Electron. J. Differential Equations, Vol. 2022 (2022), No. 84, pp. 1-32.

Existence of a solution and its numerical approximation for a strongly nonlinear coupled system in anisotropic Orlicz-Sobolev spaces

Francisco Ortegon Gallego, Hakima Ouyahya, Mohamed Rhoudaf

Abstract:
We study the existence of a capacity solution for a nonlinear elliptic coupled system in anisotropic Orlicz-Sobolev spaces. The unknowns are the temperature inside a semiconductor material, and the electric potential. This system may be considered as a generalization of the steady-state thermistor problem. The numerical solution is also analyzed by means of the least squares method in combination with a conjugate gradient technique.

Submitted April 21, 2022. Published December 21, 2022.
Math Subject Classifications: 35J70, 35J66, 46E30, 65N22.
Key Words: Nonlinear elliptic equations; capacity solution; least squares method; anisotropic Orlicz-Sobolev spaces; conjugate gradient algorithm.
DOI: https://doi.org/10.58997/ejde.2022.84

Show me the PDF file (2433 KB), TEX file for this article.

Francisco Ortegón Gallego
Departamento de Matemáticas
Facultad de Ciencias del Mar y Ambientales
Universidad de Cádiz, Campus del Río San Pedro
11510 Puerto Real, Cádiz, Spain
email: francisco.ortegon@uca.es
Hakima Ouyahya
Équipe EDP et calcul scientifique
laboratoire de mathématiques et leurs intéractions
Faculté des Sciences
Moulay Ismail University
Meknes, Morocco
email: hakima.ouyahya@edu.umi.ac.ma
Mohamed Rhoudaf
Équipe EDP et calcul scientifique
laboratoire de mathématiques et leurs intéractions
Faculté des Sciences
Moulay Ismail University
Meknes, Morocco
email: m.rhoudaf@umi.ac.ma

Return to the EJDE web page