n}{\sigma_n},1)} |v_n(y)|^2 \mathrm{d}y \le \varepsilon^2 \int_{B(\frac{x_n}{\sigma_n},1)} \mathrm{d}y = \varepsilon^2 |B(\frac{x_n}{\sigma_n},1)| = \varepsilon^2 |B(0,1)| < C_1.$$

This contradicts (3.2). Hence, $\{\frac{x_n}{\sigma_n}\}$ is bounded. There exists R > 0 such that

$$\int_{B(0,R)} |v_n(y)|^2 \mathrm{d}y \ge \int_{B(\frac{x_n}{\sigma_n},1)} |v_n(y)|^2 \mathrm{d}y \ge C_1 > 0.$$

Since the embedding $D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N) \hookrightarrow L^r_{\mathrm{loc}}(\mathbb{R}^N), r \in [2,2^*)$ is compact, we deduce that $v \neq 0$.

Step 3. Set

$$h(t) = t^{2^*}, t \ge 0.$$

~*

It is easy to see that h(t) is a convex function. By h(0) = 0 and $l \in [0, 1]$, we know

$$h(lt) = h(lt + (1 - l) \cdot 0) \le lh(t) + (1 - l)h(0) = lh(t).$$

For $t_1, t_2 \in [0, \infty)$, applying last inequality, we obtain

$$h(t_1) + h(t_2) = h\left((t_1 + t_2)\frac{t_1}{t_1 + t_2}\right) + h\left((t_1 + t_2)\frac{t_2}{t_1 + t_2}\right)$$

$$\leq \frac{t_1}{t_1 + t_2}h(t_1 + t_2) + \frac{t_2}{t_1 + t_2}h(t_1 + t_2)$$

$$= h(t_1 + t_2).$$

Step 4. We claim that $v_n \to v$ strongly in $D^{1,2}(\mathbb{R}^N)$. It follows from Brézis-Lieb type lemma [2] that

$$\|v\|_{\Phi}^{2} + \lim_{n \to \infty} \|v_{n} - v\|_{\Phi}^{2} = \lim_{n \to \infty} \|v_{n}\|_{\Phi}^{2} = S_{\Phi,\alpha},$$
$$\lim_{n \to \infty} \int_{\mathbb{R}^{N}} |v_{n}|^{2^{*}} dx = \lim_{n \to \infty} \int_{\mathbb{R}^{N}} |v_{n} - v|^{2^{*}} dx + \int_{\mathbb{R}^{N}} |v|^{2^{*}} dx.$$

Therefore,

1

$$1 = \lim_{n \to \infty} \int_{\mathbb{R}^N} |v_n|^{2^*} dx$$

= $\lim_{n \to \infty} \int_{\mathbb{R}^N} |v_n - v|^{2^*} dx + \int_{\mathbb{R}^N} |v|^{2^*} dx$
 $\leq S_{\Phi}^{-\frac{2^*}{2}} \lim_{n \to \infty} \|v_n - v\|_{\Phi}^{2^*} + S_{\Phi}^{-\frac{2^*}{2}} \|v\|_{\Phi}^{2^*}$
 $\leq S_{\Phi}^{-\frac{2^*}{2}} \left(\lim_{n \to \infty} \|v_n - v\|_{\Phi} + \|v\|_{\Phi}\right)^{2^*} = 1.$

Therefore, all the inequalities above have to be equalities. We know that

$$\lim_{n \to \infty} \|v_n - v\|_{\Phi}^{2^*} + \|v\|_{\Phi}^{2^*} = \left(\lim_{n \to \infty} \|v_n - v\|_{\Phi} + \|v\|_{\Phi}\right)^{2^*}.$$

This further gives: either $\lim_{n\to\infty} ||v_n - v||_{\Phi} = 0$ or $||v||_{\Phi} = 0$.

From $v \neq 0$, so we have $||v||_{\Phi} \neq 0$. Then

$$\lim_{n \to \infty} \|v_n - v\|_{\Phi} = 0.$$

We can choose $v \ge 0$.

There exists C > 0 such that $\bar{v} = Cv$ satisfies

$$-\Delta \bar{v} - \mu \frac{\Phi(x/|x|)}{|x|^2} \bar{v} = |\bar{v}|^{2^*-1}, \quad x \in \mathbb{R}^N.$$

The proof is complete.

To study the nonradial solution of equation (1.1), we need the following result.

Lemma 3.1 ([6]). Let X be a closed subspace of $H^1(\mathbb{S}^{N-1})$. Suppose that the embedding $X \subset L^q(\mathbb{S}^{N-1})$ is compact. Then the restriction of function K on X, $K|_X$ satisfies the Palais-Smale condition. Furthermore, if X is infinite dimensional, then $K|_X$ has a sequence of critical points ϕ_k in X, such that $\int_{\mathbb{S}^{N-1}} |\phi_k|^q d\vartheta \to \infty$ as $k \to \infty$.

Proof of Theorem 1.1. (nonradial solutions). It is easy to see that

$$u(x) = |x|^{\frac{2-N}{2}} \phi\left(\frac{x}{|x|}\right) \tag{3.3}$$

solves equation (1.3), if and only if ϕ is a solution of the equation

$$-\Delta_{\vartheta}\phi + \frac{(N-2)^2}{4}\phi - \mu\Phi\phi = |\phi|^{2^*-2}\phi, \quad \text{in } \mathbb{S}^{N-1}.$$
 (3.4)

The energy functional of equation (3.4) is

$$\begin{split} K(\phi) &= \frac{1}{2} \int_{\mathbb{S}^{N-1}} |\nabla \phi|^2 \mathrm{d}\vartheta + \frac{(N-2)^2}{8} \int_{\mathbb{S}^{N-1}} |\phi|^2 \mathrm{d}\vartheta - \frac{\mu}{2} \int_{\mathbb{S}^{N-1}} \Phi |\phi|^2 \mathrm{d}\vartheta \\ &- \frac{1}{2^*} \int_{\mathbb{S}^{N-1}} |\phi|^{2^*} \mathrm{d}\vartheta \end{split}$$

and

$$\langle K'(\phi), \varphi \rangle = \int_{\mathbb{S}^{N-1}} \nabla \phi \nabla \varphi d\vartheta + \frac{(N-2)^2}{4} \int_{\mathbb{S}^{N-1}} \phi \varphi d\vartheta - \mu \int_{\mathbb{S}^{N-1}} \Phi \phi \varphi d\vartheta - \int_{\mathbb{S}^{N-1}} |\phi|^{2^*-2} \phi \varphi d\vartheta.$$

Suppose that $G = O(k) \times O(m) \subset O(N)$, where k + m = N, then $H^1_G(\mathbb{S}^{N-1})$ is an infinite dimensional closed subspace of $H^1(\mathbb{S}^{N-1})$, and $H^1_G(\mathbb{S}^{N-1})$ is compactly embedded in $L^q(\mathbb{S}^{N-1})$ for every $q \in [1, \frac{2(N-1)}{N-3})$, see [6].

