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MONOTONICITY PROPERTIES OF THE EIGENVALUES OF

NONLOCAL FRACTIONAL OPERATORS AND

THEIR APPLICATIONS

GIOVANNI MOLICA BISCI, RAFFAELLA SERVADEI, BINLIN ZHANG

Abstract. In this article we study an equation driven by the nonlocal inte-

grodifferential operator −LK in presence of an asymmetric nonlinear term f .
Among the main results of the paper we prove the existence of at least a weak

solution for this problem, under suitable assumptions on the asymptotic be-

havior of the nonlinearity f at ±∞. Moreover, we show the uniqueness of this
solution, under additional requirements on f . We also give a non-existence re-

sult for the problem under consideration. All these results were obtained using

variational techniques and a monotonicity property of the eigenvalues of −LK
with respect to suitable weights, that we prove along the present paper. This

monotonicity property is of independent interest and represents the nonlocal

counterpart of a famous result obtained by de Figueiredo and Gossez [14] in
the setting of uniformly elliptic operators.

1. Introduction

In recent years, a great attention has been focused on the study of fractional
and nonlocal operators of elliptic type, both for the pure mathematical research
and for concrete real-world applications. Fractional and nonlocal operators appear
naturally in applications in many fields such as optimization, finance, phase transi-
tions, stratified materials, anomalous diffusion, crystal dislocation, soft thin films,
semipermeable membranes, flame propagation, conservation laws, ultra-relativistic
limits of quantum mechanics, quasi-geostrophic flows, multiple scattering, minimal
surfaces, materials science and water waves, see [3, 4, 6, 7, 8, 19, 31, 32, 33, 34] and
the references therein.

Also thanks to all these applications nonlocal fractional problems are widely
studied in the literature. Many authors have considered nonlocal fractional Lapla-
cian equations (and their generalizations) with different growth assumptions on the
nonlinear term, such as superlinear and subcritical, critical, asymptotically linear
and many others. We refer to the monograph [20] for an overview on these topics.

There are a lot of interesting problems in the standard framework of the Lapla-
cian and, more generally, of uniformly elliptic operators, widely studied in the
literature. A natural question is whether or not the results got in this classical
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context can be extended to the nonlocal framework of the fractional Laplacian type
operators.

In this spirit, in this article we are concerned with the existence, non-existence
and uniqueness of solutions for the following nonlocal fractional equation with ho-
mogeneous Dirichlet boundary conditions:

−LKu = f(x, u) + g(x) in Ω

u = 0 in Rn \ Ω .
(1.1)

Here Ω is an open bounded subset of Rn with Lipschitz boundary, n > 2s, s ∈ (0, 1),
while LK is the integrodifferential operator defined as

LKu(x) :=

∫
Rn

(
u(x+ y) + u(x− y)− 2u(x)

)
K(y) dy , x ∈ Rn , (1.2)

where the kernel K : Rn \ {0} → (0,+∞) is such that

mK ∈ L1(Rn), with m(x) = min{|x|2, 1}; (1.3)

there exists θ > 0 such that K(x) > θ|x|−(n+2s) for all x ∈ Rn \ {0} . (1.4)

A typical model for K is the singular kernel K(x) = |x|−(n+2s) which gives rise
to the fractional Laplace operator −(−∆)s, widely studied in the recent literature
(see, for instance, the seminal papers [6, 32, 33]).

Moreover, we suppose that f : Ω×R→ R is a Carathéodory function satisfying
the following conditions

there exist a1 ∈ L2(Ω) and a2 ∈ L∞(Ω) with a2 > 0 such that

|f(x, t)| 6 a1(x) + a2(x)|t| for a.e. x ∈ Ω and for every t ∈ R ;
(1.5)

−∞ 6 α(x) := lim
t→−∞

f(x, t)

t
and lim

t→+∞

f(x, t)

t
=: β(x) 6 +∞

for a.e. x ∈ Ω .
(1.6)

Note that the asymptotic growth condition (1.6) on f at −∞ and +∞ includes also
the case when the condition at −∞ is different from the one at +∞, in which case
f is called asymmetric nonlinearity.

Finally, the function g is such that

g ∈ L2(Ω) . (1.7)

In the classical context of the Laplacian and uniformly elliptic operators problems
like (1.1) were widely studied in the literature, see, for instance, [1, 9]. In the context
of nonlinear integral problems this kind of studies goes back to the classical results
of Dolph [11].

Note that u ≡ 0 may not be a solution of (1.1), since f(x, 0)+g(x) may not van-
ish. In this paper we prove the existence of weak solutions of (1.1) using variational
methods.

We denote by

λ1 < λ2 6 . . . 6 λk 6 . . .

the eigenvalues of the operator −LK in Ω with homogeneous Dirichlet boundary
condition (see Subsection 2.2 for more details), and by Xs

0(Ω) the fractional func-
tional space where we look for solutions (see Subsection 2.1 for a precise definition).
The main results of this article can be stated as follows.
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Theorem 1.1. Let s ∈ (0, 1), n > 2s and Ω be an open bounded subset of Rn with
Lipschitz boundary. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (1.3) and
(1.4) and let f : Ω×R→ R be a Carathéodory function satisfying (1.5) and (1.6),
and g : Ω→ R be a function satisfying (1.7). Then, the following assertions hold:

(i) if α(x), β(x) < λ1 for a.e. x ∈ Ω, then (1.1) has at least one weak solution
in Xs

0(Ω).
Moreover, the solution is unique if, in addition, for a.e. x ∈ Ω and for

all t, t′ ∈ R, t 6= t′,

0 <
f(x, t)− f(x, t′)

t− t′
< λ1 (1.8)

and the eigenfunctions of −LK corresponding to λ1 enjoy the unique con-
tinuation property;

(ii) if λk < α(x), β(x) < λk+1 for a.e. x ∈ Ω for some k ∈ N and the eigen-
functions of −LK corresponding to λk and the ones corresponding to λk+1

enjoy the unique continuation property, then problem (1.1) has at least one
weak solution in Xs

0(Ω).
Moreover, the solution is unique if, in addition, for a.e. x ∈ Ω and for

all t, t′ ∈ R, t 6= t′,

λk <
f(x, t)− f(x, t′)

t− t′
< λk+1 ; (1.9)

(iii) if either

f(x, t) + g(x) < λ1t (1.10)

or

f(x, t) + g(x) > λ1t (1.11)

for a.e. x ∈ Ω and for all t ∈ R, then (1.1) has no weak solution in Xs
0(Ω).

Fiscella [16] obtained a similar result for the case α ≡ β and g ≡ 0. Therefore,
[16, Theorem 1] can be viewed as a particular case of Theorem 1.1.

