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WELL-POSEDNESS OF STOCHASTIC TIME FRACTIONAL

2D-STOKES MODELS WITH FINITE AND INFINITE DELAY

JIAOHUI XU, TOMÁS CARABALLO

Abstract. We analyze the well-posedness of two versions of a stochastic time

delay fractional 2D-Stokes model with nonlinear multiplicative noise. The

main tool to prove the existence and uniqueness of mild solutions is a fixed
point argument. The results for the first model can only be proved for α ∈
(1/2, 1), and the global existence in time is shown only when the noise is

additive. As for the second model, all results are true for α ∈ (0, 1), and the
global solutions in time is shown for general nonlinear multiplicative noise. The

analyzes for the finite and infinite delay cases, follow the same lines, but they
require different phase spaces and estimates. This article can be considered

as a first approximation to the challenging model of stochastic time fractional

Navier-Stokes (with or without delay) which so far remains as an open problem.

1. Introduction

Xu et al. [16] studied the well-posedness of the stochastic time delay fractional
2D-Stokes equations of order α ∈ (0, 1) with nonlinear multiplicative noise,

∂αt u− κ∆u+∇p = f(t, ut) + g(t, ut)
dW (t)

dt
in R2, t > 0,

∇ · u = 0 in R2, t > 0,

u(t, x) = ϕ(t, x) in R2, t ∈ [−h, 0] .

(1.1)

Here f and g are external forcing terms containing some hereditary or delay charac-
teristics, ϕ is the initial datum on the time interval [−h, 0] and h is a fixed positive
number (in the case of bounded delay) or h = ∞ (for unbounded delay), W (t) is
a standard Brownian motion/Wiener process on an underlying complete filtered
probability space (Ω,F , {Ft}t≥0,P).

This model can be considered as a first linear approximation of the most chal-
lenging problem of the stochastic time fractional 2D-Navier-Stokes equations,

∂αt u− κ∆u+ u · ∇u+∇p = f(t, ut) + g(t, ut)
dW (t)

dt
in R2, t > 0,

∇ · u = 0 in R2, t > 0,

u(t, x) = ϕ(t, x) in R2, t ∈ [−h, 0],

(1.2)
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which is our future final goal because of the importance of Navier-Stokes problems
in the research of turbulent fluids. The deterministic model (i.e. f = g = 0) has
been analyzed by Carvalho-Neto and Planas [4], and the existence (and eventual
uniqueness) of mild solutions were proved by them. However, because of the reasons
mentioned in [16], new techniques are necessary to handle the stochastic problem
(1.2) in an appropriate way, mainly because of the difficulties generated by the
nonlinear term u · ∇u. In [16], a detailed introduction and background with many
references related to problem (1.2) were described, thus we recommend the reader
to read it first for a better understanding of the analysis in this article.

Let us now recall that in [16], the authors proved the existence and uniqueness of
mild solutions to problem (1.1), for α ∈ (0, 1), based on [16, Definition 2]. However,
this definition given in [16] does not match the standard one of mild solution for an
evolution equation with time fractional derivative like (1.1). Despite of the fact that
all results in [16] were correctly proved according to such definition, it is desirable
and necessary to state a more accurate definition that matches the usual ones for
time fractional derivative which requires α ∈ (1/2, 1). Hence, our first objective in
this paper is to re-establish the results in [16] according to the new definition that
we will state in this paper (see Definition 3.2 in Section 3). In addition, we will
analyze another problem which contains more time regularity in the coefficients,
ensuring better results for the asymptotic behavior of the system. In particular,
the well-posedness can be proved for α ∈ (0, 1). More precisely, we will consider
the problem

∂αt u− κ∆u+∇p = J1−α
t [f(t, ut)] + J1−α

t [g(t, ut)
dW (t)

dt
] in R2, t > 0,

∇ · u = 0 in R2, t > 0,

u(t, x) = ϕ(t, x) in R2, t ∈ [−h, 0],

(1.3)

where J1−α
t is the Riemann-Liouville fractional integral of order 1 − α defined in

Section 2. The main reasons supporting this kind of models with more regular
coefficient can be found in the previous literature (see, e.g. Li and Wang [7] and
the references therein), but to mention some of them we can say that, in addition
that the well-posedness is proved for α ∈ (0, 1), the expression for the mild solution
(see Definition 4.1 in Section 4) only involves one of the Mittag-Leffler operators
and does not contain singular kernel, which allows us to obtain better estimates
in the computations, also to prove global in time existence of solutions for general
multiplicative noise (not only for additive one as in the first case). Furthermore, one
can have a much better asymptotic behavior of solutions because of the compactness
properties of the Mittag-Leffler operator involved in the formulation.

Although there are several possibilities to handle the problems with time frac-
tional derivative, we have chosen the Caputo fractional time derivative, whose ad-
vantage, amongst others, is that the derivative of a constant function is zero. Thus,
time-independent solutions are also solutions of the time-dependent problem [1].
Also, compared with Riemann-Liouville derivative [12], Caputo derivative removes
singularities at the origin and shares many similarities with the classical derivative,
so that they are suitable for initial value problems.

We have structured our paper as follows. Section 2 is devoted to briefly recall
some relevant preliminaries for our analysis. In Section 3, we first investigate the
well-posedness of (1.1) by considering the case of bounded/finite delay and proving



EJDE-2022/86 STOCHASTIC TIME FRACTIONAL 2D-STOKES MODELS 3

the existence, uniqueness and continuous dependence of mild solutions with respect
to initial data. We can only prove that the mild solution is globally defined in time
when the noise is additive. The results are shown under two sets of assumptions.
Next we consider the case of unbounded/infinite delay and prove similar results but
with substantial differences concerning the phase space and estimates. In contrast,
these results are only valid for α ∈ (1/2, 1). In Section 4, a parallel analysis is
carried out but for (1.3). In this case, since the external forcing terms possess
more regularity, we can perform the complete analysis of well-posedness and global
existence in time for general nonlinear multiplicative noise term, as well as for any
α ∈ (0, 1). Eventually, some conclusions and comments about future directions are
included in Section 5.

2. Preliminaries

Let us recall some basic background, notation and properties of Mittag-Leffler
functions; see [2, 3, 4, 11, 12, 13, 14] and the references therein for more information.

2.1. Stochastic theory and notation. First we fix a stochastic basis,

S := (Ω,F , {Ft}t≥0,P,W ),

where P is a probability measure on Ω, F is a σ-algebra, {Ft}t≥0 is a right-
continuous filtration on (Ω,F) such that F0 contains all the P-negligible sub-
sets and W (t) = W (ω, t), ω ∈ Ω is a standard Brownian motion defined on
(Ω,F , {Ft}t≥0,P).

To set problems (1.1) and (1.3) in an abstract framework, we consider the stan-
dard notation L2

σ to describe the subspace of the divergence-free vector fields in
L2:

L2
σ = {u ∈ L2 : ∇ · u = 0 in R2},

with norm ‖ ·‖, where L2 denotes the vector-valued Lebesgue space and for u ∈ L2,

‖u‖2 =

2∑
j=1

∫
R2

|uj(x)|2dx.

In a similar way, we define Lrσ for r > 1. Besides, let S ⊂ R and X be a Banach
space. We denote the space of continuous functions from S to X by C(S;X)
(equipped with its usual supremum norm). L2(S;X) denotes the Banach space
of L2 integrable functions u : S → X. H1(S;X) = W 1,2(S;X) is the subspace
of L2(S;X) consisting of functions such that the weak derivative ∂u

∂t belongs to

L2(S;X). Both spaces L2(S;X) and W 1,2(S;X) are endowed with their standard
norms. Moreover, we denote a ∧ b = min{a, b}.

Consider a fixed T > 0, given u : [−h, T ]→ L2
σ, for each t ∈ [0, T ], we denote by

ut the function defined on [−h, 0] as

ut(s) = u(t+ s), s ∈ [−h, 0],

where h > 0 denotes the delay. When h =∞, it denotes an infinite or unbounded
delay. Furthermore, let L2(Ω;X) be the Banach space ofX-valued random variables
with norm ‖u(·)‖2L2(Ω;X) = E‖u(·)‖2X , where the expectation E is defined by Eu =∫

Ω
u(·)dP.
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2.2. Fractional setting and Mittag-Leffler operators. Let us now introduce
some basic and useful results concerning the fractional calculus theory. For α > 0,
define the function gα : R→ R by

gα(t) :=

{
1

Γ(α) t
α−1, t > 0,

0, t ≤ 0,

where Γ(α) denotes the Euler Gamma function. Assume that T > 0, for a function
u ∈ L1([0, T ];X), the Riemann-Liouville fractional integral of order α of u is given
by

Jαt u(t) := gα ∗ u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds, t ∈ [0, T ].

Thus, based on the definition of Riemann-Liouville fractional integral operator, we
present the Caputo fractional differential operator (see [4, 6, 12] and the references
therein for more details).

Definition 2.1 ([4, Def. 1]). Let α ∈ (0, 1) and T > 0. Consider u ∈ C([0, T ];X)
such that the convolution g1−α ∗ u ∈W 1,1([0, T ];X). The expression

Dα
t u(t) :=

d

dt

{
J1−α
t [u(t)− u(0)]

}
=

d

dt

{ 1

Γ(1− α)

∫ t

0

(t− s)−α[u(s)− u(0)]ds
}

is called the Caputo fractional derivative of order α of the function u.

We recall now some properties of the Mainardi function [3] denoted by Mα. This
function is a particular case of the Wright type function introduced by Mainardi in
[11]. More precisely, for α ∈ (0, 1), the entire function Mα : C→ C is

Mα(z) :=

∞∑
n=0

(−z)n

n!Γ(1− α(1 + n))
.

Some basic properties of the Mainardi function are necessary in this paper to deal
with most estimates in the proofs.

Proposition 2.2 ([4, Pro. 2]). For α ∈ (0, 1) and −1 < r < ∞, when we restrict
Mα to the positive real line, it holds that

Mα(t) ≥ 0 for all t ≥ 0, and

∫ ∞
0

trMα(t)dt =
Γ(r + 1)

Γ(αr + 1)
.