Since $2^* \in [1, \frac{2(N-1)}{N-3})$, so we have that $H^1_G(\mathbb{S}^{N-1})$ is compactly embedded in $L^{2^*}(\mathbb{S}^{N-1})$. Applying Lemma 3.1 with $X = H^1_G(\mathbb{S}^{N-1})$ and $q = 2^*$, then we have that $K|_{H^1_G(\mathbb{S}^{N-1})}$ has a sequence of critical points ϕ_k in $H^1_G(\mathbb{S}^{N-1})$, such that $\int_{\mathbb{S}^{N-1}} |\phi_k|^{2^*} \mathrm{d}\vartheta \to \infty \text{ as } k \to \infty.$

According to (3.3), we know that $\bar{v}_k(x) = |x|^{\frac{2-N}{2}} \phi_k(\frac{x}{|x|})$ are solutions of equation (1.3), and $\int_{\mathbb{R}^N} |\bar{v}_k|^{2^*} \mathrm{d}x = \int_{\mathbb{S}^{N-1}} |\phi_k|^{2^*} \mathrm{d}\vartheta \to \infty \text{ as } k \to \infty.$

4. Proof of Theorem 1.3

Define

$$J_b = I_b|_{D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N)}, \quad c = \inf_{\Upsilon \in \Gamma} \max_{t \in [0,1]} J_b(\Upsilon(t)),$$

where

$$\Gamma = \{ \Upsilon \in C([0,1], D^{1,2}_{\text{rad}}(\mathbb{R}^N)) | \Upsilon(0) = 0, J_b(\Upsilon(1)) < 0 \}$$

It is easy to see that J_b possesses the mountain pass geometry, there exists $\{u_n\} \subset$ $D^{1,2}_{\rm rad}(\mathbb{R}^N)$ such that

$$J_b(u_n) \to c > 0$$
 and $J'_b(u_n) \to 0$ as $n \to \infty$.

And $\{u_n\}$ is uniformly bounded in $D^{1,2}_{rad}(\mathbb{R}^N)$. The Nehari manifold on $D^{1,2}_{rad}(\mathbb{R}^N)$ is defined by

$$\mathcal{N}_b = \{ u \in D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N) | \langle J'_b(u), u \rangle = 0, \ u \neq 0 \},\$$

and

$$\overline{c} = \inf_{u \in \mathcal{N}_b} J_b(u) \text{ and } \overline{c} = \inf_{\substack{u \in D_{\mathrm{rad}}^{1,2}(\mathbb{R}^N) \\ t \ge 0}} \max_{t \ge 0} J_b(tu).$$

With minor change the proof of [27, Theorem 4.2], we can show that

$$\bar{\bar{c}} = \bar{c} = c$$

Lemma 4.1. Assume the assumptions in Theorem 1.3 hold. Then for each $u \in D^{1,2}_{rad}(\mathbb{R}^N) \setminus \{0\}$, there exists a unique $t_u > 0$ such that $t_u u \in \mathcal{N}_b$. Moreover, $J_b(t_u u) = \max_{t \geq 0} J_b(tu)$.

Proof. For each $u \in D^{1,2}_{rad}(\mathbb{R}^N) \setminus \{0\}$, and $t \in (0, \infty)$, we set

$$f_1(t) = J_b(tu) = \frac{t^2}{2} ||u||_{\Phi}^2 + \frac{bt^4}{4} ||u||_{D^{1,2}(\mathbb{R}^N)}^4 - \frac{t^{2^*}}{2^*} \int_{\mathbb{R}^N} |u|^{2^*} dx,$$

$$f_1'(t) = t ||u||_{\Phi}^2 + bt^3 ||u||_{D^{1,2}(\mathbb{R}^N)}^4 - t^{2^*-1} \int_{\mathbb{R}^N} |u|^{2^*} dx.$$

This implies that $f'_1(\cdot) = 0$ if and only if

$$t^{2-2^*} \|u\|_{\Phi}^2 + bt^{4-2^*} \|u\|_{D^{1,2}(\mathbb{R}^N)}^4 = \int_{\mathbb{R}^N} |u|^{2^*} \mathrm{d}x.$$

Set

$$f_2(t) = t^{2-2^*} \|u\|_{\Phi}^2 + bt^{4-2^*} \|u\|_{D^{1,2}(\mathbb{R}^N)}^4.$$

We know that $\lim_{t\to 0} f_2(t) = \infty$, $\lim_{t\to\infty} f_2(t) = 0$ and $f_2(\cdot)$ is strictly decreasing on $(0, \infty)$. Then there exists a unique $0 < t_u < \infty$ such that

$$f_{2}(t) \begin{cases} < \int_{\mathbb{R}^{N}} |u|^{2^{*}} dx, & t_{u} < t < \infty, \\ = \int_{\mathbb{R}^{N}} |u|^{2^{*}} dx, & t = t_{u}, \\ > \int_{\mathbb{R}^{N}} |u|^{2^{*}} dx, & 0 < t < t_{u}. \end{cases}$$

This is showing that $t_u u \in \mathcal{N}_b$. Moreover,

$$f_1'(t) \begin{cases} < 0, & t_u < t < \infty, \\ = 0, & t = t_u, \\ > 0, & 0 < t < t_u. \end{cases}$$

This shows that $f_1(\cdot)$ admits a unique critical point t_u on $(0, \infty)$ such that $f_1(\cdot)$ takes the maximum at t_u .

To prove the uniqueness of t_u , let us assume that $0 < \bar{t} < \bar{t}$ satisfy $f'_1(\bar{t}) = f'_1(\bar{t}) = 0$. We obtain

$$\int_{\mathbb{R}^N} |u|^{2^*} \mathrm{d}x = f_2(\bar{t}) = f_2(\bar{t})$$

Since $0 < \bar{t} < \bar{t}$, the above equality leads to the contradiction: u = 0. Hence, for each $u \in D^{1,2}_{rad}(\mathbb{R}^N) \setminus \{0\}$, there exists a unique $t_u > 0$ such that $t_u u \in \mathcal{N}_b$. \Box

Lemma 4.2. Assume that the assumptions in Theorem 1.3 hold. Let $\{u_n\}$ be a $(PS)_c$ sequence of J_b at c > 0. Then up to a subsequence, $u_n \rightharpoonup u$ in $D^{1,2}_{rad}(\mathbb{R}^N)$ with $u \not\equiv 0$ being a weak solution of equation (1.1).