In the setting of the fractional Laplacian problem (1.1) reads as follows

(−∆)su = f(x, u) + g(x) in Ω

u = 0 in Rn \ Ω ,
(1.12)

where (−∆)s is the fractional Laplace operator defined, up to normalization factors,
as

− (−∆)su(x) =

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy x ∈ Rn . (1.13)

In this article for k ∈ N we denote by λk,s the eigenvalues of (−∆)s in Ω with
homogeneous Dirichlet boundary datum (see Subsection 2.2). In the framework of
problem (1.12) we can state Theorem 1.1 as follows.

Theorem 1.2. Let s ∈ (0, 1), n > 2s and Ω be an open bounded subset of Rn
with Lipschitz boundary. Let f : Ω× R→ R be a Carathéodory function satisfying
(1.5) and (1.6), and g : Ω → R be a function satisfying (1.7). Then the following
assertions hold:

(i) if α(x), β(x) < λ1,s for a.e. x ∈ Ω, then (1.12) has at least one weak solution
in Hs(Rn).
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Moreover, the solution is unique if, in addition, for a.e. x ∈ Ω and for
all t, t′ ∈ R, t 6= t′,

0 <
f(x, t)− f(x, t′)

t− t′
< λ1,s ; (1.14)

(ii) if λk,s < α(x), β(x) < λk+1,s for a.e. x ∈ Ω for some k ∈ N, then prob-
lem (1.12) has at least one weak solution in Hs(Rn).

Moreover, the solution is unique if, in addition, for a.e. x ∈ Ω and for
all t, t′ ∈ R, t 6= t′,

λk,s <
f(x, t)− f(x, t′)

t− t′
< λk+1,s ; (1.15)

(iii) if either

f(x, t) + g(x) < λ1,st (1.16)

or

f(x, t) + g(x) > λ1,st (1.17)

for a.e. x ∈ Ω and for all t ∈ R, then (1.12) has no weak solution in
Hs(Rn).

In the classical setting it is well known that the interaction of α and β with
the spectrum of the Laplace operator is closely related with the existence of weak
solutions. Actually, Theorems 1.1 and 1.2 state that the absence of this interaction
implies the existence of weak solutions for the fractional equations: this represents
the nonlocal counterpart of the classical results by Dolph [11] (for other details we
refer also to [1, 13]).

However, there are a lot of cases where this interaction appears. In the seminal
paper [2], Ambrosetti and Prodi firstly studied the case in which the derivative
of nonlinearity jumps the first eigenvalue of the Laplacian operator (see also [1,
15, 23]). Hence a natural question arises: is there a weak solution in Xs

0(Ω) for
problem (1.1) if α(x) < λ1 < β(x), or if λk < α(x) < λk+1 < β(x) a.e. in Ω? The
answer is more delicate and still remains an open problem.

This article is organized as follows. Section 2 is devoted to some preliminaries.
In Section 3 we investigate an eigenvalues problem for −LK with weights, focusing
on a comparison property of the eigenvalues which will be crucial in the proof of
our main result. Here we also give a new result on the monotonicity property of the
eigenvalues of the fractional Laplacian (−∆)s, which is of independent interest. In
Section 4 we provide the proof of Theorem 1.1, using variational methods, together
with the monotonicity result got in Subsection 3.1. Finally, in Section 5 we consider
the case of the fractional Laplacian.

2. Preliminaries

In this section we briefly introduce the notation and we recall some results for
Sobolev fractional functional spaces used in this article.

2.1. Functional space Xs
0(Ω) and its properties. This subsection is devoted to

the definition of the functional space Xs
0(Ω) introduced in [27] (see also [28, 29])

and we give some well known properties of it.
The space Xs

0(Ω) is defined as

Xs
0(Ω) :=

{
g ∈ X : g = 0 a.e. in Rn \ Ω

}
,
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where X denotes the linear space of Lebesgue measurable functions from Rn to R
such that the restriction to Ω of any function g in X belongs to L2(Ω) and

the map (x, y) 7→ (g(x)− g(y))
√
K(x− y) is in L2

(
(Rn × Rn) \ (CΩ× CΩ)

)
(here CΩ := Rn \ Ω).

Note that the label s recalls that the kernel K satisfies (1.4) and that X and
Xs

0(Ω) are non-empty, since C2
0 (Ω) ⊆ Xs

0(Ω), as proved in [27, Lemma 5.1]. We
define a norm in Xs

0(Ω) as

Xs
0(Ω) 3 g 7→ ‖g‖Xs

0 (Ω) :=
(∫

Rn×Rn

|g(x)− g(y)|2K(x− y) dx dy
)1/2

. (2.1)

In this way,
(
Xs

0(Ω), ‖ · ‖Xs
0 (Ω)

)
is a Hilbert space (for this see [28, Lemma 7]), with

scalar product

〈u, v〉Xs
0 (Ω) :=

∫
Rn×Rn

(
u(x)− u(y)

)(
v(x)− v(y)

)
K(x− y) dx dy . (2.2)

In the following we denote by Hs(Ω) the usual fractional Sobolev space endowed
with the norm (the so-called Gagliardo norm)

‖g‖Hs(Ω) := ‖g‖L2(Ω) +
(∫

Ω×Ω

|g(x)− g(y)|2

|x− y|n+2s
dx dy

)1/2

. (2.3)

We remark that, even in the model case in which K(x) = |x|−(n+2s), the norms in
(2.1) and (2.3) are not the same, because Ω×Ω is strictly contained in Rn×Rn. This
is the reason why the classical fractional Sobolev space approach is not sufficient
for studying problem (1.1).

In [30, Lemma 7] (see also [28, Lemma 5 and Lemma 6]) the authors proved the
following result, which states a relation between the space Xs

0(Ω) and the usual
fractional Sobolev spaces Hs(Rn).

Lemma 2.1. The following assertions hold:

(i) let K : Rn \ {0} → (0,+∞) satisfy assumptions (1.3) and (1.4). Then
Xs

0(Ω) ⊆ Hs(Rn) and, moreover, for all v ∈ Xs
0(Ω)

‖v‖Hs(Ω) 6 ‖v‖Hs(Rn) 6 C‖v‖Xs
0 (Ω) ,

where C is a positive constant depending only on n, s, θ and Ω ;
(ii) let K(x) = |x|−(n+2s). Then

Xs
0(Ω) =

{
v ∈ Hs(Rn) : v = 0 a.e. in Rn \ Ω

}
.

The following embedding result, proved in [28, Lemma 8] and in [30, Lemma 9],
holds.

