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ASYMPTOTIC STABILITY OF A STOCHASTIC

AGE-STRUCTURED COOPERATIVE LOTKA-VOLTERRA

SYSTEM WITH POISSON JUMPS

MENGQING ZHANG, JING TIAN, KEYUE ZOU

Abstract. In this article, we study a stochastic age-structured cooperative
Lotka-Volterra system with Poisson jumps. Applying the M-matrix theory, we

prove the existence and uniqueness of a global solution for the system. Then

we use an optimized Euler-Maruyama numerical scheme to approximate the
solution. We obtain second-moment boundedness and convergence rate of the

numerical solutions. The numerical solutions illustrate the theoretical results.

1. Introduction

The determined cooperative Lotka-Volterra system [13, 20] is described as

dx(t)

dt
= x(t)(−α11x(t) + α12y(t) + r1),

dy(t)

dt
= y(t)(α21x(t)− α22y(t) + r2),

(1.1)

where x(t), y(t) are the densities of the two cooperative species, r1, r2 present the
intrinsic growth rates of the two species, α11, α22 are the intraspecific competition
rates, and α12, α21 denote the interspecific cooperation rates. This system has
been widely studied and has many applications [8, 24]. In particular, it can be
used to describe the cooperative relationship between multiple species, such as
bees and flowers, algal-fungal associations of lichens, etc. Besides the studies on
the deterministic properties of cooperative Lotka-Volterra systems [4, 16, 21], there
are important studies on stochastic Lotka-Volterra systems [1, 9, 17, 18]. Especially,
noises with jumps are necessary to describe phenomena that burst out in nature.
For example, the impact of sudden pesticide spraying or tsunami on the population
can not be ignored. There are some works on the stochastic differential equations
with Poisson jumps[3, 7, 22] to consider the discontinuous random effects. One
example is system

dx(t) = x(−α11(a)x+ α12(a)y + r1(a))dt+ σ1xdw(t) + h1xdN(t),

dy(t) = y(α21(a)x− α22(a)y + r2(a))dt+ σ2ydw(t) + h2ydN(t).
(1.2)
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Considering the actual biological background of system (1.2), population reproduc-
tion is determined by the fertility of female individuals which is related to their
age. According to [2, 5], the birth rate is sensitive to age. Therefore, we need
to include an age-structured fertility rate into system (1.2). The age-structured
theory was first introduced by Lotka [13] to describe the fertility of species and
latter been applied in many systems [11, 19, 26, 29, 30, 31]. For example, Zhang
and Liu [29] focused on the age-structured predator-prey model and discussed the
non-trivial periodic oscillation phenomenon. Solis and Carrillo [19] investigated
the type of theoretical predation of the predator-prey Lotka-Volterra model with
age-structured. However, very few studies are on the cooperative Lotka-Volterra
system. To fill this gap, we establish the stochastic age-structured cooperative
Lotka-Volterra system with Poisson jumps,

dtX = −∂X
∂a

dt+X(−α11(a)X + α12(a)Y + r1(a))dt+ σ1Xdw(t) + h1XdN(t),

dtY = −∂Y
∂a

dt+ Y (α21(a)X − α22(a)Y + r2(a))dt+ σ2Y dw(t) + h2Y dN(t),

X(t, 0) =

∫ A

0

γ(t, a)X(t, a)da, t ∈ [0, T ], (1.3)

Y (t, 0) =

∫ A

0

β(t, a)Y (t, a)da, t ∈ [0, T ],

X(0, a) = Xa(0), Y (0, a) = Ya(0), a ∈ [0, A],

where X(t, a) and Y (t, a) denote the densities of the two species at time t, age a.
dtX and dtY denote the differential of X(t, a) and Y (t, a) relative to t. w(t) is a
standard Brownian motion, N(t) is a scalar Poisson process independent of w(t).

The compensated Poisson process is Ñ(t) = N(t)− λ1t, where the parameter λ1 is
the jump intensity. In the first two equations (t, a) ∈ Q and Q = (0, T ) × (0, A).
Features of the parameters in system (1.3) are showed in [27].