Proof. It is easy to see that $\{u_n\}$ is uniformly bounded in $D^{1,2}_{rad}(\mathbb{R}^N)$. In order to see that u is a weak solution of J_b , we recall

$$u_n \rightharpoonup u \text{ in } D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N), \quad u_n \rightarrow u \text{ a.e. in } \mathbb{R}^N, \quad u_n \rightarrow u \text{ in } L^r_{\mathrm{loc}}(\mathbb{R}^N)$$

for all $r \in [2, 2^*)$. Moreover, there exists $A \in \mathbb{R}$, such that

$$\lim_{n \to \infty} \|u_n\|_{D^{1,2}(\mathbb{R}^N)}^2 = A.$$
(4.1)

Then by Fatou's lemma,

$$||u||_{D^{1,2}(\mathbb{R}^N)}^2 \le A.$$

We claim that $||u||_{D^{1,2}(\mathbb{R}^N)}^2 = A$. To obtain a contradiction, we assume that $||u||_{D^{1,2}(\mathbb{R}^N)}^2 < A$. Since $u_n \rightharpoonup u$ weakly in $D^{1,2}_{rad}(\mathbb{R}^N)$, we know that for each $\varphi \in D^{1,2}_{rad}(\mathbb{R}^N)$

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} \nabla u_n \nabla \varphi dx - \mu \int_{\mathbb{R}^N} \Phi\left(\frac{x}{|x|}\right) \frac{u_n \varphi}{|x|^2} dx$$
$$= \int_{\mathbb{R}^N} \nabla u \nabla \varphi dx - \mu \int_{\mathbb{R}^N} \Phi\left(\frac{x}{|x|}\right) \frac{u\varphi}{|x|^2} dx$$
(4.2)

and

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} |u_n|^{2^* - 2} u_n \varphi \mathrm{d}x = \int_{\mathbb{R}^N} |u|^{2^* - 2} u \varphi \mathrm{d}x.$$
(4.3)

From $\lim_{n\to\infty} \langle J'_b(u_n), \varphi \rangle = 0$, we have

$$0 = \lim_{n \to \infty} (1 + b \|u_n\|_{D^{1,2}(\mathbb{R}^N)}^2) \int_{\mathbb{R}^N} \nabla u_n \nabla \varphi dx - \mu \int_{\mathbb{R}^N} \Phi\Big(\frac{x}{|x|}\Big) \frac{u_n \varphi}{|x|^2} dx - \int_{\mathbb{R}^N} |u_n|^{2^* - 2} u_n \varphi dx.$$

Applying (4.1), we obtain

$$0 = (1+bA) \int_{\mathbb{R}^N} \nabla u_n \nabla \varphi dx - \mu \int_{\mathbb{R}^N} \Phi\left(\frac{x}{|x|}\right) \frac{u_n \varphi}{|x|^2} dx - \int_{\mathbb{R}^N} |u_n|^{2^*-2} u_n \varphi dx.$$

By using (4.2), (4.3) and $||u||_{D^{1,2}(\mathbb{R}^N)}^2 < A$, we know that

$$\langle J_b'(u), u \rangle < 0. \tag{4.4}$$

On the other hand, we have

$$\langle J_b'(tu), tu \rangle = f_1'(t)t = t^2 ||u||_{\Phi}^2 + bt^4 ||u||_{D^{1,2}(\mathbb{R}^N)}^4 - t^{2^*} \int_{\mathbb{R}^N} |u|^{2^*} \mathrm{d}x, \qquad (4.5)$$

Applying Lemma 4.1, there exists a unique $t_0 > 0$ satisfying $f'_1(t_0) = 0$, which implies that

$$\langle J_b'(t_0 u), t_0 u \rangle = f_1'(t_0) t_0 = 0 \tag{4.6}$$

Now, we show that $t_0 < 1$. Combining (4.4) and (4.5), we know that $f'_1(1) < 0$. Taking $t_{\varepsilon} > 0$ small enough in (4.5), we know $f'_1(t_{\varepsilon})t_{\varepsilon} > 0$, which implies $f'_1(t_{\varepsilon}) > 0$. According to Intermediate value theorem, there exists $t_1 \in (t_{\varepsilon}, 1)$ such that $f'_1(t_1) = 0$. By using the uniqueness of t_0 , we have

$$t_0 = t_1 \in (t_\varepsilon, 1) \tag{4.7}$$

From (4.5)-(4.7), we obtain

$$c = J_b(t_0 u)$$

= $J_b(t_0 u) - \frac{1}{4} \langle J'_b(t_0 u), t_0 u \rangle$
= $\frac{t_0^2}{4} ||u||_{\Phi}^2 + (\frac{1}{4} - \frac{1}{2^*}) t_0^{2^*} \int_{\mathbb{R}^N} |u|^{2^*} dx$
 $< \frac{1}{4} ||u||_{\Phi}^2 + (\frac{1}{4} - \frac{1}{2^*}) \int_{\mathbb{R}^N} |u|^{2^*} dx$

$$\leq \frac{1}{4} \lim_{n \to \infty} \|u_n\|_{\Phi}^2 + \left(\frac{1}{4} - \frac{1}{2^*}\right) \lim_{n \to \infty} \int_{\mathbb{R}^N} |u_n|^{2^*} \mathrm{d}x$$
$$= \lim_{n \to \infty} J_b(u_n) - \frac{1}{4} \lim_{n \to \infty} \langle J'_b(u_n), u_n \rangle = c$$

which is a contradiction. Then

$$\lim_{n \to \infty} \|u_n\|_{D^{1,2}(\mathbb{R}^N)}^2 = A = \|u\|_{D^{1,2}(\mathbb{R}^N)}^2$$

Thus for any $\varphi \in D^{1,2}(\mathbb{R}^N)$, we obtain

$$\lim_{n \to \infty} \langle J_b'(u_n), \varphi \rangle = 0 = \langle J_b'(u), \varphi \rangle$$

The proof is complete.

The following result implies the non-vanishing of $(PS)_c$ sequence.

Lemma 4.3. Assume that all the assumptions descripted in Theorem 1.3 hold. Let $\{u_n\}$ be a $(PS)_c$ sequence of J_b at c > 0. Then

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} |u_n|^{2^*} \mathrm{d}x > 0.$$

Proof. It is easy to see that $\{u_n\}$ is uniformly bounded in $D^{1,2}_{rad}(\mathbb{R}^N)$. Then there exists a constant $0 < C < \infty$ such that $||u_n||_{\Phi} \leq C$.

Suppose on the contrary that

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} |u_n|^{2^*} \mathrm{d}x = 0.$$
(4.8)

According to (4.8) and the definition of $(PS)_c$ sequence, we obtain

$$c + o(1) = \frac{1}{2} \|u_n\|_{\Phi}^2 + \frac{b}{4} \|u_n\|_{D^{1,2}(\mathbb{R}^N)}^4 \quad \text{and} \quad o(1) = \|u_n\|_{\Phi}^2 + b \|u_n\|_{D^{1,2}(\mathbb{R}^N)}^4.$$

is implies $c + o(1) = -\frac{1}{4} \|u_n\|_{\Phi}^2$, which contradicts $0 < c$.

This implies $c + o(1) = -\frac{1}{4} ||u_n||_{\Phi}^2$, which contradicts 0 < c.