Lemma 2.2. Let s ∈ (0, 1), n > 2s and Ω be an open bounded subset of Rn. Let
K : Rn \ {0} → (0,+∞) satisfy (1.3) and (1.4). Then, the following assertions
hold:

(i) if Ω has a Lipschitz boundary, then the embedding Xs
0(Ω) ↪→ Lν(Rn) is

compact for all ν ∈ [1, 2∗s), where 2∗s = 2n/(n− 2s) is the fractional critical
Sobolev exponent;

(ii) the embedding Xs
0(Ω) ↪→ L2∗s (Rn) is continuous.

The counterpart of Lemma 2.2 in the usual fractional Sobolev spaces is given by
the following one proved in [10, Theorem 6.5].
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Lemma 2.3. The embedding Hs(Rn) ↪→ Lν(Rn) is continuous for all ν ∈ [2, 2∗s].

2.2. Eigenvalues and eigenfunctions of the operator −LK . This subsection
deals with the following eigenvalue problem associated with the integrodifferential
operator −LK :

−LKu = λu in Ω

u = 0 in Rn \ Ω .
(2.4)

We denote by {λk}k the sequence of the eigenvalues of (2.4), with

0 < λ1 < λ2 6 · · · 6 λk 6 . . . , λk → +∞ as k → +∞ (2.5)

and by ek the eigenfunction corresponding to λk. When LK = −(−∆)s, the eigen-
values and the eigenfunctions are denoted by λk,s and ek,s for all k ∈ N, respectively.

Moreover, we normalize ek in such a way that the sequence {ek}k provides an
orthonormal basis of L2(Ω) and an orthogonal basis of Xs

0(Ω). We know that λ1

is simple and e1 is non-negative (e1,s is positive as proved in [26, Corollary 8]).
Finally, λ1 can be characterized as follows

λ1 = min
u∈X0\{0}

∫
Rn×Rn |u(x)− u(y)|2K(x− y)dx dy∫

Ω
|u(x)|2 dx

. (2.6)

For a complete study of the spectrum of the integrodifferential operator −LK we
refer to [24, Proposition 2.3], [29, Proposition 9 and Appendix A], and [25, Propo-
sition 4].

Furthermore, we say that the eigenvalue λk, k > 2, has multiplicity m ∈ N if

λk−1 < λk = · · · = λk+m−1 < λk+m .

Then, the set of all the eigenvalues corresponding to λk agrees with

span{ek, . . . , ek+m−1} .

Finally, for all k ∈ N in the sequel we denote the spaces

Hk := span{e1, . . . , ek}, (2.7)

Pk+1 := {u ∈ Xs
0(Ω) : 〈u, ej〉Xs

0 (Ω) = 0 for j = 1, . . . , k}, (2.8)

where 〈·, ·〉Xs
0 (Ω) is defined by (2.2). When LK = −(−∆)s, the spaces Hk and Pk+1

are denoted by Hk,s and Pk+1,s for all k ∈ N, respectively.
Using definitions (2.7) and (2.8), the variational characterization of the eigen-

values of −LK (see [29, Proposition 9] and [24, Proposition 2.3]) implies that∫
Rn×Rn

|u(x)− u(y)|2K(x− y) dx dy > λk+1

∫
Ω

|u(x)|2 dx for all u ∈ Pk+1 (2.9)

and∫
Rn×Rn

|u(x)− u(y)|2K(x− y) dx dy 6 λk

∫
Ω

|u(x)|2 dx for all u ∈ Hk (2.10)

for all k ∈ N.
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3. An eigenvalue problem for −LK with weights

In this section we are concerned with an eigenvalue problem for −LK with
weights, whose properties will be used all along the paper. Precisely, we are inter-
ested in the eigenvalue problem

−LKu = λr(x)u in Ω

u = 0 in Rn \ Ω ,
(3.1)

where r : Ω→ R is such that

r ∈ Lip(Ω), (3.2)

r > 0 in Ω. (3.3)

The weak formulation of problem (3.1) is∫
Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y) dx dy

= λ

∫
Ω

r(x)u(x)ϕ(x) dx ∀ϕ ∈ Xs
0(Ω)

u ∈ Xs
0(Ω).

(3.4)

We say that λ[r] ∈ R is an eigenvalue of −LK with weight r if there exists a
non-trivial solution u ∈ Xs

0(Ω) of (3.1) with λ = λ[r]. In this case, u is called
eigenfunction corresponding to the eigenvalue λ[r].

The existence of a sequence of eigenvalues

λ1[r] < λ2[r] 6 . . . 6 λk[r] 6 . . .

and of the corresponding eigenfunctions ek[r] of (3.1) was proved in [17, Proposi-
tion 2.1] (see also [29, Proposition 9 and Appendix A]), under the assumption that
the weight r satisfies (3.2) and (3.3).

We refer to [17, Proposition 2.1] also for the following variational characterization
of the eigenvalues and properties of the related eigenfunctions. The first eigenvalue
λ1[r] of problem (3.1) is simple and it is given by

λ1[r] = min
u∈Xs

0 (Ω)\{0}

∫
Rn×Rn |u(x)− u(y)|2K(x− y) dx dy∫

Ω
r(x)|u(x)|2 dx

(3.5)

and there exists a non-negative function e1[r] ∈ Xs
0(Ω), which is an eigenfunction

corresponding to λ1[r], attaining the minimum in (3.5), that is∫
Ω

r(x)|e1[r](x)|2dx = 1

λ1[r] =

∫
Rn×Rn

|e1[r](x)− e1[r](y)|2K(x− y)dx dy .

(3.6)

Furthermore, for all k ∈ N the eigenvalues of (3.1) can be characterized as
follows:

λk+1[r] = min
u∈Pk+1[r]\{0}

∫
Rn×Rn |u(x)− u(y)|2K(x− y)dx dy∫

Ω
r(x) |u(x)|2 dx

, (3.7)

where

Pk+1[r] :=
{
u ∈ Xs

0(Ω) : 〈u, ej [r]〉Xs
0 (Ω) = 0, ∀j = 1, . . . , k

}
,
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and by

λk[r] = max
u∈Hk[r]\{0}

∫
Rn×Rn |u(x)− u(y)|2K(x− y)dx dy∫

Ω
r(x) |u(x)|2 dx

, (3.8)

where

Hk[r] := span
{
e1[r], . . . , ek[r]

}
.

Finally, we say that the eigenvalue λk[r], k > 2, has multiplicity m ∈ N if

λk−1[r] < λk[r] = . . . = λk+m−1[r] < λk+m[r] ,

and, in this case, the set of all the eigenfunctions corresponding to λk[r] agrees with

span{ek[r], . . . , ek+m−1[r]}.

In [18, Proposition 2.1] the authors obtained another interesting characterization
of the eigenvalues λk[r], which is the extension to the nonlocal fractional setting of
[14, formula (3)] valid for uniformly elliptic operators.