The next results are classical computations in the literature dealing with Mittag-
Leffler operators, as can be seen, for instance, in [4]. Indeed, let X be a Banach
space and −A : D(A) ⊂ X → X be the infinitesimal generator of an analytic
semigroup {T (t) : t ≥ 0}. Then, for each α ∈ (0, 1), we define the Mittag-Leffler
families {Eα(−tαA) : t ≥ 0} and {Eα,α(−tαA) : t ≥ 0} by

Eα(−tαA) =

∫ ∞
0

Mα(s)T (stα)ds,

Eα,α(−tαA) =

∫ ∞
0

αsMα(s)T (stα)ds.

Note that the Mainardi function acts as a bridge between the fractional and the
classical abstract theories. This relation is based on the inversion of certain Laplace
transforms in order to obtain the fundamental solutions of the fractional diffusion-
wave equations (see, e.g., [3, 4, 8] and the references therein). The following lemma
contains the main assertions on Mittag-Leffler operators.
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Lemma 2.3 ([4, Theorem 3]). Operators Eα(−tαA) and Eα,α(−tαA) are well
defined from X to X. Moreover, for x ∈ X, it holds:

(i) Eα(−tαA)x|t=0 = x;

(ii) The functions t ∈ [0,+∞) 7→ Eα(−tαA)x and t ∈ [0,+∞) 7→ Eα,α(−tαA)x
are analytic from [0,+∞) to X.

3. Analysis of problem (1.1)

We can rewrite the time fractional stochastic 2D-Stokes delay differential equa-
tions (1.1) in the abstract form

Dα
t u = −Au+ F (t, ut) +G(t, ut)

dW (t)

dt
, t > 0,

u(t) = ϕ(t), t ∈ (−h, 0],
(3.1)

where A = −P∆ = −∆P , F (t, ut) = Pf(t, ut), and G(t, ut) = Pg(t, ut). Here,
P : L2 → L2

σ is the Helmholtz-Leray projector and A : D(A) ⊂ L2
σ → L2

σ is the
Stokes operator.

Before stating the correct definition of mild solutions to problem (3.1), let us
recall the properties of both families of Mittag-Leffler operators, which furnish the
essential tools used throughout the whole article, see [4, 5] for more details.

Lemma 3.1. Consider α ∈ (0, 1), and r1, r2 real numbers satisfying

1 < r1 ≤ r2 <∞ and r2N/(2r2 +N) < r1.

Then, for any v ∈ Lr1σ , there exists a constant C1 = C1(r1, r2, N, α) > 0 such that

(i) ‖Eα(−tαAr1)v‖Lr2 ≤ C1t
−α(N/r1−N/r2)/2‖v‖Lr1 , t > 0,

(ii) ‖Eα,α(−tαAr1)v‖Lr2 ≤ C1t
−α(N/r1−N/r2)/2‖v‖Lr1 , t > 0,

where Ar denotes the Stokes operator from D(Ar) ⊂ Lrσ → Lrσ.

Definition 3.2. Let S = (Ω,F , {F}t≥0,P) be a fixed stochastic basis generated
by a standard Brownian motion W and T > 0. Consider α ∈ (1/2, 1). Let ϕ be an
initial function such that ϕ(t) is F0-measurable for t ∈ (−h, 0]. A mild solution to
problem (3.1) on (−h, T ] is a stochastic process such that u(t) = ϕ(t) for t ∈ (−h, 0],
and fulfills, for t ∈ [0, T ],

u(t) = Eα(−tαA)ϕ(0) +

∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)F (s, us)ds

+

∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)G(s, us)dW (s), P-a.s.

(3.2)

Remark 3.3. The Stokes operator −A is the infinitesimal generator of an ana-
lytic semigroup {e−tA : t ≥ 0}. Hence, the Mittag-Leffler families Eα(−tαA) and
Eα,α(−tαA) are well defined.

It is worth mentioning that the analysis in this paper can be easily extended
to the case in which system (3.1) is driven by a Hilbert valued Brownian mo-
tion/Wiener process in infinite dimensions. However we prefer to consider this
simpler formulation for the sake of clarity to the reader.
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The definition of mild solutions established in [16] omitted the kernel (t− s)α−1

in both integrals in (3.2). Consequently, the concept of mild solution used in [16]
does not provide the usual one of mild solution in the deterministic case, i.e., G ≡ 0.

3.1. Well-posedness of problem (3.1) with bounded delay. In this subsec-
tion, we justify the well-posedness of the fractional stochastic 2D-Stokes equations
with bounded delay

Dα
t u = −Au+ F (t, ut) +G(t, ut)

dW (t)

dt
, t > 0,

u(t) = ϕ(t), t ∈ [−h, 0],
(3.3)

where h is a positive fixed constant (finite delay).
First, we need to introduce suitable Banach spaces, which aim to capture the

essence of the problem. For any fixed T > 0, consider the Banach space X T2 which
is the set of continuous functions u : [−h, T ]→ L2(Ω;L2

σ) equipped with its natural
norm

‖u‖XT2 =
(

sup
t∈[−h,T ]

E‖u(t)‖2
)1/2

.

When no confusion is possible we will omit T in X T2 .
Next, we state the hypotheses imposed on both external forcing terms in our

problem. Let F , G : [0,+∞)× C([−h, 0];L2(Ω;L2
σ))→ L2(Ω;L2

σ).

(A1) For each ξ ∈ C([−h, 0];L2(Ω;L2
σ)), the mappings t ∈ [0,+∞) → F (t, ξ)

and t ∈ [0,+∞)→ G(t, ξ) are measurable.
(A2) F (·, 0) = G(·, 0) = 0 (for simplicity).
(A3) There exist positive constants LF and LG, such that, for all t ∈ [0,∞) and

ξ, η ∈ C([−h, 0]; L2(Ω;L2
σ)),

‖F (t, ξ)− F (t, η)‖2L2(Ω;L2
σ) ≤ LF ‖ξ − η‖

2
C([−h,0];L2(Ω;L2

σ)),

‖G(t, ξ)−G(t, η)‖2L2(Ω;L2
σ) ≤ LG‖ξ − η‖

2
C([−h,0];L2(Ω;L2

σ)).

(A4) There exists a constant Lf > 0, such that the function F : [0,∞) ×
C([−h, 0];L2(Ω;L2

σ))→ L2(Ω;L2
σ) satisfies∫ t

0

E‖F (s, us)− F (s, vs)‖2ds ≤ Lf
∫ t

−h
E‖u(s)− v(s)‖2ds,

for all u, v ∈ C([−h, T ];L2(Ω;L2
σ)).

(A5) There exists a constant Lg > 0, such that the function G : [0,∞) ×
C([−h, 0];L2(Ω;L2

σ))→ L2(Ω;L2
σ) satisfies∫ t

0

E‖G(s, us)−G(s, vs)‖2ds ≤ Lg
∫ t

−h
E‖u(s)− v(s)‖2ds,

for all u, v ∈ C([−h, T ];L2(Ω;L2
σ)).

We can now establish a first result on local existence and uniqueness of mild solu-
tions to problem (3.3) by a fixed point argument.

Theorem 3.4. Let α ∈ (1/2, 1), (A1)–(A3) hold, and ϕ ∈ C([−h, 0];L2(Ω;L2
σ))

such that ϕ(t) is F0-measurable for all t ∈ [−h, 0]. Then, there exists T > 0
(small enough) such that problem (3.3) admits a unique mild solution in the sense
of Definition 3.2 on [−h, T ].
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Proof. Let ϕ ∈ C([−h, 0];L2(Ω;L2
σ)) be the initial function, and choose R > 0 such

that

(3C2
1 + 1)‖ϕ‖2C([−h,0];L2(Ω;L2

σ)) ≤
R2

2
,

where C1 is the constant in Lemma 3.1 for r1 = r2 = 2.
For some T > 0 which will be fixed later on, we define the space CϕR for the

previous R:

CϕR =
{
u ∈ C([−h, T ];L2(Ω;L2

σ)) : u(t) = ϕ(t) for all t ∈ [−h, 0], ‖u‖X2
≤ R

}
.

Let us moreover define the operator N on CϕR with α ∈ (1/2, 1) as follows,

(Nu)(t) =


ϕ(t), t ∈ [−h, 0],

Eα(−tαA)ϕ(0) +
∫ t

0
(t− s)α−1Eα,α(−(t− s)αA)F (s, us)ds

+
∫ t

0
(t− s)α−1Eα,α(−(t− s)αA)G(s, us)dW (s), t ∈ (0, T ], P-a.s.

Assertion 1: Nu ∈ C([−h, T ];L2(Ω;L2
σ)), for every u ∈ C([−h, T ];L2(Ω;L2

σ)).
Observe that, if t ∈ [−h, 0], then (Nu)(t) = ϕ(t) and ϕ ∈ C([−h, 0];L2(Ω;L2

σ)). It
only remains to prove the continuity of Nu on [0, T ]. But this follows immediately
from the proof of [4, Lemma 11], with the help of the analytical property of the
Mittag-Leffler operators in time (see Lemma 2.3(ii)). We omit the details here.

Assertion 2: There exists T > 0 (sufficiently small) such that ‖Nu‖X2
≤ R, for

all u ∈ CϕR. Indeed, for any u ∈ CϕR, it holds

‖Nu‖X2
=
(

sup
t∈[−h,T ]

E‖(Nu)(t)‖2
)1/2

. (3.4)

On the one hand, for t ∈ [−h, 0], we have

E‖(Nu)(t)‖2 = E‖ϕ(t)‖2 ≤ sup
t∈[−h,0]

E‖ϕ(t)‖2 = ‖ϕ‖2C([−h,0];L2(Ω;L2
σ)). (3.5)

On the other hand, for t ∈ (0, T ], we have

E‖(Nu)(t)‖2 ≤ 3E‖Eα(−tαA)ϕ(0)‖2

+ 3E
∥∥ ∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)F (s, us)ds
∥∥2

+ 3E
∥∥ ∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)G(s, us)dW (s)
∥∥2

:= I1 + I2 + I3.