Proof of Theorem 1.3. (i) Note that $\{u_n\}$ is a bounded sequence of J_b at level c in $D^{1,2}_{rad}(\mathbb{R}^N)$. Up to a subsequence, we assume

$$u_n \rightharpoonup u \text{ in } D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N), \quad u_n \rightarrow u \text{ a.e. in } \mathbb{R}^N, \quad u_n \rightarrow u \text{ in } L^r_{\mathrm{loc}}(\mathbb{R}^N)$$

for all $r \in [2, 2^*)$. Let $v_n(x) = \sigma_n^{\frac{N-2}{2}} u_n(\sigma_n x)$. We assume that

$$v_n \to v \text{ in } D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N), \quad v_n \to v \text{ a.e. in } \mathbb{R}^N, \quad v_n \to v \text{ in } L^q_{\mathrm{loc}}(\mathbb{R}^N)$$

for all $q \in [2, 2^*)$. From Lemma 4.3, we have

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} |u_n|^{2^*} \mathrm{d}x > 0.$$

Similar to the proof of Theorem 1.1 Steps 1 and 2, we deduce that $v \neq 0$. From Lemma 4.2, we know $v \in \mathcal{N}_b$. We show that $v_n \to v$ strongly in $D^{1,2}_{rad}(\mathbb{R}^N)$. Applying

EJDE-2022/34

Brézis-Lieb lemma [2], we obtain

$$c = \lim_{n \to \infty} J_b(v_n) - \lim_{n \to \infty} \frac{1}{2^*} \langle J'_b(v_n), v_n \rangle$$

=
$$\lim_{n \to \infty} \left(\frac{1}{2} - \frac{1}{2^*}\right) \|v_n\|_{\Phi}^2 + \lim_{n \to \infty} \left(\frac{1}{4} - \frac{1}{2^*}\right) \|v_n\|_{D^{1,2}(\mathbb{R}^N)}^4$$

$$\geq \left(\frac{1}{2} - \frac{1}{2^*}\right) \|v\|_{\Phi}^2 + \left(\frac{1}{4} - \frac{1}{2^*}\right) \|v\|_{D^{1,2}(\mathbb{R}^N)}^4$$

=
$$J_b(v) \geq c.$$
 (4.9)

Thus, the inequalities above have to be equalities. We know that

$$\lim_{n \to \infty} \|v_n\|_{\Phi}^2 = \|v\|_{\Phi}^2$$

By Brézis-Lieb lemma again, we have

$$\lim_{n \to \infty} \|v_n\|_{\Phi}^2 - \lim_{n \to \infty} \|v_n - v\|_{\Phi}^2 = \|v\|_{\Phi}^2,$$

which implies

$$\lim_{n \to \infty} \|v_n - v\|_{\Phi}^2 = 0.$$

Using (4.9) again, we know that $J_b(v) = c$. This implies that v attains the minimum of J_b at c. Moreover, we can choose $v \ge 0$. The principle of symmetric criticality implies that the critical point of J_b is also a critical point of I_b .

(ii) For each L > 1, define

$$v_L(x) = \begin{cases} v(x) & \text{if } v(x) \le L, \\ L & \text{if } v(x) > L. \end{cases}$$

For $\beta = 2^*/2 > 1$. Set $\phi = vv_L^{2(\beta-1)}$. It is easy to see that $\phi \in D^{1,2}_{rad}(\mathbb{R}^N)$. We know that v is a nonnegative solution of equation (1.1). Then

$$\left(1+b\|v\|_{D^{1,2}(\mathbb{R}^N)}^2\right)\int_{\mathbb{R}^N}\nabla v\nabla\varphi dx - \mu\int_{\mathbb{R}^N}\Phi\left(\frac{x}{|x|}\right)\frac{v\varphi}{|x|^2}dx = \int_{\mathbb{R}^N}|v|^{2^*-2}v\varphi dx.$$

Plugging ϕ into above equation, we obtain

$$\left(1+b\|v\|_{D^{1,2}(\mathbb{R}^N)}^2\right)\int_{\mathbb{R}^N}\nabla v\nabla\phi\mathrm{d}x-\mu\int_{\mathbb{R}^N}\Phi\Big(\frac{x}{|x|}\Big)\frac{v\phi}{|x|^2}\mathrm{d}x=\int_{\mathbb{R}^N}|v|^{2^*-2}v\phi\mathrm{d}x.$$

A direct calculation yields

$$\int_{\mathbb{R}^N} \nabla v \nabla \phi \mathrm{d}x \ge \int_{\mathbb{R}^N} v_L^{2(\beta-1)} |\nabla v|^2 \mathrm{d}x.$$
(4.10)

Notice that

$$|\nabla (vv_L^{\beta-1})|^2 = v_L^{2(\beta-1)} |\nabla v|^2 + (\beta-1)^2 v^2 v_L^{2(\beta-2)} |\nabla v_L|^2 + 2(\beta-1) v v_L^{2\beta-3} \nabla v \nabla v_L$$

Then one has

Then one has

$$\begin{split} &\int_{\mathbb{R}^N} v^2 v_L^{2(\mu-2)} |\nabla v_L|^2 \mathrm{d}x \leq \int_{\mathbb{R}^N} v_L^{2(\mu-1)} |\nabla v|^2 \mathrm{d}x, \\ &\int_{\mathbb{R}^N} v v_L^{2\mu-3} \nabla v \nabla v_L \mathrm{d}x \leq \int_{\mathbb{R}^N} v_L^{2(\mu-1)} |\nabla v|^2 \mathrm{d}x. \end{split}$$

Therefore,

$$\int_{\mathbb{R}^N} |\nabla(vv_L^{\beta-1})|^2 \mathrm{d}x \le \beta^2 \int_{\mathbb{R}^N} v_L^{2(\beta-1)} |\nabla v|^2 \mathrm{d}x.$$
(4.11)

It follows from (4.10) and (4.11) that

$$\frac{1}{\beta^2} \int_{\mathbb{R}^N} |\nabla (v v_L^{\beta-1})|^2 \mathrm{d}x \le \int_{\mathbb{R}^N} \nabla v \nabla \phi \mathrm{d}x.$$

Hence,

$$\begin{split} \int_{\mathbb{R}^N} |v|^{2^* - 2} |vv_L^{\beta - 1}|^2 \mathrm{d}x &= \left(1 + b \|v\|_{D^{1,2}(\mathbb{R}^N)}^2\right) \int_{\mathbb{R}^N} \nabla v \nabla \phi \mathrm{d}x - \mu \int_{\mathbb{R}^N} \Phi\Big(\frac{x}{|x|}\Big) \frac{v\phi}{|x|^2} \mathrm{d}x \\ &\geq \int_{\mathbb{R}^N} \nabla v \nabla \phi \mathrm{d}x - \mu \int_{\mathbb{R}^N} \Phi\Big(\frac{x}{|x|}\Big) \frac{v\phi}{|x|^2} \mathrm{d}x \\ &\geq \frac{1}{\beta^2} \int_{\mathbb{R}^N} |\nabla (vv_L^{\beta - 1})|^2 \mathrm{d}x - \mu \int_{\mathbb{R}^N} \Phi\Big(\frac{x}{|x|}\Big) \frac{|vv_L^{\beta - 1}|^2}{|x|^2} \mathrm{d}x \\ &\geq \left(\frac{1}{\beta^2} - \frac{\mu}{\Lambda_\Phi}\right) \|vv_L^{\beta - 1}\|_{\Phi}^2. \end{split}$$

Then, combining above inequality and Moser iteration technique, we deduce that $v \in L^{2^* \cdot \frac{2^*}{2}}(\mathbb{R}^N).$