3.1. Monotonicity properties of the eigenvalues of nonlocal operators
with respect to the weights. This subsection is devoted to another important
property of the eigenvalues of nonlocal fractional operators. In particular we deal
with a monotonicity property of eigenvalues of problem (3.1) with respect to the
weights and we obtain a result of independent interest. Firstly we recall that, as a
consequence of [18, Proposition 2.1], Frassu and Iannizzotto proved a property of
monotone dependence of the eigenvalues λk[r] with respect to the weights, provided
the eigenvalues ek[r] satisfy a unique continuation property.

We say that a family of functions has the unique continuation property if no
function, besides possibly the zero function, vanishes on a set of positive Lebesgue
measure. With this definition, we can state the following monotonicity property
(with respect to the weights) for the eigenvalues, proved in [18, Theorem 3.2].

Proposition 3.1. Let s ∈ (0, 1), n > 2s and Ω be an open bounded subset of Rn
with Lipschitz boundary and let K : Rn \ {0} → (0,+∞) satisfy assumptions (1.3)
and (1.4). Let r1, r2 ∈ L∞(Ω) be such that 0 6≡ r1 6 r2 a.e. in Ω and r1 6≡ r2.
Assume that either the eigenfunctions of (3.1) corresponding to λk[r1] or the ones
corresponding to λk[r2] enjoy the unique continuation property for some k ∈ N.
Then, λk[r1] > λk[r2].

Now, let us consider the eigenvalue problem (3.1) in the case K(x) = |x|−(n+2s),
that is the following one

(−∆)su = λr(x)u in Ω

u = 0 in Rn \ Ω .
(3.9)

The main result of this subsection can be stated as follows.

Proposition 3.2. Let s ∈ (0, 1), n > 2s and let Ω be a bounded domain of Rn with
Lipschitz boundary. Let r1, r2 ∈ C1(Ω) ∩L∞(Ω) be such that 0 6≡ r1 6 r2 in Ω and
r1 6≡ r2, and let λk,s[ri] be the eigenvalue of (3.9) with r = ri, i = 1, 2, for some
k ∈ N. Then λk,s[r1] > λk,s[r2].

Proof. By [12, Theorem 1.4] and the regularity assumptions on r1 and r2 we know
that the eigenfunctions ek,s[r1] and ek,s[r2] satisfy the unique continuation property.
Hence, by Proposition 3.1 we obtain the assertion of Proposition 3.2. �
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Proposition 3.2 can be seen as the nonlocal counterpart of the well known result
due to de Figueiredo and Gossez [14, Proposition 1]. Note that Proposition 3.2
improves [18, Corollary 4.2], where the authors consider just the case when s ∈
[1/4, 1).

It is an open question if Proposition 3.2 holds for a general nonlocal fractional
operator. As far as we know there are no result in the literature on the unique
continuation property for the eigenfunctions of problem (3.1)

4. Variational formulation of the problem and beyond

This section is devoted to problem (1.1). In Theorem 1.1 we state existence,
uniqueness and non-existence results for it. These results are obtained by using
variational methods, together with the monotonicity property given for the eigen-
values of −LK in Proposition 3.1.

First of all, we recall that, thanks to [27, Lemma 5.6] (see also [30, footnote 3]),
by a weak solutions of (1.1) we mean a solution of the problem∫

Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dx dy

=

∫
Ω

f(x, u(x))ϕ(x)dx+

∫
Ω

g(x)ϕ(x)dx ∀ϕ ∈ Xs
0(Ω)

u ∈ Xs
0(Ω) .

(4.1)

We observe that problem (4.1) has a variational structure, indeed it is the Euler-
Lagrange equation of the functional J : Xs

0(Ω)→ R defined as follows

J (u) =
1

2

∫
Rn×Rn

|u(x)− u(y)|2K(x− y) dx dy−
∫

Ω

F (x, u(x))dx−
∫

Ω

g(x)u(x)dx,

where

F (x, t) =

∫ t

0

f(x, τ) dτ . (4.2)

Note that the functional J is well-defined in Xs
0(Ω), because of assumptions (1.5)

on the nonlinear term f , (1.7) on g, and Lemma 2.2. Furthermore, it is well known
that the functional J is Frechét differentiable in Xs

0(Ω) and for all ϕ ∈ Xs
0(Ω),

〈J ′(u), ϕ〉 =

∫
Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y) dx dy

−
∫

Ω

f(x, u(x))ϕ(x)dx−
∫

Ω

g(x)ϕ(x)dx.

Thus, critical points of the functional J are solutions of (4.1). Hence, our goal
consists in looking for critical points of J . For this purpose we use Weierstrass
Theorem in the case in which the functions α and β given in (1.6) are less than the
first eigenvalue of problem (2.4), while we perform the Saddle Point Theorem by
Rabinowitz (see [21, 22]) when α and β lie between two consecutive eigenvalues of
−LK .

Before going on, we observe that, as a consequence of (1.5), it is easy to prove
that

|F (x, t)| 6 a1(x)|t|+ a2(x)

2
|t|2 for a.e. x ∈ Ω and for all t ∈ R . (4.3)
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Moreover, by (1.6) we obtain that

−∞ 6 α(x)

2
= lim
t→−∞

F (x, t)

t2
and lim

t→+∞

F (x, t)

t2
=
β(x)

2
6 +∞ (4.4)

for a.e. x ∈ Ω. Now we are ready to prove Theorem 1.1.

4.1. Proof of Theorem 1.1-(i). In this subsection we consider the case when

α(x), β(x) < λ1 for a.e. x ∈ Ω , (4.5)

where λ1 is defined as in (2.6). Note that in this setting β < +∞, while α may
possibly take the value −∞.

Proof of Theorem 1.1-(i). Our strategy consists in applying the Weierstrass Theo-
rem to the functional J . We proceed by steps.

Step 4.1. The functional J is weakly lower semicontinuous in Xs
0(Ω).

For this purpose we claim that the maps

u 7→
∫

Ω

F (x, u(x))dx and u 7→
∫

Ω

g(x)u(x) dx (4.6)

are continuous in the weak topology of Xs
0(Ω).

For this, let {uj}j be a sequence in Xs
0(Ω) such that uj → u∞ weakly in Xs

0(Ω)
as j → +∞. Then, by Lemma 2.2, up to a subsequence, still denoted by uj , we
have

uj → u∞ in Lν(Rn) for all ν ∈ [1, 2∗s), (4.7)

uj → u∞ a.e. in Rn (4.8)

as j → +∞ and, for all ν ∈ [1, 2∗s), there exists qν ∈ Lν(Rn) such that

|uj(x)| 6 qν(x) for a.e. in Rn (4.9)

see, for instance [5, Theorem IV.9]. Hence, by (1.7), (4.3), (4.7), (4.8), and the
Dominated Convergence Theorem we deduce (4.6).