(3.6)

Now we estimate each term on the right-hand side of (3.6). For I1, by Lemma
3.1(i), it is obvious that

I1 = 3E‖Eα(−tαA)ϕ(0)‖2 ≤ 3C2
1E‖ϕ(0)‖2 ≤ 3C2

1 sup
t∈[−h,0]

E‖ϕ(t)‖2. (3.7)
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For I2, by Lemma 3.1(i), (A1)–(A3), the Cauchy-Schwarz inequality and Fubini’s
theorem, we obtain

I2 = 3E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)F (s, us)ds
∥∥2

≤ 3E
(∫ t

0

(t− s)α−1‖Eα,α(−(t− s)αA)F (s, us)‖ds
)2

≤ 3C2
1 t

2α−1

2α− 1

∫ t

0

E‖F (s, us)‖2ds

≤ 3C2
1LF t

2α−1

2α− 1

∫ t

0

‖us‖2C([−h,0];L2(Ω;L2
σ))ds

≤ 3C2
1LF t

2α−1

2α− 1

∫ t

0

sup
θ∈[−h,0]

E‖u(s+ θ)‖2ds

≤ 3C2
1LF t

2α−1

2α− 1

∫ t

0

sup
θ∈[−h,T ]

E‖u(θ)‖2ds

≤ 3C2
1LF t

2α

2α− 1
R2.

(3.8)

For I3, by Lemma 3.1(i), Itô’s isometry and (A1)–(A3), we have

I3 = 3E
∥∥ ∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)G(s, us)dW (s)
∥∥2

≤ 3E
∫ t

0

(t− s)2α−2‖Eα,α(−(t− s)αA)G(s, us)‖2ds

≤ 3C2
1LG

∫ t

0

(t− s)2α−2‖us‖2C([−h,0];L2(Ω;L2
σ))ds

≤ 3C2
1LGt

2α−1

2α− 1
R2.

(3.9)

Replacing (3.7)–(3.9) into (3.6), combining with (3.5), we obtain

E‖(Nu)(t)‖2 ≤ 3C2
1‖ϕ‖2C([−h,0];L2(Ω;L2

σ)) +
3C2

1LF t
2αR2

2α− 1
+

3C2
1LGt

2α−1R2

2α− 1
.

Consequently, thanks to the choice of R, we can choose T small enough such that

‖Nu‖X2
=
(

sup
t∈[−h,T ]

E‖(Nu)(t)‖2
)1/2

≤
(

(3C2
1 + 1)‖ϕ‖2C([−h,0];L2(Ω;L2

σ)) +
3C2

1LFT
2αR2

2α− 1

+
3C2

1LGT
2α−1R2

2α− 1

)1/2

≤ R.

(3.10)

Assertion 3: Operator N : CϕR → C
ϕ
R is a contraction. To this end, for any u,

v ∈ CϕR, it follows that

‖Nu−N v‖X2
:=
(

sup
t∈[−h,T ]

E‖(Nu)(t)− (N v)(t)‖2
)1/2

. (3.11)
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Noticing that, for t ∈ [−h, 0], one has (Nu)(t) = (N v)(t) = ϕ(t), it is sufficient to
consider t ∈ (0, T ]. Observe that

E‖(Nu)(t)− (N v)(t)‖2

≤ 2E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)(F (s, us)− F (s, vs))ds
∥∥2

+ 2E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)(G(s, us)−G(s, vs))dW (s)
∥∥2

:= J1 + J2.

(3.12)

For J1, by Lemma 3.1(i), (A3), the Cauchy-Schwarz inequality and Fubini’s theo-
rem, we obtain

J1 = 2E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)(F (s, us)− F (s, vs))ds
∥∥2

≤ 2E
(∫ t

0

(t− s)α−1‖Eα,α(−(t− s)αA)(F (s, us)− F (s, vs))‖ds
)2

≤ 2C2
1LF t

2α−1

2α− 1

∫ t

0

‖us − vs‖2C([−h,0];L2(Ω;L2
σ))ds

≤ 2C2
1LF t

2α

2α− 1
sup
s∈[0,t]

E‖u(s)− v(s)‖2.

(3.13)

As for J2, by Lemma 3.1(i), (A3) and Itô’s isometry, we deduce

J2 = 2E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)(G(s, us)−G(s, vs))dW (s)
∥∥2

≤ 2C2
1LG

∫ t

0

(t− s)2α−2‖us − vs‖2C([−h,0];L2(Ω;L2
σ))ds

≤ 2C2
1LGt

2α−1

2α− 1
sup
s∈[0,t]

E‖u(s)− v(s)‖2.

(3.14)

Hence, substituting (3.13)-(3.14) into (3.12), it follows that

‖Nu−N v‖X2
≤
((2C2

1LFT
2α

2α− 1
+

2C2
1LGT

2α−1

2α− 1

)
sup
t∈[0,T ]

E‖u(t)− v(t)‖2
)1/2

,

:= M‖u− v‖X2
,

where

M2 =
2C2

1LFT
2α

2α− 1
+

2C2
1LGT

2α−1

2α− 1
.

Therefore, we can choose T small enough such that 0 < M < 1. In other words,
operator N maps CϕR into itself and it is a contraction. The Banach fixed-point
Theorem ensures that operator N possesses a fixed point in CϕR. Namely, problem
(3.3) has a unique local mild solution on [−h, T ]. �

With similar arguments as in the proof of the previous theorem, we can prove the
local existence and uniqueness of mild solutions to problem (3.3) under assumptions
(A4) and (A5) instead of (A3). We establish the result in the next theorem but we
omit the proof.
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Theorem 3.5. Let α ∈ (1/2, 1). Assume that (A1), (A2), (A4), (A5) hold, and
ϕ ∈ C([−h, 0];L2(Ω;L2

σ)) such that ϕ(t) is F0-measurable for all t ∈ [−h, 0]. Then,
there exists T > 0 (small enough) such that problem (3.3) admits a unique mild
solution in the sense of Definition 3.2 on [−h, T ].

As far as we are aware, none of the known techniques can be used to ensure
existence (and uniqueness) of a global mild solutions to problem (3.3) when it is
driven by a general nonlinear term G(t, ut). However, in the case of additive noise
(i.e. G ≡ φ ∈ L2

σ), we can prove the existence and uniqueness of global solutions.

Theorem 3.6. Under the assumptions of Theorem 3.4 (or Theorem 3.5), suppose
that G(t, ξ) = φ ∈ L2

σ for all ξ ∈ C([−h, 0];L2(Ω;L2
σ)) and t ∈ [0, T ]. Then, for

every initial value ϕ ∈ C([−h, 0];L2(Ω;L2
σ)) such that ϕ(t) is F0-measurable for

all t ∈ [−h, 0], the initial value problem (3.3) has a unique mild solution defined
globally in the sense of Definition 3.2.

Proof. We prove the result under assumptions of Theorem 3.4 since the proof under
conditions of Theorem 3.5 is similar.

Initially, assume that there are two solutions to problem (3.3), u and v on [0, T1]
and [0, T2] respectively. Next, let us prove that u = v on [−h, T1 ∧ T2]. It is clear
that u(t) = v(t) = ϕ(t) on [−h, 0], hence, we only need to prove that u(t) = v(t)
for any t ∈ (0, T1 ∧ T2]. Notice that

‖u− v‖2X2
:= sup

t∈[−h,T1∧T2]

E‖u(t)− v(t)‖2 = sup
t∈[0,T1∧T2]

E‖u(t)− v(t)‖2. (3.15)

By Lemma 3.1(i), (A3) and the Cauchy-Schwarz inequality, it follows that

E‖u(t)− v(t)‖2

≤ E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)(F (s, us)− F (s, vs))ds
∥∥2

≤ E
(∫ t

0

(t− s)α−1‖Eα,α(−(t− s)αA)(F (s, us)− F (s, vs))‖ds
)2

≤ C2
1 t

2α−1LF
2α− 1

∫ t

0

‖us − vs‖2C([−h,0];L2(Ω;L2
σ))ds

≤ C2
1LF t

2α−1

2α− 1

∫ t

0

sup
σ∈[0,s]

E‖u(σ)− v(σ)‖2ds.

(3.16)

Denoting M1 =
C2

1LFT
2α−1

2α−1 , we have

sup
s∈[−h,t]

E‖u(s)− v(s)‖2 ≤M1

∫ t

0

(
sup

σ∈[−h,s]
E‖u(σ)− v(σ)‖2

)
ds,

for all t ∈ [0, T1 ∧ T2]. Then Gronwall’s Lemma implies that

sup
s∈[−h,t]

E‖u(s)− v(s)‖2 = 0, for all t ∈ [0, T1 ∧ T2].

Therefore, u ≡ v on [−h, T1 ∧ T2].
Now we prove that for each given T > 0, the mild solution to problem (3.3)

with additive noise is bounded with X2 norm. Taking into account Lemma 3.1(i),
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(A1)–(A3), Itô’s isometry, the Cauchy-Schwarz inequality and Fubini’s theorem,
for t ∈ [0, T ], we have

E‖u(t)‖2

≤ 3E
∥∥Eα(−tαA)ϕ(0)‖2 + 3E

∥∥ ∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)F (s, us)ds
∥∥2

+ 3E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)φdW (s)
∥∥2

≤ 3C2
1 sup
t∈[−h,0]

E‖ϕ(t)‖2 +
3C2

1 t
2α−1

2α− 1

∫ t

0

E‖F (s, us)‖2ds+
3C2

1‖φ‖2t2α−1

2α− 1

≤ 3C2
1 sup
t∈[−h,0]

E‖ϕ(t)‖2 +
3C2

1‖φ‖2t2α−1

2α− 1

+
3C2

1 t
2α−1LF

2α− 1

∫ t

0

‖us‖2C([−h,0];L2(Ω;L2
σ))ds.