5. Proof of Theorem 1.4

5.1. Perturbation equation. In this subsection, we look equation (1.1) as a perturbation of (1.3). The energy functional of equation (1.3) is

$$I_0(u) = \frac{1}{2} \|u\|_{\Phi}^2 - \frac{1}{2^*} \int_{\mathbb{R}^N} |u|^{2^*} \mathrm{d}x.$$

Set

$$J_0 = I_0|_{D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N)},$$

and define

$$c_0 = \inf_{\Upsilon \in \Gamma_0} \max_{t \in [0,1]} J_0(\Upsilon(t)),$$

where $\Gamma_0 = \{ \Upsilon \in C([0,1], D^{1,2}_{rad}(\mathbb{R}^N)) | \Upsilon(0) = 0, J_0(\Upsilon(1)) < 0 \}$. The Nehari manifold is

$$\mathcal{N}_0 = \{ u \in D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N) | \langle J'_0(u), u \rangle = 0, \ u \neq 0 \},\$$

and

$$\bar{c}_0 = \inf_{\substack{u \in D_{\mathrm{rad}}^{1,2}(\mathbb{R}^N) \\ rad}} \max_{t \ge 0} J_0(tu) \quad \text{and} \quad \bar{\bar{c}}_0 = \inf_{\substack{u \in \mathcal{N}_0}} J_0(u).$$

We can show that $c_0 = \bar{c}_0 = \bar{\bar{c}}_0$.

Lemma 5.1. Assume that the assumptions in Theorem 1.4 hold. Then the energy functional J_0 satisfies the following properties

- (M1) There exist $\rho, \iota > 0$ such that if $\|u\|_{D^{1,2}(\mathbb{R}^N)} = \rho$, then $J_0(u) \ge \iota$, and $e_0 \in D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N)$ exists such that $\|e_0\|_{D^{1,2}(\mathbb{R}^N)} > \rho$ and $J_0(e_0) < 0$. (M2) There exists $v_0 \ne 0$ such that $J_0(v_0) = c_0 := \min_{\Upsilon \in \Gamma_0} \max_{t \in [0,1]} J_0(\Upsilon(t))$,
- $\begin{aligned} \text{(M2)} \quad &\text{intra} \, \{ \Upsilon \in C([0,1], D_{\mathrm{rad}}^{1,2}(\mathbb{R}^N)) | \Upsilon(0) = 0, J_0(\Upsilon(1)) < 0 \}. \\ \text{(M3)} \quad &c_0 = \inf\{ J_0(u) | \| J_0'(u) \|_{D^{-1,2}(\mathbb{R}^N)} = 0, u \in D_{\mathrm{rad}}^{1,2}(\mathbb{R}^N) \setminus \{0\} \}. \\ \text{(M4)} \quad &\text{There exists a path } \Upsilon_0(t) \in \Gamma_0 \text{ passing through } v_0 \text{ at } t = t_0 \text{ and satisfying} \end{aligned}$

$$J_0(v_0) > J_0(\Upsilon_0(t)) \quad for \ all \ t \neq t_0.$$

(M5) The set $S := \{ u \in D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N) | || J'_0(u) ||_{D^{-1,2}(\mathbb{R}^N)} = 0, J_0(u) = c_0 \}$ is compact in $D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N)$ with the strong topology up to dilations in \mathbb{R}^N .

Proof. As in Theorem 1.3, we have (M1)-(M4).

(M5) Note that J_0 is invariant by dilations. It follows from Theorem 1.3 that the weak convergence of the dilated subsequence can be upgraded into strong convergence. This further implies that the set S is compact in $D_{\rm rad}^{1,2}(\mathbb{R}^N)$ with the topology up to dilations in \mathbb{R}^N .

5.2. Perturbation method. We define a modified mountain pass level of J_b

$$c_b := \min_{\Upsilon \in \Gamma_M} \max_{t \in [0,1]} J_b(\Upsilon(t)),$$

where

$$\Gamma_{M} = \{ \Upsilon \in \Gamma_{0} : \sup_{t \in [0,1]} \| \Upsilon(t) \|_{D^{1,2}(\mathbb{R}^{N})} \le M \} \quad \text{with} \\ M = 2\{ \sup_{u \in \mathcal{S}} \| u \|_{D^{1,2}(\mathbb{R}^{N})}, \sup_{t \in [0,1]} \| \Upsilon(t) \|_{D^{1,2}(\mathbb{R}^{N})} \} \quad \text{fixed.}$$

By the choice of M, $\Upsilon_0 \in \Gamma_M$, we have $c_0 = \min_{\Upsilon \in \Gamma_M} \max_{t \in [0,1]} J_0(\Upsilon(t))$. becasue $\Gamma_M \subsetneq \subsetneq \Gamma_0$, the standard mountain pass theorem becomes unavailable.

Lemma 5.2. Let b > 0. Then $\lim_{b\to 0} c_b = c_0$.

Proof. For b > 0, it is easy to obtain $c_b \ge c_0$. We take $e_0 = Tv_0$ in (M_1) , where $T > (2^*/2)^{\frac{1}{2^*-1}}$. Then $\Upsilon_0(t) \in C([0,1], D^{1,2}_{rad}(\mathbb{R}^N))$ defined as

$$\Upsilon_0(t) = te_0 = tTv_0,$$

and $t_0 = \frac{1}{T}$ in (M4). We know that

$$\lim_{b \to 0} c_b = \lim_{b \to 0} J_b(\Upsilon_0(t)) \le J_0(\Upsilon_0(t)) + \lim_{\lambda \to 0} \frac{b}{4} \|\Upsilon_0(t)\|_{D^{1,2}(\mathbb{R}^N)}^4 = J_0(v_0) = c_0.$$

For any d > 0, and any subset A of $D^{1,2}_{rad}(\mathbb{R}^N)$, we set

$$A^d := \bigcup_{u \in A} B_d(u),$$

where $B_d(u) := \{ v \in D^{1,2}_{\text{rad}}(\mathbb{R}^N) | ||u - v||_{D^{1,2}(\mathbb{R}^N)} \le d \}.$

Lemma 5.3. Let d > 0 and $\{u_j\} \subset S^d$. Then there exists $\{\sigma_j\}$ such that

$$\|\bar{u}_j\|_{D^{1,2}(\mathbb{R}^N)} = \|u_j\|_{D^{1,2}(\mathbb{R}^N)}$$

where $\bar{u}_j(x) = \sigma_j^{\frac{N-2}{2}} u_j(\sigma_j x)$. Up to a subsequence, $\bar{u}_j \rightharpoonup \bar{u} \in S^{2d}$.