Taking into account that the function u 7→ ‖u‖Xs
0 (Ω) is weakly lower semicontin-

uous in Xs
0(Ω), by (4.6) we obtain that J is weakly lower semicontinuous in Xs

0(Ω)
and this proves Step 4.1.

Step 4.2. The functional J is coercive in Xs
0(Ω).

Let {uj}j be a sequence in Xs
0(Ω) such that

‖uj‖Xs
0 (Ω) → +∞ (4.10)

as j → +∞. Thus, up to a subsequence, there exists v∞ ∈ Xs
0(Ω) such that

vj :=
uj

‖uj‖Xs
0 (Ω)

→ v∞ weakly in Xs
0(Ω) (4.11)

as j → +∞ and, by the weak lower semicontinuity of the norm,

‖v∞‖Xs
0 (Ω) 6 1 . (4.12)

By (4.11) and Lemma 2.2 it easily follows that

vj → v∞ weakly in Xs
0(Ω)

vj → v∞ in Lν(Rn) for all ν ∈ [1, 2∗s)

vj → v∞ a.e. in Rn
(4.13)
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as j → +∞ and, for all ν ∈ [1, 2∗s), there exists qν ∈ Lν(Ω) such that

|uj(x)|
‖uj‖Xs

0 (Ω)
6 qν(x) for a.e. x ∈ Rn (4.14)

for all j ∈ N (see, for example [5, Theorem IV.9]).
By (4.3) we obtain that

0 6
|F (x, uj(x))|
‖uj‖2Xs

0 (Ω)

6 a1(x)
|uj(x)|
‖uj‖2Xs

0 (Ω)

+
a2(x)

2

|uj(x)|2

‖uj‖2Xs
0 (Ω)

,

which implies that

lim
j→+∞

F (x, uj(x))

‖uj‖2Xs
0 (Ω)

= 0 for a.e. x ∈ Ω provided that v∞(x) = 0 , (4.15)

thanks to (4.10) and (4.13).
Now, suppose that v∞(x) 6= 0. Then, again by (4.10) and (4.13) we obtain that

|uj(x)| = |uj(x)|
‖uj‖Xs

0 (Ω)
‖uj‖Xs

0 (Ω) → +∞ (4.16)

as j → +∞. Hence, by (4.4), (4.13), and (4.16), we have

F (x, uj(x))

‖uj‖2Xs
0 (Ω)

=
F (x, uj(x))

|uj(x)|2
|uj(x)|2

‖uj‖2Xs
0 (Ω)

→ r(x)

2
|v∞(x)|2 (4.17)

as j → +∞, where

r(x) :=

{
β(x) if v∞(x) > 0

α(x) if v∞(x) < 0.
(4.18)

By (4.17) and the fact that r(x) < λ1 for a.e. x ∈ Ω (see (4.5)), we deduce that

lim
j→+∞

F (x, uj(x))

‖uj‖2Xs
0 (Ω)

<
λ1

2
|v∞(x)|2 for a.e. x ∈ Ω provided that v∞(x) 6= 0 .

(4.19)
All in all (4.15) and (4.19) give

lim
j→+∞

F (x, uj(x))

‖uj‖2Xs
0 (Ω)

6
λ1

2
|v∞(x)|2 (4.20)

for a.e. x ∈ Ω, with strict inequality if v∞(x) 6= 0.
Finally, by (2.6), (4.3), (4.10), (4.13), (4.14), (4.20), and the Dominated Conver-

gence Theorem, we obtain

L := lim
j→+∞

J (uj)

‖uj‖2Xs
0 (Ω)

= lim
j→+∞

(1

2
−
∫

Ω

F (x, uj(x))

‖uj‖2Xs
0 (Ω)

dx−
∫

Ω

g(x)uj(x)

‖uj‖2Xs
0 (Ω)

dx
)

>
1

2
− λ1

2

∫
Ω

|v∞(x)|2 dx (with strict inequality if v∞ 6≡ 0)

>
1

2
− 1

2
‖v∞‖2Xs

0 (Ω) > 0 (with strict inequality if v∞ ≡ 0) ,

(4.21)
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since (4.12) holds. Thus L > 0 and by (4.21) we obtain that

J (uj) >
L

2
‖uj‖2Xs

0 (Ω)

for j sufficiently large. This, together with (4.10), yields that the functional J is
coercive. This completes the proof of Step 4.2.

By Steps 4.1 and 4.2, it is easy to see that J has a minimum u ∈ Xs
0(Ω), thanks

to Weierstrass Theorem. Of course u is a weak solution of problem (1.1).
Now, it remains to prove that u is unique, provided (1.8) is satisfied. For this, let

u1, u2 ∈ Xs
0(Ω) be two distinct weak solutions of problem (1.1) and let v = u1−u2.

Then, v 6≡ 0 in Ω and∫
Rn×Rn

(v(x)− v(y))(ϕ(x)− ϕ(y))K(x− y)dx dy

=

∫
Ω

(
f(x, u1(x))− f(x, u2(x))

)
ϕ(x)dx

=

∫
Ω

r(x)
(
u1(x)− u2(x)

)
ϕ(x)dx

=

∫
Ω

r(x)v(x)ϕ(x)dx

(4.22)

for all ϕ ∈ Xs
0(Ω), where

r(x) :=

{
f(x,u1(x))−f(x,u2(x))

u1(x)−u2(x) if u1(x) 6= u2(x)

0 if u1(x) = u2(x).

Note that r is a measurable function non identically zero and, by (1.8),

0 6 r(x) < λ1 for a.e. x ∈ Ω . (4.23)

Hence, r ∈ L∞(Ω), being Ω bounded.
Since v 6≡ 0 in Ω, by (4.22) we deduce that v is an eigenfunction of problem (3.1)

whose corresponding eigenvalue is 1. Thus, there exists k̃ ∈ N such that v = ek̃[r]
and the corresponding eigenvalue λk̃[r] is such that λk̃[r] = 1.

Proposition 3.1, the fact that the eigenfunction of −LK corresponding to λ1

enjoys the unique continuation property (by assumption), and (4.23) yield that

1 = λk̃[r] > λk̃[λ1] =
λk̃
λ1
, (4.24)

thanks to the definition of λk̃[λ1].
By (4.24) we obtain the contradiction λ1 > λk̃ and so v ≡ 0 in Ω and the proof

of Theorem 1.1-(i) is complete. �

4.2. Proof of Theorem 1.1-(ii). In this subsection we focus on the situation
when α and β in (1.6) satisfy the condition

λk < α(x), β(x) < λk+1 for a.e. x ∈ Ω and some k ∈ N , (4.25)

where λj is the j-th eigenvalue of problem (2.4), j ∈ N.