Therefore, for all t ∈ [0, T ],

sup
s∈[−h,t]

E‖u(s)‖2 ≤ (3C2
1 + 1) sup

s∈[−h,0]

E‖ϕ(s)‖2

+
3C2

1LFT
2α−1

2α− 1

∫ t

0

sup
σ∈[−h,s]

E‖u(σ)‖2ds+
3C2

1‖φ‖2T 2α−1

2α− 1

:= A1(ϕ, T, φ) + M2

∫ t

0

sup
σ∈[−h,s]

E‖u(σ)‖2ds,

where

A1(ϕ, T, φ) := (3C2
1 + 1) sup

t∈[−h,0]

E‖ϕ(t)‖2 +
3C2

1‖φ‖2T 2α−1

2α− 1
,

M2 :=
3C2

1LFT
2α−1

2α− 1
.

Applying the Gronwall lemma, for any fixed T > 0, we obtain

‖u‖2X2
≤ A1(ϕ, T, φ) exp(M2T ).

Because of the arbitrariness of T , together with the conclusion of uniqueness of u
on [−h, T ], it is straightforward that the mild solution to (3.3) driven by additive
noise is defined globally. �

Now, we complete our analysis of well-posedness to (3.3) by proving the contin-
uous dependence of global mild solutions on the initial data.

Proposition 3.7. Under the assumptions of Theorem 3.4 (or Theorem 3.5), as-
sume that the mild solution to (3.3) is globally defined. Then, it is continuous with
respect to the initial data in C([−h, 0];L2(Ω;L2

σ)). In particular, if u(t), w(t) are
the corresponding mild solutions to the initial data ζ and ψ on [−h, T ], then the
following estimate holds

‖u− w‖X2 ≤ ‖ζ − ψ‖C([−h,0];L2(Ω;L2
σ)) exp

(C2
1LFT

2α

2α− 1

)
.

The above proposition is proved similarly to the proof of uniqueness in the pre-
vious theorem, so we omit the details here.
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3.2. Well-posedness of mild solutions to (3.3) with unbounded delay. In
this subsection, we consider the following stochastic time fractional 2D-Stokes equa-
tion with unbounded delay,

Dα
t u = −Au+ F (t, ut) +G(t, ut)

dW (t)

dt
, t > 0,

u(t) = ϕ(t), t ∈ (−∞, 0].
(3.17)

Before going a step further to prove the main results, we first introduce a suitable
space motivated by unbounded delay. Let H be a separable Hilbert space, then the
space CX on H is defined as

CX(H) =
{
ϕ ∈ C((−∞, 0];H) : lim

θ→−∞
ϕ(θ) exists in H

}
,

which is a Banach space equipped with the norm

‖ϕ‖CX = sup
θ∈(−∞,0]

‖ϕ(θ)‖H.

Let F , G : [0,∞)× CX(L2(Ω;L2
σ))→ L2(Ω;L2

σ) and assume that:

(A1’) For any ξ ∈ CX(L2(Ω;L2
σ)), the mappings [0,∞) 3 t 7→ F (t, ξ) ∈ L2(Ω;L2

σ)
and [0,∞) 3 t 7→ G(t, ξ) ∈ L2(Ω;L2

σ) are measurable.
(A2’) F (·, 0) = G(·, 0) = 0 (for simplicity).
(A3’) There exist two positive constants L′F and L′G, such that, for all t ∈ [0,∞)

and ξ, η ∈ CX(L2(Ω;L2
σ)),

‖F (t, ξ)− F (t, η)‖2L2(Ω;L2
σ) ≤ L

′
F ‖ξ − η‖2CX(L2(Ω;L2

σ)),

‖G(t, ξ)−G(t, η)‖2L2(Ω;L2
σ) ≤ L

′
G‖ξ − η‖2CX(L2(Ω;L2

σ))

It is quite usual, when dealing with unbounded delay differential equations, to
adopt a different space for the initial data [17], namely,

Cγ(H) =
{
ϕ ∈ C((−∞, 0];H) : sup

θ∈(−∞,0]

eγθ‖ϕ(θ)‖H < +∞
}
.

However, if we consider this space, then hypothesis (A3’) is not fulfilled when the
delay in F or G is a variable delay one. For instance, F (t, ut) = F0(u(t − ρ(t))),
where ρ is a measurable function taking nonnegative values and F0 : R2 → R2 is a
Lipschitz function (see [9]). Therefore, this new space CX(H), although it is a bit
more restrictive than the usual one, allows us to consider more general delay terms
in the functional formulation.

We can now state our main results on well-posedness of problem (3.17). The
proof is similar to the case of bounded delay by replacing the norm in C([−h, 0];
L2(Ω;L2

σ)) by the one in CX(L2(Ω;L2
σ)). For the sake of completeness, we will

include the proof in the Appendix.

Theorem 3.8. Let α ∈ (1/2, 1) and (A1’)–(A3’) hold. Then, for each initial
function ϕ ∈ CX(L2(Ω;L2

σ)) such that ϕ(t) is F0-measurable for all t ∈ [−h, 0],
problem (3.17) admits a unique mild solution in the sense of Definition 3.2 on
(−∞, T ], for sufficiently small T > 0.

As in the case of bounded delay, we can prove the existence of global mild solution
when the noise is additive.
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Theorem 3.9. Assume the hypotheses of Theorem 3.8 hold. Then for every initial
value ϕ ∈ C((−∞, 0];L2(Ω;L2

σ)) such that ϕ(t) is F0-measurable for all t ∈ [−h, 0],
the initial value problem (3.17) driven by an additive noise G ≡ φ ∈ L2

σ has a
unique mild solution defined globally in the sense of Definition 3.2.

Proof. The proof follows the same lines as the case of bounded delay, but with
differences in the estimates which make interesting to include it. We will shift it to
the Appendix section. �

Proposition 3.10. Under the assumptions of Theorem 3.8, suppose that the mild
solutions to (3.17) are globally defined in time. Then it is continuous with respect
to the initial data ϕ ∈ C((−∞, 0];L2(Ω;L2

σ)). In particular, if u(t), w(t) are the
mild solutions on (−∞, T ] corresponding to the initial data ζ and ψ, then

‖uT − wT ‖CX(L2(Ω;L2
σ)) ≤ 3C2

1‖ζ − ψ‖CX(L2(Ω;L2
σ)) exp

(C2
1L
′
FT

2α

2α− 1

)
.

This proposition is proved by similar arguments to those concerning the unique-
ness of the previous theorem. We omit it here.

4. Analysis of problem (1.3)

In this section, we will study the time fractional stochastic delay 2D-Stokes
equations (4.1) below which contain more regular coefficients,

Dα
t u = −Au+ J1−α

t [F (t, ut)] + J1−α
t [G(t, ut)

dW (t)

dt
], t > 0,

u(t) = ϕ(t), t ∈ (−h, 0].
(4.1)

As we mentioned in the Introduction, in this case the expression for the mild so-
lutions only involves one of the Mittag-Leffler operators, yielding to a more usual
variation of constants formula without singular kernel in the integrals. Moreover,
the results can be proved now for α ∈ (0, 1) instead of α ∈ (1/2, 1), and the ex-
istence of global solutions can be shown for general multiplicative noise. Also the
compactness properties of the Mittag-Leffler operator allow us to analyze the as-
ymptotic behavior of the system in a forthcoming paper. All these reasons justify
the interest of this model (see [15, 18] and the references therein for more details).

Definition 4.1. Let S = (Ω,F , {F}t≥0,P) be a fixed stochastic basis generated
by a standard Brownian motion W and T > 0. Consider α ∈ (0, 1) and an initial
function ϕ such that ϕ(t) is F0-measurable (relative to S) for all t ∈ [−h, 0]. A mild
solution to problem (4.1) on (−h, T ] is a stochastic process such that u(t) = ϕ(t)
for t ∈ (−h, 0], and fulfills

u(t) = Eα(−tαA)ϕ(0) +

∫ t

0

Eα(−(t− s)αA)F (s, us)ds

+

∫ t

0

Eα(−(t− s)αA)G(s, us)dW (s), P-a.s., for every t ∈ [0, T ].

(4.2)

4.1. Well-posedness of mild solution to (4.1) with bounded delay. We now
analyze the well-posedness of the model below with bounded delay (i.e. h > 0 is
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fixed),

Dα
t u = −Au+ J1−α

t [F (t, ut)] + J1−α
t [G(t, ut)

dW (t)

dt
], t > 0,

u(t) = ϕ(t), t ∈ [−h, 0].
(4.3)

The first result established below is about the existence and uniqueness of local
mild solutions to problem (4.3), by a fixed point argument. We can prove the local
existence and uniqueness by the same arguments as before: either under conditions
(A1)–(A3) or by replacing (A3) by (A4) and (A5). In fact, the computations are
easier now since the kernel (t − s)α−1 does not appear in the expression of mild
solutions, which makes possible to remove the restriction α ∈ (1/2, 1).

Theorem 4.2. Let α ∈ (0, 1). Assume that (A1), (A2), (A4), (A5) hold (or
(A1)–(A3)), and ϕ ∈ C([−h, 0];L2(Ω;L2

σ)) such that ϕ(t) is F0-measurable for all
t ∈ [−h, 0]. Then there exists T > 0 (small enough) such that (4.3) admits a unique
mild solution in the sense of Definition 4.1 on [−h, T ].

Proof. We prove this result under assumptions (A1), (A2), (A4), (A5) (the other
case is similar). Let ϕ ∈ C([−h, 0];L2(Ω;L2

σ)) be such that ϕ(t) is F0-measurable
for all t ∈ [−h, 0], choose R > 0 (large enough) such that

3(C2
1 + 1 + C2

1hLg)‖ϕ‖2C([−h,0];L2(Ω;L2
σ)) ≤

R2

2
.