It is extremely hard to find the explicit form of the exact solution to (1.3), so
we target on finding the numerical approximation the exact solution. So we can
describe the changes of number of species and predict the species size of the system.
However, the Euler-Maruyama (EM) method cannot discretize the age-structured
cooperative Lotka-Volterra system directly because the system does not satisfy the
Lipschitz continuous condition and the linear growth condition on the drift coeffi-
cients. There are many numerical approximate methods to deal with the different
algebraic structure of the model, such as the positive preserving method, the trun-
cated EM method, the tamed EM method and Runge-Kutta-Fehlberg method, etc.
[6, 12, 14, 28]. Zhang et al. [28] constructed a positive preserving numerical method
for the stochastic R&D model and proved that the convergence order is 1

2 (1 − 1
p ).

Yang et al. [23] constructed the truncated EM method for the stochastic differen-
tial equations to deal with the blasting phenomenon, while, the method is hard
to guarantee the positive numerical solution. Liu et al. [12] established the tamed
EM approximation for McKean-Vlasov stochastic differential equations with super-
linear drift and Hölder diffusion coefficients. The convergence rate was obtained by
replacing the one-sided local Lipschitz condition with the global condition. How-
ever, most of the above mentioned methods focused on the stochastic differential
equations but not involving the age-structured. In this study, we use an optimized
Euler-Maruyama scheme to find a reasonable and effective numerical solution for
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system (1.3). Using the theory of equilibrium point, we have successfully avoided
the restrictions on the coefficients.

Two main contributions in this are the following:
• The existence and uniqueness of the positive global solution of the stochastic age-
structured cooperative Lotka-Volterra system with Poisson jumps (this is proved
for the first time).
• The finite-time convergence and boundedness of the numerical approximation to
solution.

This article is arranged as follows. In section 2, we prove the existence and
uniqueness of the global solution for the stochastic age-structured cooperative
Lotka-Volterra system with Poisson jumps. In section 3, we introduce the EM
approximation method to the system and obtain the 2nd-moment estimations of
this algorithm. The convergence of the algorithm is presented in section 4. We find
a strong convergence order. The numerical simulation is reported in section 5.

2. Existence and uniqueness of a solution

2.1. Preliminaries. Throughout the paper, let (Ω,F, {Ft}t≥0,P) be a complete
probability space. Here, the filtration {Ft}t≥0 satisfies the usual conditions (that
is, it is increasing and right continuous with F0 containing all P-null sets), E denotes
the expectation corresponding to P. We denote by Rn+ the positive cone in Rn, that
is Rn+ = {x ∈ Rn : xi > 0 for all 1 ≤ i ≤ n}. γ̌(t, a) and γ̂(t, a) are the maximum
and minimum value of the continuous function γ(t, a), respectively. For a pair of
real numbers, a and b, we have a ∨ b = max{a, b} and a ∧ b = min{a, b}. For a set
A, its indicator function is denoted by

1A =

{
1, x ∈ A,
0, x /∈ A.

For x ∈ Rn, its norms is denoted by

|x|ι =

{
|x1|+ |x2|+ · · ·+ |xn|, ι = 1,(∑n

i=1 x
2
i

)1/2
, ι = 2.

Let V =
{
ϕ ∈ L2([0, A]) : ∂ϕ

∂a ∈ L
2([0, A]), where ∂ϕ

∂a is the generalized partial

derivatives with respect to age a
}

. H = L2([0, A]) and V ↪→ H ≡ H ′ ↪→ V ′,
where V ′ is the dual space of V and H ′ is the dual space of H. The norms in
V,H, V ′ are denoted as ‖‖, | · |, and ‖‖∗, respectively. The duality product be-
tween V, V ′ is written as 〈·, 〉, the scalar product in H is denoted by (·, ·). C =
C([0, T ];H) is the space of all continuous functions from [0, T ] into H. I2([0, T ];V )
denotes the space of all V -valued processes (Pt)t∈[0,T ], L

2
V = L2([0, T ];V ). W :=

(I2([0, T ];V )
⋂
L2(Ω;C([0, T ];H)))× (I2([0, T ];V )

⋂
L2(Ω;C([0, T ];H))).

To discuss the order of convergence of the numerical methods, we have the
following assumptions.

(A1) limα→A−
∫ A
α
γ(t, a)X(t, a)da = λx > 0; limα→A−

∫ A
α
β(t, a)Y (t, a)da =

λy > 0.
(A2) The fertility rate of females γ(t, a), β(t, a) ∈ C([0, T ]× [0, A];H).
(A3) αij(a) ∈ C([0, A];R+), i, j ∈ {1, 2} and satisfy supa∈[0,A] α12(a)α21(a) <

infa∈[0,A] α11(a)α22(a).
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(A4) ri(a) ∈ C
(
[0, A];R

)
and ri(a) is nondecreasing with −∞ < ri(0) < 0 <

ri(A) < ∞, for i = 1, 2, and hi(t) is the continuous function on [0, T] for
i = 1, 2.

