Electron. J. Differential Equations, Vol. 2022 (2022), No. 38, pp. 1-30.

Global solutions and blow-up for a Kirchhoff-type problem on a geodesic ball of the Poincare ball model

Hang Ding, Jun Zhou

Abstract:
This article concerns a Kirchhoff-type parabolic problem on a geodesic ball of hyperbolic space. Firstly, we obtain conditions for finite time blow-up, and for the existence of global solutions for J(u_0)≤ d, where J(u0) denotes the initial energy and d denotes the depth of the potential well. Secondly, we estimate the upper and lower bounds of the blow-up time. In addition, we derive the growth rate of the blow-up solution and the decay rate of the global solution. Thirdly, we establish a new finite time blow-up condition which is independent of d and prove that the solution can blow up in finite time with arbitrary high initial energy, by using this blow-up condition. Finally, we present some equivalent conditions for the solution existing globally or blowing up in finite time.

Submitted July 18, 2021 Published May 13, 2022.
Math Subject Classifications: 35K55, 35B40, 35B44.
Key Words: Parabolic problem of Kirchhoff type; hyperbolic space; poincare ball model; global solution; blow-up. DOI: https://doi.org/10.58997/ejde.2022.38

Show me the PDF file (447 KB), TEX file for this article.

Hang Ding
School of Mathematics and Statistics
Southwest University
Chongqing 400715, China
email: hding0527@163.com
Jun Zhou
School of Mathematics and Statistics
Southwest University
Chongqing 400715, China
email: jzhouwm@163.com

Return to the EJDE web page