Consider the space

BϕR =
{
u ∈ C([−h, T ];L2(Ω;L2

σ)) : u(t) = ϕ(t) for all t ∈ [−h, 0], ‖u‖X2
≤ R

}
,

and define the operator L on BϕR as

(Lu)(t) =


ϕ(t), t ∈ [−h, 0],

Eα(−tαA)ϕ(0) +
∫ t

0
Eα(−(t− s)αA)F (s, us)ds

+
∫ t

0
Eα(−(t− s)αA)G(s, us)dW (s), t ∈ (0, T ], P-a.s.

(4.4)

Assertion 1: Lu ∈ C([−h, T ];L2(Ω;L2
σ)), for every u ∈ C([−h, 0];L2(Ω;L2

σ)). If
t ∈ [−h, 0], then (Lu)(t) = ϕ(t) and ϕ ∈ C([−h, 0];L2(Ω;L2

σ)). Therefore, we only
need to check the continuity of Lu on [0, T ]. By slightly modifying the proof of
the [4, Lemma 11], with the help of the analytical property of the Mittag-Leffler
operator in time (see Lemma 2.3(ii)), the result holds immediately.

Assertion 2: There exists T > 0 (sufficiently small) such that ‖Lu‖X2
≤ R, for

all u ∈ BϕR . To this end, we have to prove that, for any u ∈ BϕR and t ∈ [0, T ],

‖Lu‖X2
=
(

sup
t∈[−h,T ]

E‖(Lu)(t)‖2
)1/2

≤ R. (4.5)

For t ∈ [−h, 0], we have

E‖(Lu)(t)‖2 = E‖ϕ(t)‖2 ≤ sup
t∈[−h,0]

E‖ϕ(t)‖2. (4.6)
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If t ∈ (0, T ], it follows that

E‖(Lu)(t)‖2 ≤ 3E‖Eα(−tαA)ϕ(0)‖2 + 3E
∥∥∫ t

0

Eα(−(t− s)αA)F (s, us)ds
∥∥2

+ 3E
∥∥∫ t

0

Eα(−(t− s)αA)G(s, us)dW (s)
∥∥2

:= I1 + I2 + I3.

(4.7)

We now estimate each term on the right-hand side of (4.7). For I1, by Lemma
3.1(i), it is obvious that

I1 = 3E‖Eα(−tαA)ϕ(0)‖2 ≤ 3C2
1E‖ϕ(0)‖2 ≤ 3C2

1 sup
t∈[−h,0]

E‖ϕ(t)‖2. (4.8)

For I2, by Lemma 3.1(i), (A2), (A4), the Cauchy-Schwarz inequality and Fubini’s
theorem, we obtain

I2 = 3E
∥∥∫ t

0

Eα(−(t− s)αA)F (s, us)ds
∥∥2

≤ 3E
(∫ t

0

‖Eα(−(t− s)αA)F (s, us)‖ds
)2

≤ 3C2
1 t

∫ t

0

E‖F (s, us)‖2ds

≤ 3C2
1Lf t

∫ t

−h
E‖u(s)‖2ds

≤ 3C2
1Lf t

(∫ 0

−h
E‖ϕ(s)‖2ds+

∫ t

0

E‖u(s)‖2ds
)

≤ 3C2
1hLf t sup

t∈[−h,0]

E‖ϕ(t)‖2 + 3C2
1Lf t

∫ t

0

E‖u(s)‖2ds

≤ 3C2
1hLf t sup

t∈[−h,0]

E‖ϕ(t)‖2 + 3C2
1 t

2LfR
2.

(4.9)

For I3, by Lemma 3.1(i), Itô’s isometry and (A2), (A5),

I3 = 3E
∥∥∫ t

0

Eα(−(t− s)αA)G(s, us)dW (s)
∥∥2

≤ 3C2
1

∫ t

0

E‖G(s, us)‖2ds

≤ 3C2
1Lg

(∫ 0

−h
E‖ϕ(s)‖2ds+

∫ t

0

E‖u(s)‖2ds
)

≤ 3C2
1hLg sup

t∈[−h,0]

E‖ϕ(t)‖2 + 3C2
1 tLg sup

s∈[0,t]

E‖u(s)‖2

≤ 3C2
1hLg sup

t∈[−h,0]

E‖ϕ(t)‖2 + 3C2
1 tLgR

2.

(4.10)

Substituting (4.8)-(4.10) into (4.7), combining with (4.6), it is obvious that

E‖(Lu)(t)‖2 ≤ 3(C2
1 + C2

1hLf t+ C2
1hLg) sup

s∈[−h,0]

E‖ϕ(s)‖2

+ 3C2
1 t

2LfR
2 + 3C2

1 tLgR
2.
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Consequently, thanks to the choice of R, we can choose T small enough such that

‖Lu‖X2
=
(

sup
t∈[−h,T ]

E‖(Lu)(t)‖2
)1/2

≤
(

3
(
C2

1 + 1 + C2
1hLfT + C2

1hLg
)

sup
t∈[−h,0]

E‖ϕ(t)‖2

+ 3C2
1T

2LfR
2 + 3C2

1TLgR
2
)1/2

≤ R.

(4.11)

Assertion 3: Operator L : BϕR → B
ϕ
R is a contraction. To this end, for any u,

v ∈ BϕR, it follows that

‖Lu− Lv‖X2
:=
(

sup
t∈[−h,T ]

E‖(Lu)(t)− (Lv)(t)‖2
)1/2

. (4.12)

For t ∈ [−h, 0], one has (Lu)(t) = (Lv)(t) = ϕ(t). Thus, it is sufficient to consider
the case t ∈ (0, T ]. Observe that

E‖(Lu)(t)− (Lv)(t)‖2

≤ 2E
∥∥∫ t

0

Eα(−(t− s)αA)(F (s, us)− F (s, vs))ds
∥∥2

+ 2E
∥∥∫ t

0

Eα(−(t− s)αA)(G(s, us)−G(s, vs))dW (s)
∥∥2

:= J1 + J2.

(4.13)

For J1, by Lemma 3.1(i), (A4), the Cauchy-Schwarz inequality and Fubini’s theo-
rem, we obtain

J1 = 2E
∥∥∫ t

0

Eα(−(t− s)αA)(F (s, us)− F (s, vs))ds
∥∥2

≤ 2E
(∫ t

0

‖Eα(−(t− s)αA)(F (s, us)− F (s, vs))‖ds
)2

≤ 2C2
1Lf t

∫ t

−h
E‖u(s)− v(s)‖2ds

= 2C2
1Lf t

∫ t

0

E‖u(s)− v(s)‖2ds

≤ 2C2
1Lf t

2 sup
s∈[0,t]

E‖u(s)− v(s)‖2.

(4.14)

For J2, by Lemma 3.1(i), (A5) and Itô’s isometry,

J2 = 2E
∥∥∫ t

0

Eα(−(t− s)αA)(G(s, us)−G(s, vs))dW (s)
∥∥2

≤ 2C2
1Lg

∫ t

−h
E‖u(s)− v(s)‖2ds

= 2C2
1Lg

∫ t

0

E‖u(s)− v(s)‖2ds

≤ 2C2
1Lgt sup

s∈[0,t]

E‖u(s)− v(s)‖2.

(4.15)
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Hence, substituting (4.14)-(4.15) into (4.13), it follows that

‖Lu− Lv‖X2
≤
(

2C2
1T (LfT + Lg) sup

t∈[0,T ]

E‖u(t)− v(t)‖2
)1/2

:=M‖u− v‖X2
,

(4.16)

whereM2 = 2C2
1T (LfT +Lg). Therefore, we can choose T small enough such that

0 <M < 1, and the Banach fixed-point theorem implies that operator L possesses
a fixed point in BϕR. �

Unlike the result proved in Section 3, where we could only prove global existence
for additive noise, in this situation we can prove this global in time result for a
general multiplicative noise term.

Theorem 4.3. Assume hypotheses of Theorem 4.2 hold. Then, for every initial
value ϕ ∈ C([−h, 0];L2(Ω;L2

σ)) such that ϕ(t) is F0-measurable for all t ∈ [−h, 0],
the initial value problem (4.3) has a unique mild solution defined globally in the
sense of Definition 4.1.

Proof. We proceed with the proof under assumptions (A1), (A2), (A4),(A5). The
proof under assumptions (A1)–(A3) is similar and we omit it.

Assume that there exist two solutions to problem (4.3), u and v on [0, T1] and
[0, T2], respectively. Let us prove that u = v on [−h, T1 ∧ T2]. It is clear that
u(t) = v(t) = ϕ(t) on [−h, 0], so we only need to show that u(t) = v(t) for any
t ∈ [0, T1 ∧ T2]. Notice that

‖u− v‖2X2
:= sup

t∈[−h,T1∧T2]

E‖u(t)− v(t)‖2, (4.17)

and

E‖u(t)− v(t)‖2 ≤ 2E
∥∥∫ t

0

Eα(−(t− s)αA)(F (s, us)− F (s, vs))ds
∥∥2

+ 2E
∥∥∫ t

0

Eα(−(t− s)αA)(G(s, us)−G(s, vs))dW (s)
∥∥2

:= I1 + I2.

(4.18)

For I1, by Lemma 3.1(i), (A4) and the Cauchy-Schwarz inequality, it follows that

I1 ≤ 2E
(∫ t

0

‖Eα(−(t− s)αA)(F (s, us)− F (s, vs))‖ds
)2

≤ 2C2
1E
(∫ t

0

‖F (s, us)− F (s, vs)‖ds
)2

≤ 2C2
1Lf t

∫ t

0

E‖u(s)− v(s)‖2ds

≤ 2C2
1Lf t

∫ t

0

sup
σ∈[0,s]

E‖u(σ)− v(σ)‖2ds.

(4.19)
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For I2, by Lemma 3.1(i), (A5) and Itô’s isometry, we have

I2 ≤ 2

∫ t

0

E‖Eα(−(t− s)αA)(G(s, us)−G(s, vs))‖2ds

≤ 2C2
1Lg

∫ t

0

E‖u(s)− v(s)‖2ds

≤ 2C2
1Lg

∫ t

0

sup
σ∈[0,s]

E‖u(σ)− v(σ)‖2ds.

(4.20)

Substituting (4.19)-(4.20) to (4.18), we deduce that

E‖u(t)− v(t)‖2 ≤ 2C2
1 (Lf t+ Lg)

∫ t

0

sup
σ∈[0,s]

E‖u(σ)− v(σ)‖2ds.