(A5) supa∈[0,A] α12(a)α21(a) < 1 and r1(0)(1−α12α21)+α12(r2(A)+α21r1(A)) <

0; r2(0)(1− α12α21) + α21(r1(A) + α12r2(A)) < 0.

Theorem 2.1. Under Assumptions (A1)–(A5), for each initial value
(Xa0(0), Ya0(0)) ∈ R2

+, there exists at most one solution (X(t), Y (t)) of system
(1.3) on W .

Proof. Assume Ψ1(t) := (X1(t), Y1(t)) and Ψ2(t) := (X2(t), Y2(t)) are two solutions
of (1.3). Applying the Itô formula to |X1(t)−X2(t)|2, we have

|X1(t)−X2(t)|2 = 2

∫ t

0

〈−∂X1(s)

∂a
+
∂X2(s)

∂a
,X1(s)−X2(s)〉ds

+ 2

∫ t

0

(H1x(Ψ1(s))−H1x(Ψ2(s)), X1(s)−X2(s))ds

+ 2

∫ t

0

(H2x(Ψ1(s))−H2x(Ψ2(s)), X1(s)−X2(s))ds

+ λ1

∫ t

0

|J1x(Ψ1(s))− J1x(Ψ2(s))|2ds

+

∫ t

0

|G1x(Ψ1(s))−G1x(Ψ2(s))|2ds

+ 2

∫ t

0

(X1(s)−X2(s), (J1x(Ψ1(s))− J1x(Ψ2(s)))dN(s))

+ 2

∫ t

0

(X1(s)−X2(s), (G1x(Ψ1(s))−G1x(Ψ2(s)))dw(s)).

Since

〈∂(X1(s)−X2(s))

∂a
,X1(s)−X2(s)〉 ≤ 1

2
A2γ̌2|X1(s)−X2(s)|2,

and by Assumptions (A1-A5), we have

|X1(t)−X2(t)|2 ≤ (A2γ̌2 + λ1 + 2)

∫ t

0

|X1(s)−X2(s)|2ds

+ 2(L2
1 + 2ρ2

1 + λ1L
2
1)

∫ t

0

|Ψ1(s)−Ψ2(s)|2ds

+ 2

∫ t

0

(X1(s)−X2(s), (G1x(Ψ1(s))−G1x(Ψ2(s)))dw(s))

+ 2

∫ t

0

(X1(s)−X2(s), (J1x(Ψ1(s))− J1x(Ψ2(s)))dÑ(s)).
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Therefore,

E sup
0≤s≤t

|X1(s)−X2(s)|2

≤ (A2γ̌2 + λ1 + 2)

∫ t

0

E|X1(s)−X2(s)|2ds

+ 2(L2
1 + 2ρ2

1 + λ1L
2
1)

∫ t

0

E|Ψ1(s)−Ψ2(s)|2ds

+ 2E sup
0≤s≤t

∫ s

0

(X1(r)−X2(r), (G1x(Ψ1(r))−G1x(Ψ2(r)))dw(r))

+ 2E sup
0≤s≤t

∫ s

0

(X1(r)−X2(r), (J1x(Ψ1(r))− J1x(Ψ2(r)))dÑ(r)).

(2.1)

Applying the Burkholder-Davis-Gundy (BDG) inequality, we have

E sup
0≤s≤t

∫ s

0

(X1(r)−X2(r), (G1x(Ψ1(r))−G1x(Ψ2(r)))dw(r))

≤ 1

8
E[ sup

0≤s≤t
|X1(s)−X2(s)|2] + k1L

2
1

∫ t

0

E|Ψ1(s)−Ψ2(s)|2ds,
(2.2)

and

E sup
0≤s≤t

∫ s

0

(X1(r)−X2(r), (J1x(Ψ1(r))− J1x(Ψ2(r)))dÑ(r))

≤ 1

8
E[ sup

0≤s≤t
|X1(s)−X2(s)|2] + k2L

2
1

∫ t

0

E|Ψ1(s)−Ψ2(s)|2ds,
(2.3)

where k1 and k2 are determined by the BDG inequality. Substituting (2.2) and
(2.3) into (2.1), we have

E sup
0≤s≤t

|X1(s)−X2(s)|2

≤ 1

2
E[ sup

0≤s≤t
|X1(s)−X2(s)|2] + (A2γ̌2 + λ1 + 2)

∫ t

0

E sup
0≤r≤s

|X1(s)−X2(s)|2ds

+ 2(L2
1 + 2ρ2

1 + λ1L
2
1 + k1L

2
1 + k2L

2
1)

∫ t

0

E sup
0≤r≤s

|X1(s)−X2(s)|2ds.