Proof of Theorem 1.1-(ii). First of all, let us prove the existence of at least one
weak solution for problem (1.1): our aim in this setting is to perform the Saddle
Point Theorem (see [22]). For this purpose, we proceed by steps.

Step 4.3. All the Palais-Smale sequences for J are bounded in Xs
0(Ω).
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Let {uj}j be a Palais-Smale sequence for J . Assume, by contradiction, that

‖uj‖Xs
0 (Ω) → +∞ (4.26)

as j → +∞. We have

|〈J ′(uj), ϕ〉| 6 εj‖ϕ‖Xs
0 (Ω) for all ϕ ∈ Xs

0(Ω), (4.27)

where εj → 0 as j → +∞. In particular, setting vj := uj/‖uj‖Xs
0 (Ω), by (4.26) and

(4.27) we have

lim
j→+∞

∫
Rn×Rn

(
(vj(x)− vj(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy

−
∫

Ω

f(x, uj(x))

‖uj‖Xs
0 (Ω)

ϕ(x)dx−
∫

Ω

g(x)

‖uj‖Xs
0 (Ω)

ϕ(x)dx
)

= 0.

(4.28)

From the fact that {vj}j is bounded in Xs
0(Ω) and Lemma 2.2, up to a subsequence,

still denoted by vj , we can assume that there exists v∞ ∈ Xs
0(Ω) such that

vj → v∞ weakly in Xs
0(Ω)

vj → v∞ in L2(Rn)

vj → v∞ a.e. in Rn
(4.29)

as j → +∞, and there exists q ∈ L2(Ω) such that∣∣vj(x)
∣∣ 6 q(x) for a.e. x ∈ Rn (4.30)

for all j ∈ N, see, for instance [5, Theorem IV.9].
Taking into account (1.5) we have

0 6
|f(x, uj(x))|
‖uj‖Xs

0 (Ω)
6

a1(x)

‖uj‖Xs
0 (Ω)

+
a2(x)|uj(x)|
‖uj‖Xs

0 (Ω)
,

which implies that

lim
j→+∞

f(x, uj(x))

‖uj‖Xs
0 (Ω)

= 0 for a.e. x ∈ Ω provided that v∞(x) = 0 , (4.31)

thanks to (4.26) and (4.29).
Now, let us consider the case when v∞(x) 6= 0. By (1.6) there exists a function

h such that
f(x, t) = β(x)t+ + α(x)t− + h(x, t), (4.32)

with

lim
|t|→+∞

h(x, t)

t
= 0 , (4.33)

where t+ := max{t, 0} and t− := min{t, 0}. Moreover, by (4.26) we obtain that

|uj(x)| → +∞ a.e. x ∈ Ω as j → +∞ . (4.34)

Therefore, by (4.29), (4.32), (4.33) and (4.34), we deduce that

f(x, uj(x))

‖uj‖Xs
0 (Ω)

= β(x)v+
j (x) + α(x)v−j (x) +

h(x, uj(x))

‖uj‖Xs
0 (Ω)

= β(x)v+
j (x) + α(x)v−j (x) +

h(x, uj(x))

|uj(x)|
|uj(x)|
‖uj‖Xs

0 (Ω)

→ β(x)v+
∞(x) + α(x)v−∞(x)

(4.35)

a.e. x ∈ Ω, provided that v∞(x) 6= 0.
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All in all, by (4.31) and (4.35), we have

f(x, uj(x))

‖uj‖Xs
0 (Ω)

→ β(x)v+
∞(x) + α(x)v−∞(x) (4.36)

a.e. x ∈ Ω. Then, by (4.36), the Dominated Convergence Theorem and again by
(4.29) and (4.30), we obtain that

lim
j→+∞

∫
Ω

f(x, uj(x))

‖uj‖Xs
0 (Ω)

ϕ(x) dx =

∫
Ω

(
β(x)v+

∞(x) + α(x)v−∞(x)
)
ϕ(x) dx (4.37)

for all ϕ ∈ Xs
0(Ω).

Taking into account (4.26), (4.28), and (4.37), we obtain∫
Rn×Rn

(
v∞(x)− v∞(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy

=

∫
Ω

(
β(x)v+

∞(x) + α(x)v−∞(x)
)
ϕ(x)dx

for all ϕ ∈ Xs
0(Ω). This means that the function v∞ satisfies weakly (3.1) with

λ = 1 and the weight r given by

r(x) :=

{
β(x) if v∞(x) > 0

α(x) if v∞(x) < 0.
(4.38)

Note that, since (4.25) holds, it follows that

λk < r(x) < λk+1 for a.e. x ∈ Ω (4.39)

and so r ∈ L∞(Ω), since Ω is bounded.
Now we claim that

v∞ ≡ 0 in Ω . (4.40)

To prove this we argue by contradiction and we suppose that v∞ 6≡ 0. Then v∞ is
an eigenfunction of (3.1) whose corresponding eigenvalue is 1, that is there exists

k̃ ∈ N such that v∞ = ek̃[r] and the corresponding eigenvalue λk̃[r] = 1.
Since, by assumption, the eigenfunctions of −LK corresponding to λk and the

ones corresponding to λk+1 enjoy the unique continuation property, by Proposi-
tion 3.1 and (4.39), we deduce that

λk̃
λk+1

= λk̃[λk+1] < λk̃[r] = 1 < λk̃[λk] =
λk̃
λk
, (4.41)

taking into account the definition of λk̃[λj ], j ∈ N.
Hence, (4.41) yields that λk̃ ∈ (λk, λk+1). This is a contradiction, since (λk, λk+1)

does not contain any eigenvalue of −LK . Thus, (4.40) holds and our claim is proved.
By (4.28) with ϕ = vj , (4.29), (4.37), and (4.40), we deduce that

0 = lim
j→+∞

〈J ′(uj), uj〉
‖uj‖2Xs

0 (Ω)

= 1− lim
j→+∞

∫
Ω

f(x, uj(x))

‖uj‖2Xs
0 (Ω)

uj(x)dx− lim
j→+∞

∫
Ω

g(x)

‖uj‖2Xs
0 (Ω)

uj(x)dx = 1

which is absurd. Therefore, the sequence {uj}j is bounded in Xs
0(Ω) and this proves

Step 4.3.
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Step 4.4. All Palais-Smale sequences for J have a convergent subsequence in
Xs

0(Ω).