Denoting M1 = 2C2
1 (Lf (T1 ∧ T2) + Lg), for all t ∈ [0, T1 ∧ T2], we have

sup
s∈[−h,t]

E‖u(s)− v(s)‖2 ≤M1

∫ t

0

(
sup

σ∈[−h,s]
E‖u(σ)− v(σ)‖2

)
ds.

Then Gronwall’s Lemma implies that

sup
s∈[−h,t]

E‖u(s)− v(s)‖2 = 0, for all t ∈ [0, T1 ∧ T2].

Therefore, u = v on [−h, T1 ∧ T2].
Now we prove that for each given T > 0, the mild solution to problem (4.3) is

bounded with X2 norm. Taking into account Lemma 3.1(i), (A2), (A4), (A5), Itô’s
isometry, the Cauchy-Schwarz inequality, and Fubini’s theorem, we have

E‖u(t)‖2 ≤ 3E‖Eα(−tαA)ϕ(0)‖2 + 3E
∥∥∫ t

0

Eα(−(t− s)αA)F (s, us)ds
∥∥2

+ 3E
∥∥∫ t

0

Eα(−(t− s)αA)G(s, us)dW (s)
∥∥2

≤ 3C2
1 sup
t∈[−h,0]

E‖ϕ(t)‖2 + 3C2
1 tE
(
Lf

∫ 0

−h
‖ϕ(s)‖2ds+ Lf

∫ t

0

‖u(s)‖2ds
)

+ 3C2
1E
(
Lg

∫ 0

−h
‖ϕ(s)‖2ds+ Lg

∫ t

0

‖u(s)‖2ds
)

≤ 3C2
1 (1 + Lf th+ Lgh) sup

t∈[−h,0]

E‖ϕ(t)‖2

+ 3C2
1 (Lf t+ Lg)

∫ t

0

sup
σ∈[0,s]

E‖u(σ)‖2ds.

Therefore, for all t ∈ [0, T ],

sup
s∈[−h,t]

E‖u(s)‖2 ≤ 3(C2
1 + 1 + C2

1LfTh+ C2
1Lgh) sup

s∈[−h,0]

E‖ϕ(s)‖2

+ 3C2
1 (LfT + Lg)

∫ t

0

sup
σ∈[0,s]

E‖u(σ)‖2ds

:= A(ϕ, T, F,G) +M2

∫ t

0

sup
σ∈[−h,s]

E‖u(σ)‖2ds,
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where

A(ϕ, T, F,G) := 3(C2
1 + 1 + C2

1LfTh+ C2
1Lgh) sup

t∈[−h,0]

E‖ϕ(t)‖2,

M2 := 3C2
1 (LfT + Lg).

Applying the Gronwall lemma, for any fixed T > 0, we obtain

‖u‖2X2
≤ A(ϕ, T, F,G) exp(M2T ).

Because of the arbitrariness of T , together with the conclusion of uniqueness of u
on [−h, T ], it is straightforward that the mild solution to problem (4.3) is defined
globally. �

As a consequence, we can now state the continuous dependence on initial values.

Proposition 4.4. Under the assumptions of Theorem 4.2, the mild solution to
(4.3) is continuous with respect to the initial data ϕ ∈ C([−h, 0];L2(Ω;L2

σ)). In
particular, if u(·), w(·) are the corresponding mild solutions on [−h, T ] to the initial
data ζ and ψ, then the following estimate holds,

‖u− w‖X2
≤ 3‖ζ − ψ‖C([−h,0];L2(Ω;L2

σ)) exp(2C2
1 (LfT + Lg)T ).

This proposition is proved by using similar arguments as those concerning the
uniqueness of previous theorem.

4.2. Well-posedness of problem (4.1) with unbounded delay. In this section,
we analyze the well-posedness of the following stochastic time fractional 2D-Stokes
equations with unbounded delay:

Dα
t u = −Au+ J1−α

t [F (t, ut)] + J1−α
t [G(t, ut)

dW (t)

dt
], t > 0,

u(t) = ϕ(t), t ∈ (−∞, 0].
(4.21)

Theorem 4.5. Let α ∈ (0, 1) and (A1’)–(A3’) hold. Then for each initial function
ϕ ∈ CX(L2(Ω;L2

σ)) such that ϕ(t) is F0-measurable for all t ∈ [−h, 0], problem
(4.21) admits a unique mild solution on (−∞, T ] in the sense of Definition 4.1, for
T > 0 small enough.

Proof. Let ϕ ∈ CX(L2(Ω;L2
σ)) be such an initial value and choose R > 0 such that

3(C2
1 + 1)‖ϕ‖2CX(L2(Ω;L2

σ)) ≤
R2

3
.

Now consider the space

VϕR =
{
u ∈ C((−∞, T ];L2(Ω;L2

σ)) : u(t) = ϕ(t) for all t ∈ (−∞, 0],

and

|uT ‖CX(L2(Ω;L2
σ)) ≤ R

}
,

and define the operator K on VϕR as

(Ku)(t) =


ϕ(t), t ∈ (−∞, 0],

Eα(−tαA)ϕ(0) +
∫ t

0
Eα(−(t− s)αA)F (s, us)ds

+
∫ t

0
Eα(−(t− s)αA)G(s, us)dW (s), t ∈ (0, T ], P-a.s.

(4.22)

Note that if u ∈ VϕR, then ‖ut‖CX(L2(Ω;L2
σ)) ≤ R for all t ∈ [0, T ].
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Assertion 1: Ku ∈ C((−∞, T ];L2(Ω;L2
σ)) for all u ∈ C((−∞, T ];L2(Ω;L2

σ)).
Observe that if t ∈ (−∞, 0], then (Ku)(t) = ϕ(t). Therefore, we only need to check
the continuity of Ku on [0, T ]. By slightly modifying the proof in [4, Lemma 11],
with the help of the analyticity in time of Mittag-Leffler operators (see Lemma
2.3(ii)), the result holds.

Assertion 2: There exists T > 0 such that ‖(Ku)t‖CX(L2(Ω;L2
σ)) ≤ R for all t ∈

[0, T ] and u ∈ VϕR. For every u ∈ VϕR, we have to show that

‖(Ku)t‖CX(L2(Ω;L2
σ)) :=

(
sup

θ∈(−∞,0]

E‖(Ku)(t+ θ)‖2
)1/2

≤ R.

For t+ θ ∈ (−∞, 0], namely, t ∈ (−∞,−θ), we have

E‖(Ku)(t+ θ)‖2 = E‖ϕ(t+ θ)‖2 ≤ sup
t∈(−∞,0]

E‖ϕ(t)‖2. (4.23)

If t+ θ ∈ (0, T ], namely t ∈ (−θ, T ] (for convenience, here we denote by t := t+ θ ∈
[0, T ]), then it follows that

E‖(Ku)(t)‖2 ≤ 3E‖Eα(−tαA)ϕ(0)‖2

+ 3E
∥∥∫ t

0

Eα(−(t− s)αA)F (s, us)ds
∥∥2

+ 3E
∥∥∫ t

0

Eα(−(t− s)αA)G(s, us)dW (s)
∥∥2

:= I1 + I2 + I3.

(4.24)

We estimate now each term. For I1, by Lemma 3.1(i), it is obvious that

I1 = 3E‖Eα(−tαA)ϕ(0)‖2 ≤ 3C2
1E‖ϕ(0)‖2 ≤ 3C2

1 sup
t∈(−∞,0]

E‖ϕ(t)‖2. (4.25)

For I2, by Lemma 3.1(i), (A2’)-(A3’), the Cauchy-Schwarz inequality and Fubini’s
theorem, we obtain

I2 = 3E
∥∥ ∫ t

0

Eα(−(t− s)αA)F (s, us)ds
∥∥2

≤ 3E
(∫ t

0

‖Eα(−(t− s)αA)F (s, us)‖ds
)2

≤ 3C2
1 t

∫ t

0

E‖F (s, us)‖2ds

≤ 3C2
1L
′
F t

∫ t

0

‖us‖2CX(L2(Ω;L2
σ))ds

≤ 3C2
1L
′
F t

2‖ut‖2CX(L2(Ω;L2
σ))

≤ 3C2
1L
′
F t

2R2.

(4.26)
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For I3, by Lemma 3.1(i), Itô’s isometry, (A2’), and (A3’), we have

I3 = 3E
∥∥∫ t

0

Eα(−(t− s)αA)G(s, us)dW (s)
∥∥2

≤ 3C2
1

∫ t

0

E‖G(s, us)‖2ds

≤ 3C2
1L
′
G

∫ t

0

‖us‖2CX(L2(Ω;L2
σ))ds

≤ 3C2
1L
′
Gt‖ut‖2CX(L2(Ω;L2

σ))

≤ 3C2
1L
′
GtR

2.

(4.27)

Replacing (4.25)-(4.27) into (4.24), combining with (4.23), it is obvious that

E‖(Ku)t‖2 ≤ 3
(

(C2
1 + 1) sup

t∈(−∞,0]

E‖ϕ(t)‖2 + C2
1 t

2L′FR
2 + C2

1 tL
′
GR

2
)
.

Consequently, by the choice of R, we can choose T such that

‖(Ku)t‖CX(L2(Ω;L2
σ))

=
(

sup
θ∈(−∞,0]

E‖(Ku)(t+ θ)‖2
)1/2

≤
(

3(C2
1 + 1)‖ϕ‖2CX(L2(Ω;L2

σ)) + 3C2
1T

2L′FR
2 + 3C2

1TL
′
GR

2
)1/2

≤ R,

for all t ∈ (0, T ].

Assertion 3: Operator K : VϕR → V
ϕ
R is a contraction. To this end, for each u,

v ∈ VϕR and t ∈ [0, T ], it follows that

‖(Ku)t − (Kv)t‖2CX(L2(Ω;L2
σ)) := sup

θ∈(−∞,0]

E‖(Ku)(t+ θ)− (Kv)(t+ θ)‖2

= sup
t∈(−∞,T ]

E‖(Ku)(t)− (Kv)(t)‖2.
(4.28)

For t ∈ (−∞, 0], one has (Ku)(t) = (Kv)(t) = ϕ(t). Thus, we only need to consider
the case t ∈ (0, T ]. Observe that

E‖(Ku)(t)− (Kv)(t)‖2

≤ 2E
∥∥∫ t

0

Eα(−(t− s)αA)(F (s, us)− F (s, vs))ds
∥∥2

+ 2E
∥∥∫ t

0

Eα(−(t− s)αA)(G(s, us)−G(s, vs))dW (s)
∥∥2

:= J 1 + J 2.