Proof. Let $\{u_j\} \subset S^d$. From S^d and Lemma 5.1 (M5), there exists $w_j \in S$ such that

$$||u_j - w_j||_{D^{1,2}(\mathbb{R}^N)} \le d.$$

From (M5), there exists $\{\sigma_j\}$ such that $\bar{w}_j \in \mathcal{S}$, where $\bar{w}_j(x) = \sigma_j^{\frac{N-2}{2}} w_j(\sigma_j x)$. It is easy to prove that $\bar{w}_j \to \bar{w} \in \mathcal{S}$. And

$$\|\bar{u}_j\|_{D^{1,2}(\mathbb{R}^N)} = \|u_j\|_{D^{1,2}(\mathbb{R}^N)}, \quad \|\bar{u}_j - \bar{w}_j\|_{D^{1,2}(\mathbb{R}^N)} = \|u_j - w_j\|_{D^{1,2}(\mathbb{R}^N)} \le d.$$

For j large enough, we have

$$\begin{aligned} \|\bar{u}_j - \bar{w}\|_{D^{1,2}(\mathbb{R}^N)} &= \|\bar{u}_j - \bar{w}_j + \bar{w}_j - \bar{w}\|_{D^{1,2}(\mathbb{R}^N)} \\ &\leq \|\bar{u}_j - \bar{w}_j\|_{D^{1,2}(\mathbb{R}^N)} + \|\bar{w}_j - \bar{w}\|_{D^{1,2}(\mathbb{R}^N)} \leq 2d. \end{aligned}$$

This shows that $\{\bar{u}_j\}$ is bounded. Up to a subsequence, we assume that $\bar{u}_j \rightarrow \bar{u}$ in $D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N)$. Note that $B_{2d}(\bar{w})$ is weakly closed in $D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N)$. We obtain $\bar{u} \in B_{2d}(\bar{w}) \subset S^{2d}$.

Lemma 5.4. Let $d_1 := \frac{1}{2}\sqrt{\frac{2\cdot 2^*}{2^*-2}c_0}$ and $d \in (0, d_1)$. Suppose that there exist sequences $b_j > 0$, $b_j \to 0$, and $\{u_j\} \subset S^d$ satisfying

$$\lim_{j \to \infty} J_{b_j}(u_j) \le c_0 \quad and \quad \lim_{j \to \infty} \|J'_{b_j}(u_j)\|_{D^{-1,2}(\mathbb{R}^N)} = 0.$$

Then there exists a sequence $\{\sigma_j\}$ such that $\|\bar{u}_j\|_{D^{1,2}(\mathbb{R}^N)} = \|u_j\|_{D^{1,2}(\mathbb{R}^N)}$, where $\bar{u}_j(x) = \sigma_j^{\frac{N-2}{2}} u_j(\sigma_j x)$. Up to a subsequence, $\{\bar{u}_j\}$ converges to $\bar{u} \in \mathcal{S}$.

Proof. Let $\lim_{j\to\infty} \|J'_{b_j}(u_j)\|_{D^{-1,2}(\mathbb{R}^N)} = 0$ and $\{u_j\}$ be bounded. From Lemma 5.3, up to a subsequence, $\bar{u}_j \to \bar{u} \in \mathcal{S}^{2d}$. From d_1 , we know that $\bar{u} \neq 0$.

Let $\bar{u}_j(x) = \sigma_j^{\frac{N-2}{2}} u_j(\sigma_j x)$. We have

$$\lim_{j \to \infty} J_{b_j}(\bar{u}_j) = \lim_{j \to \infty} J_{b_j}(u_j) \le c_0.$$

For all $\varphi \in D^{1,2}_{\mathrm{rad}}(\mathbb{R}^N)$, we obtain

$$\begin{aligned} |\langle J'_{b_j}(\bar{u}_j), \varphi \rangle| \\ &= |\langle J'_{b_j}(u_j), \bar{\varphi} \rangle| \\ &\leq \|J'_{b_j}(u_j)\|_{D^{-1,2}(\mathbb{R}^N)} \|\bar{\varphi}\|_{D^{1,2}(\mathbb{R}^N)} \\ &= o(1) \|\bar{\varphi}\|_{D^{1,2}(\mathbb{R}^N)}, \end{aligned}$$

where $\bar{\varphi} = \sigma_j^{-\frac{N-2}{2}} \varphi(x/\sigma_j)$. Note that $\|\bar{\varphi}\|_{D^{1,2}(\mathbb{R}^N)} = \|\varphi\|_{D^{1,2}(\mathbb{R}^N)}$. We know that $\|J'_{b_i}(\bar{u}_j)\|_{D^{-1,2}(\mathbb{R}^N)} \to 0$ as $j \to \infty$,

which further implies

$$\langle J_0'(\bar{u}),\varphi\rangle = \lim_{j\to\infty} \langle J_{b_j}'(\bar{u}_j),\varphi\rangle - \frac{b_j}{4} \|\bar{u}_j\|_{D^{1,2}(\mathbb{R}^N)}^4 = 0.$$

This shows that $||J'_0(\bar{u})||_{D^{-1,2}(\mathbb{R}^N)} = 0.$ It follows from $\bar{u}_i \in \mathcal{S}^{2d}$ that

$$\lim_{j \to \infty} \langle J'_0(\bar{u}_j), \varphi \rangle = \lim_{j \to \infty} \langle J'_{b_j}(\bar{u}_j), \varphi \rangle - \lim_{j \to \infty} b_j \|\bar{u}_j\|^2_{D^{1,2}(\mathbb{R}^N)} \int_{\mathbb{R}^N} \nabla \bar{u}_j(x) \nabla \varphi(x) \mathrm{d}x$$
$$= o(1) \|\varphi\|_{D^{1,2}(\mathbb{R}^N)}.$$

On the other hand,

$$c_{0} \geq \lim_{j \to \infty} J_{b_{j}}(\bar{u}_{j})$$

$$= \lim_{j \to \infty} J_{0}(\bar{u}_{j}) + \lim_{j \to \infty} \frac{b_{j}}{4} \|\bar{u}_{j}\|_{D^{1,2}(\mathbb{R}^{N})}^{4}$$

$$= \lim_{j \to \infty} J_{0}(\bar{u}_{j}).$$
(5.1)

So $\{\bar{u}_j\}$ is a $(PS)_m$ sequence for J_0 with $m := \lim_{j \to \infty} J_0(\bar{u}_j)$. Up to a subsequence, $\bar{u}_j \rightharpoonup \bar{u}$ and

$$J_0(\bar{u}) = \frac{1}{2} \|\bar{u}\|_{\Phi}^2 - \frac{1}{2^*} \int_{\mathbb{R}^N} |\bar{u}|^{2^*} \mathrm{d}x$$

$$= \left(\frac{1}{2} - \frac{1}{2^*}\right) \|\bar{u}\|_{\Phi}^2$$

$$\leq \left(\frac{1}{2} - \frac{1}{2^*}\right) \liminf_{j \to \infty} \|\bar{u}_j\|_{\Phi}^2$$

$$= \liminf_{j \to \infty} \left(J_0(\bar{u}_j) - \frac{1}{2^*} \langle J_0'(\bar{u}_j), \bar{u}_j \rangle\right) = m$$

It follows from (M3) that $m \ge J_0(\bar{u}) \ge c_0$. From (5.1), one has $m = J_0(\bar{u}) = c_0$, which implies $\bar{u} \in \mathcal{S}$.