The proof is quite standard. We repeat it just to make this article selfcontained.
Let {uj}j be a Palais-Smale sequence for J in Xs

0(Ω). By Step 4.3, the sequence
{uj}j is bounded in Xs

0(Ω). Hence, since Xs
0(Ω) is a Hilbert space, up to a subse-

quence, still denoted by uj , there exists u∞ ∈ Xs
0(Ω) such that

uj → u∞ weakly in Xs
0(Ω)

uj → u∞ in Lν(Rn) for all ν ∈ [1, 2∗s)

uj → u∞ a.e. in Rn
(4.42)

as j → +∞ and, for all ν ∈ [1, 2∗s), there exists qν ∈ Lν(Ω) such that∣∣uj(x)
∣∣ 6 qν(x) a.e. x ∈ Rn (4.43)

for all j ∈ N.
By (1.5), (4.42), (4.43), and the Lebesgue Dominated Convergence Theorem, we

obtain that ∫
Ω

f(x, uj(x))uj(x)dx→
∫

Ω

f(x, u∞(x))u∞(x) dx∫
Ω

f(x, uj(x))u∞(x) dx→
∫

Ω

f(x, u∞(x))u∞(x) dx

(4.44)

as j → +∞, while, by (1.7) and (4.42) we obtain∫
Ω

g(x)uj(x) dx→
∫

Ω

g(x)u∞(x) dx (4.45)

as j → +∞.
Moreover, since {uj}j is a Palais-Smale sequence, we know that

〈J ′(uj), uj〉Xs
0 (Ω) → 0

〈J ′(uj), u∞〉Xs
0 (Ω) → 0

(4.46)

as j → +∞. Thus, by (4.44), (4.45), and (4.46), it is easy to see that

‖uj‖Xs
0 (Ω) → ‖u∞‖Xs

0 (Ω)

as j → +∞. This, together with the fact that the sequence {uj}j weakly converges
to u∞ in Xs

0(Ω), gives the desired assertion. This concludes the proof of Step 4.4.

Step 4.5. The functional J has the Saddle Point Theorem geometry.

Let k be as in (4.25) and let us split the space Xs
0(Ω) as Xs

0(Ω) = Hk ⊕ Pk+1.
First of all, we show that J is bounded from below in Pk+1. For this purpose, let
{uj}j be a sequence in Pk+1 such that

‖uj‖Xs
0 (Ω) → +∞ (4.47)

as j → +∞.
Arguing as in Step 4.2 and taking into account that (4.25) holds (instead of

(4.5)), it is easily seen that

lim
j→+∞

F (x, uj(x))

‖uj‖2Xs
0 (Ω)

6
λk+1

2
|v∞(x)|2 (4.48)

for a.e. x ∈ Ω, where v∞ ∈ Pk+1 is such that uj/‖uj‖Xs
0 (Ω) → v∞ weakly in Xs

0(Ω)
as j → +∞.
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Arguing as in Step 4.2, (4.48) yields that

L := lim
j→+∞

J (uj)

‖uj‖2Xs
0 (Ω)

> 0 . (4.49)

Hence, by (4.49), we have

J (uj) >
L

2
‖uj‖2Xs

0 (Ω) (4.50)

for j sufficiently large. By (4.47) and (4.50) we obtain that J (uj) → +∞ as
j → +∞, which yields

lim
u∈Pk+1, ‖u‖Xs

0(Ω)→+∞
J (u) = +∞ . (4.51)

By (4.51) we deduce that there exists M such that

J (u) > 1 for all u ∈ Pk+1 with ‖u‖Xs
0 (Ω) >M . (4.52)

Now, let u ∈ Pk+1 be such that ‖u‖Xs
0 (Ω) < M . By (2.6) and (4.3) we have

J (u) =
1

2
‖u‖2Xs

0 (Ω) −
∫

Ω

F (x, u(x)) dx−
∫

Ω

g(x)u(x) dx

> −‖a1‖L2(Ω)‖u‖L2(Ω) −
1

2
‖a2‖L∞(Ω)‖u‖2L2(Ω) − ‖g‖L2(Ω)‖u‖L2(Ω)

> −
‖a1‖L2(Ω)√

λ1

M − 1

2

‖a2‖L∞(Ω)

λ1
M2 −

‖g‖L2(Ω)√
λ1

M =: −K .

(4.53)

By (4.52) and (4.53) we obtain that J (u) > −K for all u ∈ Pk+1, that is J is
bounded from below in Pk+1.

Now, we have to show that there exists R > 0 such that

sup
u∈Hk, ‖u‖Xs

0(Ω)=R

J (u) < −K. (4.54)

where K is given in (4.53).
For this purpose, let {uj}j be a sequence in Hk such that

‖uj‖Xs
0 (Ω) → +∞ (4.55)

as j → +∞. With the same arguments used for proving (4.48) and taking into
account that (2.10) and (4.25) hold, we have

lim
j→+∞

F (x, uj(x))

‖uj‖2Xs
0 (Ω)

>
λk
2
|v∞(x)|2 (4.56)

for a.e. x ∈ Ω, with strict inequality when v∞(x) 6= 0. Here v∞ ∈ Hk is such that
uj/‖uj‖Xs

0 (Ω) → v∞ weakly in Xs
0(Ω) as j → +∞. Since Hk is a finite dimensional

space, ‖v∞‖Xs
0 (Ω) = 1 and so

v∞ 6≡ 0 . (4.57)
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Now, by (2.10), (4.55), (4.56), and (4.57), we have

L := lim
j→+∞

J (uj)

‖uj‖2Xs
0 (Ω)

= lim
j→+∞

(1

2
−
∫

Ω

F (x, uj(x))

‖uj‖2Xs
0 (Ω)

dx−
∫

Ω

g(x)uj(x)

‖uj‖2Xs
0 (Ω)

dx
)

<
1

2
− λk

2

∫
Ω

|v∞(x)|2 dx

6
1

2
− 1

2
‖v∞‖2Xs

0 (Ω) = 0 ,

(4.58)

since ‖v∞‖Xs
0 (Ω) = 1.

By (4.58) we have

J (uj) <
L

2
‖uj‖2Xs

0 (Ω) (4.59)

for j sufficiently large. By (4.55), (4.58), and (4.59), we obtain that J (uj)→ −∞
as j → +∞. Hence,

lim
u∈Hk, ‖u‖Xs

0(Ω)→+∞
J (u) = −∞ .

Thus, there exists R > 0 such that (4.54) is verified. This concludes the proof of
Step 4.5.

Thanks to Steps 4.3, 4.4, and 4.5, the functional J satisfies the assumptions of
the Saddle Point Theorem. Hence, J admits a critical point and this proves the
existence of a weak solution for problem (1.1).