(4.29)
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For J 1, by Lemma 3.1(i), (A3’), the Cauchy-Schwarz inequality, and Fubini’s the-
orem, we obtain

J 1 = 2E
∥∥∫ t

0

Eα(−(t− s)αA)(F (s, us)− F (s, vs))ds
∥∥2

≤ 2E
(∫ t

0

‖Eα(−(t− s)αA)(F (s, us)− F (s, vs))‖ds
)2

≤ 2C2
1L
′
F t

∫ t

0

‖us − vs‖2CX(L2(Ω;L2
σ))ds

≤ 2C2
1L
′
F t

2‖ut − vt‖2CX(L2(Ω;L2
σ)).

(4.30)

For J 2, by Lemma 3.1(i), (A3’), and Itô’s isometry, one has

J 2 = 2E
∥∥∫ t

0

Eα(−(t− s)αA)(G(s, us)−G(s, vs))dW (s)
∥∥2

≤ 2C2
1L
′
G

∫ t

0

‖us − vs‖2CX(L2(Ω;L2
σ))ds

≤ 2C2
1L
′
Gt‖ut − vt‖2CX(L2(Ω;L2

σ)).

(4.31)

Hence, substituting (4.29)-(4.31) into (4.28), it follows that

‖(Ku)t − (Kv)t‖CX(L2(Ω;L2
σ)) ≤

(
2C2

1 (L′FT
2 + L′GT )‖ut − vt‖2CX(L2(Ω;L2

σ))

)1/2

:=W‖ut − vt‖CX(L2(Ω;L2
σ)),

where W2 = 2C2
1 (L′FT

2 + L′GT ). Therefore, we can choose T small enough such
that 0 < W < 1, which means that, the operator K maps VϕR into itself. This
is a contraction. The Banach fixed-point theorem yields that operator K has a
fixed point in VϕR. Namely, problem (4.21) has a unique local mild solution on
(−∞, T ]. �

Theorem 4.6. Assume the hypotheses of Theorem 4.5 hold. Then, for every initial
value ϕ ∈ CX(L2(Ω;L2

σ)) such that ϕ(t) is F0-measurable for all t ∈ [−h, 0], the
initial value problem (4.21) has a unique mild solution defined globally in the sense
of Definition 4.1.

Proof. The proof follows the same lines as in Section 3, but with differences in
the estimates. Assume that there exist two solutions to problem (4.21), u and v
on [0, T1] and [0, T2], respectively. Let us prove that u = v on (−∞, T1 ∧ T2]. It
is remarkable that u(t) = v(t) = ϕ(t) on (−∞, 0], so we only need to prove that
u(t) = v(t) for any t ∈ (0, T1 ∧ T2]. Observe that

‖ut − vt‖2CX(L2(Ω;L2
σ)) := sup

s∈(−∞,t]
E‖u(s)− v(s)‖2, (4.32)

and

E‖u(t)− v(t)‖2 ≤ 2E
∥∥∫ t

0

Eα(−(t− s)αA)(F (s, us)− F (s, vs))ds
∥∥2

+ 2E
∥∥ ∫ t

0

Eα(−(t− s)αA)(G(s, us)−G(s, vs))dW (s)
∥∥2

:= I1 + I2.

(4.33)
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For I1, by Lemma 3.1(i), (A3’) and the Cauchy-Schwarz inequality, it follows that

I1 ≤ 2E
(∫ t

0

‖Eα(−(t− s)αA)(F (s, us)− F (s, vs))‖
)2

≤ 2C2
1E
(∫ t

0

‖F (s, us)− F (s, vs)‖ds
)2

≤ 2C2
1L
′
F t

∫ t

0

‖us − vs‖2CX(L2(Ω;L2
σ))ds.

(4.34)

For I2, by Lemma 3.1(i), (A3’) and Itô’s isometry, we have

I2 ≤ 2

∫ t

0

E‖Eα(−(t− s)αA)(G(s, us)−G(s, vs))‖2ds

≤ 2C2
1L
′
G

∫ t

0

‖us − vs‖2CX(L2(Ω;L2
σ))ds.

(4.35)

Substituting (4.34)-(4.35) to (4.33), we have

E‖u(t)− v(t)‖2 ≤ 2C2
1 (L′F t+ L′G)

∫ t

0

‖us − vs‖2CX(L2(Ω;L2
σ))ds.

Denoting by W1 = 2C2
1 (L′F (T1 ∧ T2) + L′G), we have for all t ∈ [0, T1 ∧ T2],

‖ut − vt‖2CX(L2(Ω;L2
σ)) ≤ W1

∫ t

0

‖us − vs‖2CX(L2(Ω;L2
σ))ds.

The Gronwall Lemma implies that

‖ut − vt‖CX(L2(Ω;L2
σ)) = 0, for all t ∈ [0, T1 ∧ T2],

and therefore u = v on (−∞, T1 ∧ T2].
Now we prove that for each given T > 0, the mild solution to (4.21) is bounded

with CX(L2(Ω;L2
σ)) norm. Taking into account Lemma 3.1(i), (A1’)–(A3’), Itô’s

isometry, the Cauchy-Schwarz inequality, and Fubini’s theorem, we have

E‖u(t)‖2 ≤ 3E‖Eα(−tαA)ϕ(0)‖2

+ 3E
∥∥∫ t

0

Eα(−(t− s)αA)F (s, us)ds
∥∥2

+ 3E
∥∥∫ t

0

Eα(−(t− s)αA)G(s, us)dW (s)
∥∥2

≤ 3C2
1‖ϕ‖2CX(L2(Ω;L2

σ)) + 3C2
1L
′
F t

∫ t

0

‖us‖2CX(L2(Ω;L2
σ))ds

+ 3C2
1L
′
G

∫ t

0

‖us‖2CX(L2(Ω;L2
σ))ds

≤ 3C2
1‖ϕ‖2CX(L2(Ω;L2

σ)) + 3C2
1 (L′F t+ L′G)

∫ t

0

‖us‖2CX(L2(Ω;L2
σ))ds.

Applying the Gronwall lemma to the above inequality, for any fixed T > 0 and
t ∈ [0, T ], we obtain

‖ut‖2CX(L2(Ω;L2
σ)) ≤ (3C2

1 + 1)‖ϕ‖2CX(L2(Ω;L2
σ)) exp(3C2

1 (L′FT + L′G)T ).
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Thank to the arbitrariness of T , together with the conclusion of uniqueness of u on
(−∞, T ], it is straightforward that the mild solution to (4.21) is defined globally. �

As a consequence, we can state the continuous dependence of mild solutions with
respect to the initial data.

Proposition 4.7. Under the assumptions of Theorem 4.5, the mild solution to
(4.21) is continuous with respect to the initial data ϕ ∈ CX(L2(Ω;L2

σ)). In particu-
lar, if u(·), w(·) are the mild solutions corresponding to the initial data ζ and ψ on
(−∞, T ], then

‖uT − wT ‖CX(L2(Ω;L2
σ)) ≤ 3C2

1‖ζ − ψ‖CX(L2(Ω;L2
σ)) exp(3C2

1 (L′FT + L′G)T ).

This proposition is proved by similar arguments to those for the uniqueness of
previous theorem.

5. Conclusion and final remarks

In this article, we considered quite general time-fractional stochastic Stokes mod-
els driven by multiplicative Brownian motion with finite and infinite delay. As we
said, this is only a first approach to our goal concerning the case of stochastic
time fractional delay Navier-Stokes equations with multiplicative noise. However,
to that end, a new technique has to be designed because the fixed point theorem
used in our proofs is not appropriate to handle the nonlinear term: the appearance
of expectation in the norm does not allow us to bound that term in an appropriate
way, as it is done in the deterministic case, especially for the contraction property.
Therefore, this is a challenging problem to be analyzed shortly. But, it is not sur-
prising that the problem cannot be analyzed with this technique since, to the best
of our knowledge, even the non-fractional stochastic time derivative system has not
been solved for the multiplicative noise case. We plan to work on this first case and
combine the ideas of both techniques to achieve our goal for the time- fractional
stochastic Navier-Stokes equations with delays.

On a different note, concerning the models analyzed in the current paper, we are
interested in analyzing the long time behavior of both problems (1.1) and (1.3) with
general multiplicative noise. To this end, it is necessary to ensure first the existence
of solutions globally defined in time. Motivated by this fact, we will investigate,
in a forthcoming paper, the idea of approximating our problems with nonlinear
multiplicative noise by the so-called colored noise. This means to consider Wong-
Zakai approximations to provide information about the stochastic problem (see Lu
et al. [10] for more details).

6. Appendix

Proof of Theorem 3.8. Consider an initial function ϕ ∈ CX(L2(Ω;L2
σ)) and choose

R > 0 such that

(3C2
1 + 1)‖ϕ‖2CX(L2(Ω;L2

σ)) ≤
R2

3
.

Let α ∈ (1/2, 1) and define the following space UϕR for R > 0,

UϕR =
{
u ∈ C((−∞, T ] : L2(Ω;L2

σ)) : u(t) = ϕ(t), ∀t ∈ (−∞, 0] and ‖uT ‖CX ≤ R
}
.
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Notice that if u ∈ UϕR, then ut ∈ CX(L2(Ω;L2
σ)) for all t ∈ [0, T ]. Define now the

operator Q on UϕR as

(Qu)(t) =


ϕ(t), t ∈ (−∞, 0],

Eα(−tαA)ϕ(0) +
∫ t

0
(t− s)α−1Eα,α(−(t− s)αA)F (s, us)ds

+
∫ t

0
(t− s)α−1Eα,α(−(t− s)αA)G(s, us)dW (s), t ∈ [0, T ], P-a.s.