Set

$$m_b := \max_{t \in [0,1]} J_b(\Upsilon_0(t)).$$
(5.2)

Then $c_b \leq m_b$. It is easy to see that $\lim_{b\to 0} m_b \leq c_0$. From this inequality and Lemmas 5.2 and 5.4, one has

$$\lim_{b \to 0} c_b = \lim_{b \to 0} m_b = c_0$$

We define

$$J_b^{m_b} = \{ u \in D_{\text{rad}}^{1,2}(\mathbb{R}^N) | J_b(u) \le m_b \}.$$

Proposition 5.5. Let $d_2, d_3 > 0$ satisfying $d_3 < d_2 < d_1$. Then there exist $\iota > 0$ and $\tilde{b} > 0$ depending on d_2, d_3 such that for $b \in (0, \tilde{b})$, it holds

$$\|J_b'(u)\|_{D^{-1,2}(\mathbb{R}^N)} \ge \iota, \quad u \in J_b^{m_b} \cap (\mathcal{S}^{d_2} \setminus \mathcal{S}^{d_3}).$$

Proof. Suppose on the contrary that $d_2, d_3 > 0$ satisfying $d_3 < d_2 < d_1$, there exist sequences $\{b_j\}$ with $\lim_{j\to\infty} b_j = 0$, and $\{u_j\} \in J_{b_j}^{m_{b_j}} \cap (\mathcal{S}^{d_2} \setminus \mathcal{S}^{d_3})$ such that

$$\lim_{j \to \infty} J_{b_j}(u_j) \leq c_0 \quad \text{and} \quad \lim_{j \to \infty} \|J_{b_j}'(u_j)\|_{D^{-1,2}(\mathbb{R}^N)} = 0.$$

From (M5), there exists sequence $\{\sigma_j\}$ such that

$$\begin{aligned} \{\bar{u}_j\} \in J_{b_j}^{m_{b_j}} \cap (\mathcal{S}^{d_2} \setminus \mathcal{S}^{d_3}), \quad \lim_{j \to \infty} J_{b_j}(\bar{u}_j) \le c_0, \\ \lim_{j \to \infty} \|J_{b_j}'(\bar{u}_j)\|_{D^{-1,2}(\mathbb{R}^N)} = 0, \end{aligned}$$

where $\bar{u}_j(x) = \sigma_j^{\frac{N-2}{2}} u_j(\sigma_j x)$. Hence, we can apply Lemma 5.4 and the existence of $\bar{u} \in \mathcal{S}$ such that $\bar{u}_j \to \bar{u}$ in $D_{\mathrm{rad}}^{1,2}(\mathbb{R}^N)$. As a consequence, $\mathrm{dist}(\bar{u}_j, \mathcal{S}) \to 0$ as $j \to \infty$. This is a contradiction with $\bar{u}_j \notin \mathcal{S}^{d_3}$.

Proposition 5.6. For any d > 0, there exists $\delta > 0$ such that if b > 0 small enough, then

$$J_b(\Upsilon_0(t)) \ge c_b - \delta \text{ implies } \Upsilon_0(t) \in \mathcal{S}^d, \quad t \in [0, 1].$$

The proof of the above proposition follows by repeating the proof of [16, Propositions 4].

Proposition 5.7. For any $d \in (0, d_1)$, there exist $b_0 > 0$ and a sequence $\{u_j\} \subset J_b^{m_b} \cap S^d$ such that $\|J_b'(u_j)\|_{D^{-1,2}(\mathbb{R}^N)} \to 0$ as $j \to \infty$, for all $b \in (0, b_0)$.

The proof of the above proposition follows from a discussion in [4, Propositions 5.3], by Propositions 5.5 and 5.6.

Proof of Theorem 1.4. (i) Suppose on the contrary that $u \in D^{1,2}(\mathbb{R}^N) \setminus \{0\}$ is a solution of (1.1). It follows from $2^* = 4$ and $b \ge S^{-2}$ that

$$\begin{split} \langle I_b'(u), u \rangle &= \|u\|_{D^{1,2}(\mathbb{R}^N)}^2 - \mu \int_{\mathbb{R}^N} \frac{\Phi(x/|x|)|u|^2}{|x|^2} \mathrm{d}x + b\|u\|_{D^{1,2}(\mathbb{R}^N)}^4 - \int_{\mathbb{R}^N} |u|^{2^*} \mathrm{d}x \\ &\geq \|u\|_{D^{1,2}(\mathbb{R}^N)}^2 - \mu \int_{\mathbb{R}^N} \frac{\Phi(x/|x|)|u|^2}{|x|^2} \mathrm{d}x + b\|u\|_{D^{1,2}(\mathbb{R}^N)}^4 - S^{-2}\|u\|_{D^{1,2}(\mathbb{R}^N)}^4 \\ &\geq \|u\|_{D^{1,2}(\mathbb{R}^N)}^2 - \mu \int_{\mathbb{R}^N} \frac{\Phi(x/|x|)|u|^2}{|x|^2} \mathrm{d}x > 0. \end{split}$$

This is a contradiction.

(ii) Suppose on the contrary that $u\in D^{1,2}(\mathbb{R}^N)\backslash\{0\}$ is a solution of (1.1). Applying Young's inequality and

$$b > \frac{2^* - 2}{2} \left(\frac{\Lambda_{\Phi} - \mu}{\Lambda_{\Phi}}\right)^{\frac{4 - 2^*}{2^* - 2}} \left(\frac{4 - 2^*}{2}\right)^{\frac{4 - 2^*}{2^* - 2}} S^{-\frac{2^*}{2^* - 2}},$$

we have

$$\begin{split} & \left(1 - \frac{\mu}{\Lambda_{\Phi}}\right) \|u\|_{D^{1,2}(\mathbb{R}^{N})}^{2} + b\|u\|_{D^{1,2}(\mathbb{R}^{N})}^{4} \\ & \leq \|u\|_{D^{1,2}(\mathbb{R}^{N})}^{2} - \mu \int_{\mathbb{R}^{N}} \frac{\Phi(x/|x|)|u|^{2}}{|x|^{2}} dx + b\|u\|_{D^{1,2}(\mathbb{R}^{N})}^{4} \\ & = \int_{\mathbb{R}^{N}} |u|^{2^{*}} dx \\ & \leq S^{-\frac{2^{*}}{2}} \|u\|_{D^{1,2}(\mathbb{R}^{N})}^{2} \\ & = \left[S^{-\frac{2^{*}}{2}} \left(\frac{2b}{2^{*}-2}\right)^{\frac{2-2^{*}}{2}} \|u\|_{D^{1,2}(\mathbb{R}^{N})}^{4-2^{*}}\right] \left[\left(\frac{2b}{2^{*}-2}\right)^{\frac{2^{*}-2}{2}} \|u\|_{D^{1,2}(\mathbb{R}^{N})}^{2(2^{*}-2)}\right] \\ & \leq \frac{4-2^{*}}{2} \left[S^{-\frac{2^{*}}{2}} \left(\frac{2b}{2^{*}-2}\right)^{\frac{2^{*}-2}{2}} \|u\|_{D^{1,2}(\mathbb{R}^{N})}^{4-2^{*}}\right]^{\frac{2}{4-2^{*}}} \\ & \quad + \frac{2^{*}-2}{2} \left[\left(\frac{2b}{2^{*}-2}\right)^{\frac{2^{*}-2}{2}} \|u\|_{D^{1,2}(\mathbb{R}^{N})}^{2(2^{*}-2)}\right]^{\frac{2}{2^{*}-2}} \\ & = \frac{4-2^{*}}{2} S^{-\frac{2^{*}}{4-2^{*}}} \left(\frac{2^{*}-2}{2b}\right)^{\frac{2^{*}-2}{4-2^{*}}} \|u\|_{D^{1,2}(\mathbb{R}^{N})}^{2} + b\|u\|_{D^{1,2}(\mathbb{R}^{N})}^{4}. \end{split}$$

which is a contradiction.