Now, it remains to prove that this solution is unique, provided (1.9) is satisfied.
For this, let u1, u2 ∈ Xs

0(Ω) be two distinct weak solutions of (4.1). A simple
calculation shows that

〈u1 − u2, ϕ〉Xs
0 (Ω) =

∫
Ω

(
f(x, u1(x))− f(x, u2(x))

)
ϕ(x)dx

=

∫
Ω

r(x)
(
u1(x)− u2(x)

)
ϕ(x)dx

for all ϕ ∈ Xs
0(Ω), where

r(x) :=

{
f(x,u1(x))−f(x,u2(x))

u1(x)−u2(x) if u1(x) 6= u2(x)

1
2

(
λk + λk+1

)
if u1(x) = u2(x).

Note that r is a measurable function and λk < r(x) < λk+1 for a.e. x ∈ Ω by (4.25).
Arguing as in Step 4.3 (see the proof of (4.40)), we can show that u1−u2 ≡ 0 in

Xs
0(Ω). This is a contradiction and this completes the proof of Theorem 1.1-(ii). �

4.3. Non-existence of solutions.

Proof of Theorem 1.1-(iii). We argue by contradiction and we suppose that prob-
lem (1.1) admits one weak solution u ∈ Xs

0(Ω).
Taking ϕ = e1 as a test function in (4.1), where e1 is the eigenfunction associated

to the first eigenvalue λ1 of −LK , we obtain that∫
Ω

(
f(x, u(x)) + g(x)− λ1u(x)

)
e1(x) dx = 0 . (4.60)
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Taking into account that e1 6≡ 0 and e1 > 0 in Ω, (4.60) is in contradiction to both
(1.10) and (1.11). This completes the proof of Theorem 1.1. �

We end this section with the following comment.

Remark 4.6. Note that in the setting (i) of Theorem 1.1, we need the unique
continuation property of the eigenfunctions of −LK corresponding to λ1 just for
proving the uniqueness of solution of (1.1). While, in the framework (ii) of Theo-
rem 1.1 the same assumption on the eigenfunctions of λk and the ones of λk+1 is
necessary both for the proof of the existence and of the uniqueness of weak solution
of problem (1.1).

5. Fractional Laplacian problem with asymmetric nonlinearity

In this section we consider problem (1.12) and we prove Theorem 1.2. First of all
we observe that Theorem 1.2 can not be derived completely by Theorem 1.1. This
is so because in the proof of Theorem 1.2 we can not use Proposition 3.2 due to
the regularity assumption on the weight r: note that, while in Proposition 3.1 the
weight r is a L∞-function, in Proposition 3.2 we require that r ∈ C1(Ω) ∩ L∞(Ω).

Proof of Theorem 1.2. For assertion (i) we can use the same arguments of the proof
of Theorem 1.1-(i), to prove the existence of at least a weak solution of prob-
lem (1.12). We have to make some changes when proving the uniqueness of the
solution.

For this purpose, assume by contradiction that problem (1.12) admits two dis-
tinct weak solutions u1, u2 ∈ Xs

0(Ω) and let v = u1 − u2. Of course v 6≡ 0 and∫
Rn×Rn

(v(x)− v(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dx dy

=

∫
Ω

(
f(x, u1(x))− f(x, u2(x))

)
ϕ(x)dx

=

∫
Ω

r(x)
(
u1(x)− u2(x)

)
ϕ(x)dx

=

∫
Ω

r(x)v(x)ϕ(x)dx

(5.1)

for all ϕ ∈ Xs
0(Ω), where

r(x) :=

{
f(x,u1(x))−f(x,u2(x))

u1(x)−u2(x) if u1(x) 6= u2(x)

0 if u1(x) = u2(x).

Note that r is a measurable function not identically zero and, by (1.14),

0 6 r(x) < λ1,s for a.e. x ∈ Ω . (5.2)

Testing (5.1) with ϕ = v and taking into account (5.2), we obtain that

‖v‖2Xs
0 (Ω) =

∫
Ω

r(x)|v(x)|2 dx < λ1,s‖v‖2L2(Ω) 6 ‖v‖
2
Xs

0 (Ω) ,

thanks to the variational characterization of λ1,s. This is a contradiction and this
completes the proof of Theorem 1.2-(i).
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Now, let us show Theorem 1.2-(ii). Also in this setting we can argue as in the
proof of Theorem 1.1-(ii). We have to change something in the proof of Step 4.3
when proving that (4.40) holds. We have v∞ satisfies∫

Rn×Rn

(v∞(x)− v∞(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dx dy =

∫
Ω

r(x)v∞(x)ϕ(x)dx (5.3)

for all ϕ ∈ Xs
0(Ω), where the weight r is the measurable function given in (4.38),

which, by assumption, satisfies the condition

λk,s < r(x) < λk+1,s for a.e. x ∈ Ω . (5.4)

Since the space Xs
0(Ω) can be split as Xs

0(Ω) = Hk,s ⊕ Pk+1,s, it follows that
v∞ can be written as v∞ = v̄∞ + ṽ∞, where v̄∞ ∈ Hk,s and ṽ∞ ∈ Pk+1,s. Taking
ϕ = v̄∞ and then ϕ = ṽ∞ as test functions in (5.3) and taking into account the
definitions of Hk,s and Pk+1,s, the orthogonality between v̄∞ and ṽ∞ in Xs

0(Ω) and
(5.4), we have

‖v̄∞‖2Xs
0 (Ω) =

∫
Ω

r(x)|v̄∞(x)|2 dx+

∫
Ω

r(x)v̄∞(x)ṽ∞(x) dx

> λk,s‖v̄∞‖2L2(Ω) +

∫
Ω

r(x)v̄∞(x)ṽ∞(x) dx

(5.5)

and

‖ṽ∞‖2Xs
0 (Ω) =

∫
Ω

r(x)|ṽ∞(x)|2 dx+

∫
Ω

r(x)ṽ∞(x)v̄∞(x) dx

6 λk+1,s‖ṽ∞‖2L2(Ω) +

∫
Ω

r(x)ṽ∞(x)v̄∞(x) dx .

(5.6)

If v∞ 6≡ 0, then at least one of the functions v̄∞ and ṽ∞ is not identically zero.
Thus, at least one of the inequalities (5.5) and (5.6) has to be strict, also thanks
to (5.4). Hence, using the variational characterization of the eigenvalues given in
(2.9) and (2.10) (with K(x) = |x|−(n+2s)), by (5.5) and (5.6) we have

‖v̄∞‖2Xs
0 (Ω) − ‖ṽ∞‖

2
Xs

0 (Ω) > λk,s‖v̄∞‖2L2(Ω) − λk+1,s‖ṽ∞‖2L2(Ω)

> ‖v̄∞‖2Xs
0 (Ω) − ‖ṽ∞‖

2
Xs

0 (Ω) ,

which is a contradiction. This means that v∞ ≡ 0. From here on we can follow the
proof of Step 4.3.

The remaining part of the proof needs no changes with respect to the proof of
Theorem 1.1 and this shows Theorem 1.2. �
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