Assertion 1: Qu ∈ C((−∞, T ];L2(Ω;L2
σ)) for all u ∈ C((−∞, 0];L2(Ω;L2

σ)).
Observe that if t ∈ (−∞, 0], then (Qu)(t) = ϕ(t). Therefore, we only need to check
the continuity of Qu on [0, T ]. By slightly modifying the proof in [4, Lemma 11],
with the help of the analyticity of Mittag-Leffler operator in time (see Lemma 2.3
(ii)), the result follows.

Assertion 2: There exists T > 0 such that ‖(Qu)t‖CX(L2(Ω;L2
σ)) ≤ R, for all

t ∈ [0, T ] and u ∈ UϕR. For every u ∈ UϕR and t ∈ [0, T ], we have to show that

‖(Qu)t‖2CX(L2(Ω;L2
σ)) := sup

θ∈(−∞,0]

E‖(Qu)(t+ θ)‖2 = sup
t∈(−∞,T ]

E‖(Qu)(t)‖2 ≤ R2.

For t ∈ (−∞, 0], we have

E‖(Qu)(t)‖2 = E‖ϕ(t)‖2 ≤ sup
t∈(−∞,0]

E‖ϕ(t)‖2. (6.1)

If t ∈ (0, T ], then

E‖(Qu)(t)‖2 ≤ 3E‖Eα(−tαA)ϕ(0)‖2

+ 3E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)F (s, us)ds
∥∥2

+ 3E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)G(s, us)dW (s)
∥∥2

:= I1 + I2 + I3.

(6.2)

We estimate now each term. For I1, by Lemma 3.1(i), it is obvious that

I1 = 3E‖Eα(−tαA)ϕ(0)‖2 ≤ 3C2
1E‖ϕ(0)‖2 ≤ 3C2

1 sup
t∈(−∞,0]

E‖ϕ(t)‖2. (6.3)

For I2, by Lemma 3.1(i), (A1’)–(A3’), the Cauchy-Schwarz inequality, and Fubini’s
theorem, we obtain

I2 = 3E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)F (s, us)ds
∥∥2

≤ 3E
(∫ t

0

(t− s)α−1‖Eα,α(−(t− s)αA)F (s, us)‖ds
)2

≤ 3C2
1 t

2α−1

2α− 1

∫ t

0

E‖F (s, us)‖2ds

≤ 3C2
1L
′
F t

2α−1

2α− 1

∫ t

0

‖us‖2CX(L2(Ω;L2
σ))ds

≤ 3C2
1L
′
F t

2α

2α− 1
‖ut‖2CX(L2(Ω;L2

σ))

≤ 3C2
1L
′
F t

2α

2α− 1
R2.

(6.4)
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For I3, by Lemma 3.1(i), Itô’s isometry, and (A′1)-(A′3), one has

I3 = 3E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)G(s, us)dW (s)
∥∥2

≤ 3C2
1E
∫ t

0

(t− s)2α−2‖G(s, us)‖2ds

≤ 3C2
1L
′
Gt

2α−1

2α− 1
‖ut‖2CX(L2(Ω;L2

σ))

≤ 3C2
1L
′
Gt

2α−1

2α− 1
R2.

(6.5)

Substituting (6.3)-(6.5) into (6.2), combining with (6.1), we obtain

E‖(Qu)(t)‖2 ≤ 3C2
1 sup
t∈(−∞,0]

E‖ϕ(t)‖2 +
3C2

1L
′
F t

2α

2α− 1
R2 +

3C2
1L
′
Gt

2α−1

2α− 1
R2.

Consequently, because of the choice of R, we can choose T small enough such that

‖(Qu)t‖CX(L2(Ω;L2
σ))

=
(

sup
θ∈(−∞,0]

E‖(Qu)(t+ θ)‖2
)1/2

≤
(

(3C2
1 + 1)‖ϕ‖CX(L2(Ω;L2

σ)) +
3C2

1L
′
FT

2α

2α− 1
R2 +

3C2
1L
′
GT

2α−1

2α− 1
R2
)1/2

≤ R.

Assertion 3: Operator Q : UϕR → U
ϕ
R is a contraction. To this end, for any u,

v ∈ UϕR and t ∈ [0, T ], notice first that

‖(Qu)T − (Qv)T ‖2CX(L2(Ω;L2
σ)) = sup

θ∈(−∞,0]

E‖(Qu)(T + θ)− (Qv)(T + θ)‖2

= sup
t∈(−∞,T ]

E‖(Qu)(t)− (Qv)(t)‖2.
(6.6)

For t ∈ (−∞, 0], one has (Qu)(t) = (Qv)(t) = ϕ(t). Thus, we only need to consider
the case t ∈ [0, T ]. Observe that

E‖(Qu)(t)− (Qv)(t)‖2

≤ 2E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)(F (s, us)− F (s, vs))ds
∥∥2

+ 2E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)(G(s, us)−G(s, vs))dW (s)
∥∥2

:= J 1 + J 2.

(6.7)
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For J 1, by Lemma 3.1(i), (A1’)–(A3’), the Cauchy-Schwarz inequality, and Fubini’s
theorem, we obtain

J 1 = 2E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)(F (s, us)− F (s, vs))ds
∥∥2

≤ 2EBig(

∫ t

0

(t− s)α−1‖Eα,α(−(t− s)αA)(F (s, us)− F (s, vs))‖ds
)2

≤ 2C2
1L
′
F t

2α−1

2α− 1

∫ t

0

‖us − vs‖2CX(L2(Ω;L2
σ))ds

≤ 2C2
1L
′
F t

2α

2α− 1
‖ut − vt‖2CX(L2(Ω;L2

σ)).

(6.8)

For J 2, by Lemma 3.1(i), Itô’s isometry, and (A1’)–(A3’), we have

J 2 = 2E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)(G(s, us))−G(s, vs))dW (s)
∥∥2

≤ 2C2
1L
′
G

∫ t

0

(t− s)2α−2‖us − vs‖2CX(L2(Ω;L2
σ))ds

≤ 2C2
1L
′
Gt

2α−1

2α− 1
‖ut − vt‖2CX(L2(Ω;L2

σ)).

(6.9)

Hence, substituting (6.7)-(6.9) into (6.6), it follows that

‖(Qu)T − (Qv)T ‖2CX(L2(Ω;L2
σ))

≤
(2C2

1L
′
FT

2α

2α− 1
+

2C2
1L
′
GT

2α−1

2α− 1

)
‖uT − vT ‖2CX(L2(Ω;L2

σ))

:= W2‖uT − vT ‖2CX(L2(Ω;L2
σ)),

where

W2 =
2C2

1L
′
FT

2α

2α− 1
+

2C2
1L
′
GT

2α−1

2α− 1
.

Therefore, we can choose T small enough such that 0 < W < 1, which means that
the operator Q maps UϕR into itself and also it is a contraction. The Banach fixed-
point theorem implies the operator Q has a fixed point in UϕR. Namely, problem
(3.17) has a unique local mild solution on (−∞, T ]. �

Proof of Theorem 3.9. Assume that there exist two solutions to problem (4.21), u
and v on [0, T1] and [0, T2], respectively. Let us prove that u = v on (−∞, T1 ∧ T2].
Since u(t) = v(t) = ϕ(t) on (−∞, 0], we only need to prove that u(t) = v(t) for any
t ∈ [0, T1 ∧ T2]. Observe that

‖uT1∧T2
− vT1∧T2

‖2CX(L2(Ω;L2
σ)) := sup

t∈(−∞,T1∧T2]

E‖u(t)− v(t)‖2. (6.10)

By Lemma 3.1(i), (A1’)–(A3’), and the Cauchy-Schwarz inequality, we have

E‖u(t)− v(t)‖2

≤ E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)(F (s, us)− F (s, vs))ds
∥∥2

≤ C2
1E
(∫ t

0

(t− s)α−1‖F (s, us)− F (s, vs)‖ds
)2
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≤ C2
1L
′
F t

2α−1

2α− 1

∫ t

0

‖us − vs‖2CX(L2(Ω;L2
σ))ds.

Denoting W1 =
C2

1L
′
F (T1∧T2)2α−1

2α−1 we have

‖ut − vt‖2CX(L2(Ω;L2
σ)) ≤W1

∫ t

0

‖us − vs‖2CX(L2(Ω;L2
σ))ds, ∀t ∈ [0, T1 ∧ T2].

The Gronwall Lemma implies

‖uT1∧T2
− vT1∧T2

‖CX(L2(Ω;L2
σ)) = 0.

Therefore, u = v on (−∞, T1 ∧ T2].
Now we prove that for each given T > 0, the mild solution to (3.17) is bounded

with C((−∞, T ];L2(Ω;L2
σ)) norm. Taking into account Lemma 3.1(i), (A1’)-(A3’),

Itô’s isometry, the Cauchy-Schwarz inequality, and Fubini’s theorem, we have

E‖u(t)‖2 ≤ 3E‖Eα(−tαA)ϕ(0)‖2

+ 3E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)F (s, us)ds
∥∥2

+ 3E
∥∥∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)φ(s)dW (s)
∥∥2

≤ 3C2
1‖ϕ‖2CX(L2(Ω;L2

σ)) +
3C2

1‖φ‖2t2α−1

2α− 1

+
3C2

1L
′
F t

2α−1

2α− 1

∫ t

0

‖us‖2CX(L2(Ω;L2
σ))ds.

Applying the Gronwall lemma to the above inequality, for any fixed T > 0 and all
t ∈ [0, T ], we deduce that

‖uT ‖2CX(L2(Ω;L2
σ))

≤
(

(3C2
1 + 1)‖ϕ‖2CX(L2(Ω;L2

σ)) +
3C2

1‖φ‖2T 2α−1

2α− 1

)
exp

(3C2
1L
′
FT

2α

2α− 1

)
.

Because of the arbitrariness of T , together with the conclusion of uniqueness of u
on (−∞, T ], it is straightforward to show that the mild solution to (3.17) is defined
globally. �
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