(iii) Taking $d \in (0, d_1)$, by Proposition 5.7, there exists $b_0 > 0$ such that for all $\lambda \in (0, b_0)$, there exists a Palais-Smale sequence $\{u_j\} \subset S^{d/2}$. By applying (M5), there exists sequence $\{\sigma_j\}$ such that $\{\bar{u}_j\} \subset S^{d/2}$ where $\bar{u}_j(x) = \sigma_j^{\frac{3-2s}{2}} u_j(\sigma_j x)$. Clearly, $\{\bar{u}_j\}$ is bounded in $D_{\mathrm{rad}}^{1,2}(\mathbb{R}^N)$. Then by Lemma 5.4, up to a subsequence, there exists $\bar{u} \in S^{\frac{d}{2} \cdot 2} = S^d$ such that $\bar{u}_j \to \bar{u}$. Then we obtain $\|J_b'(\bar{u})\|_{D^{-1,2}(\mathbb{R}^N)} = 0$. It follows from $d \in (0, d_1)$ that $\bar{u} \neq 0$. Hence \bar{u} is a nontrivial critical point of J_b .

Acknowledgments

This research is supported by the University-level key projects of Anhui University of Science and Technology (xjzd2020-23), and by the Key Program of University Natural Science Research Fund of Anhui Province (Grant No. KJ2021A0452).

References

- V. Ambrosio, A. Fiscella, T. Isernia; Infinitely many solutions for fractional Kirchhoff-Sobolev-Hardy critical problems, Electron. J. Qual. Theory Differ. Equ., (2019), Paper No. 25.
- [2] H. Brézis, E. Lieb; A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), no. 3, 486–490.
- [3] D. Cassani, Z. Liu, C. Tarsi, J. Zhang; Multiplicity of sign-changing solutions for Kirchhofftype equations, Nonlinear Anal., 186 (2019), 145–161.
- [4] G. Cerami, X. Zhong, W. Zou; On some nonlinear elliptic PDEs with Sobolev-Hardy critical exponents and a Li-Lin open problem, Calc. Var. Partial Differential Equations, 54 (2015), no. 2, 1793–1829.
- [5] A. Cotsiolis, N. Tavoularis; Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), no. 1, 225–236.
- [6] W. Ding; On a conformally invariant elliptic equation on R^N, Comm. Math. Phys., 107 (1986), no. 2, 331-335.
- [7] V. Felli, A. Ferrero, S. Terracini; Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential, J. Eur. Math. Soc. (JEMS), 13 (2011), no. 1, 119–174.
- [8] V. Felli, E. Marchini, S. Terracini; On Schrödinger operators with multisingular inversesquare anisotropic potentials, Indiana Univ. Math. J., 58 (2009), no. 2, 617-676.
- [9] Z. Feng, Y. Su; Ground state solution to the biharmonic equation, Z. Angew. Math. Phys., 73 (2022), no. 1, 1–24.
- [10] Z. Feng, Y. Su; Lions-type theorem of the fractional Laplacian and applications, Dyn. Partial Differ. Equ., 18 (2021), no. 3, 211–230.
- [11] A. Fiscella, P. Pucci; Kirchhoff-Hardy Fractional Problems with Lack of Compactness, Adv. Nonlinear Stud., 17 (2017), no. 3, 429–456.
- [12] A. Fiscella, P. Pucci, B. Zhang; p-fractional Hardy-Schrödinger-Kirchhoff systems with critical nonlinearities, Adv. Nonlinear Anal., 8 (2019), no. 1, 1111–1131.
- [13] A. Fiscella, H. Mirzaee; Fractional p-Laplacian problems with Hardy terms and critical exponents, Z. Anal. Anwend., 38 (2019), no. 4, 483–498.
- [14] R. Frank, R. Seiringer; Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255 (2008), no. 12, 3407–3430.
- [15] T. Hoffmann-Ostenhof, A. Laptev; Hardy inequalities with homogeneous weights, J. Funct. Anal., 268 (2015), no. 11, 3278–3289.
- [16] W. Jeong, J. Seok; On perturbation of a functional with the mountain pass geometry: applications to the nonlinear Schrödinger-Poisson equations and the nonlinear Klein-Gordon-Maxwell equations, Calc. Var. Partial Differential Equations, 49 (2014), no. 1-2, 649–668.
- [17] X. Ke, J. Liu, J. Liao; Positive solutions for a critical p-Laplacian problem with a Kirchhoff term, Comput. Math. Appl., 77 (2019), no. 9, 2279–2290.
- [18] G. Kirchhoff; Mechanik, Leipzig, 1883.
- [19] J. Lévy-Leblond; Electron capture by polar molecules, Phys. Rev., 153 (1967), 1–4.
- [20] J. Liu, J. Liao, C. Tang; Positive solutions for Kirchhoff-type equations with critical exponent in R^N, J. Math. Anal. Appl., 429 (2015) 1153–1172.
- [21] Z. Liu, M. Squassina, J. Zhang; Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension, NoDEA Nonlinear Differential Equations Appl., 24 (2017), 50.
- [22] O. Miyagaki, L. Paes-Leme, B. Rodrigues; Multiplicity of positive solutions for the Kirchhofftype equations with critical exponent in R^N, Comput. Math. Appl., **75** (2018), no. 9, 3201– 3212.
- [23] B. Noris, M. Nys, S. Terracini; On the Aharonov-Bohm operators with varying poles: the boundary behavior of eigenvalues, Comm. Math. Phys., 339 (2015), no. 3, 1101–1146.
- [24] G. Palatucci, A. Pisante; Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), no. 3-4, 799-829.
- [25] J. Sun, T. Wu; Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations, 256 (2014), 1771–1792.

- [26] S. Terracini; On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), no. 2, 241–264.
- [27] M. Willem; *Minimax theorems*, in "Progress in Nonlinear Differential Equations and their Applications", vol. 24, Birkhäuser Boston, 1996.
- [28] P. C. Xia, Y. Su; p-Laplacian equation with finitely many critical nonlinearities, Electron. J. Differential Equations, 2021 (2021), no. 102, 1–11.

SAINAN WANG

School of Mathematics and Big Data, Annui University of Science and Technology, Huainan, Annui 232001, China

Email address: snwang@aust.edu.cn

Yu Su

School of Mathematics and Big Data, Annui University of Science and Technology, Huainan, Annui 232001, China

 $Email \ address: \texttt{yusumath@aust.edu.cn}$