Then

E sup
0≤s≤t

|X1(s)−X2(s)|2

≤ 4(L2
1 + 2ρ2

1 + λ1L
2
1 + k1L

2
1 + k2L

2
1)

∫ t

0

E sup
0≤r≤s

|Ψ1(s)−Ψ2(s)|2ds

+ 2(A2γ̌2 + λ1 + 2)

∫ t

0

E sup
0≤r≤s

|X1(s)−X2(s)|2ds.

(2.4)
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Similarly, we have

E sup
0≤s≤t

|Y1(s)− Y2(s)|2

≤ 2(A2β̌2 + λ1 + 1 + 2ρ2
2))

∫ t

0

E sup
0≤r≤s

|Y1(r)− Y2(r)|2dr

+ 2(3L2
2 + 2ρ2

2 + λ1L
2
2 + 2k1L

2
2 + 2k2L

2
2)

∫ t

0

E sup
0≤r≤s

|Y1(r)− Y2(r)|2ds.

(2.5)

By (2.4) and (2.5), we deduce that

E sup
0≤s≤t

|Ψ1(s)−Ψ2(s)|2 ≤ 2C

∫ t

0

E sup
0≤r≤s

|Ψ1(r)−Ψ2(r)|2ds,∀t ∈ [0, T ],

where C > 0 is a genetic constant whose values may vary for its different appear-
ance. L1 is defined in Lemma 3.1. Now, by the Gronwall’s lemma, we obtain the
uniqueness of the solution. �

Theorem 2.2. Under Assumptions (A1)–(A5), for each given initial value
(Xa0

(0), Ya0
(0)) ∈ R2

+, there exists a nonnegative global solution (X(t), Y (t)) of
system (1.3) on W .

Proof. It is easy to see that for any given initial value (Xa0
(0), Ya0

(0)) ∈ R2
+,

there exists a local solution (X(t, a), Y (t, a)) ∈ W when t ∈ [0, τe), where τe is the
explosion time of system (1.3). Next, we need to show that τe =∞, a.s.

We choose a positive constant k0 > 1 such that for any initial value

(Xa0
(0), Ya0

(0)) ∈ [
1

k0
, k0]× [

1

k0
, k0].

Then, for each k ≥ k0, the stopping time τk is defined by

τk = inf{t ∧ a ∈ [0, τe) : (X,Y ) /∈ (
1

k
, k)× (

1

k
, k)}.

Next, we should prove that τk is an increasing function and limk→∞ τk = τ∞, where
τ∞ ≤ τe. Assuming that there are two constants T > 0 and ε ∈ (0, 1) such that
P{τ∞ ≤ T} > ε. Then, for the constant k0, there is an integer k1 satisfying

P{τk ≤ T} ≥ ε,∀k ≥ k1. (2.6)

Now, for any constants cx, cy > 0, we define a function V : W → R+ by

V (X,Y ) = cx(X − logX − 1) + cy(Y − log Y − 1).

Using the Itô formula [15], we have

LV (X,Y )

= cx

〈
1− 1

X
,−∂X

∂a
+X(−α11X + α12Y + r1)

〉
+

1

2
(cxσ

2
1 + cyσ

2
2)

+ cy

〈
1− 1

Y
,−∂Y

∂a
+ Y (α21X − α22Y + r2)

〉
+

1

2
λ1(cxh

2
1 + cyh

2
2)

≤ Ψ> diag(cx, cy)R̄− C̄(ĀΨ + R̄) +
1

2
Ψ>(diag(cx, cy)Ā+ Ā> diag(cx, cy))Ψ

+ cx

∫ A

0

1

X
daX + cy

∫ A

0

1

Y
daY +

1

2
(cxσ

2
1 + cyσ

2
2) +

1

2
λ1(cxh

2
1 + cyh

2
2)
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≤ cx log λx + cy log λy −
[
cx log |

∫ A

0

γ(t, a)X(t, a)da|

+ cy log |
∫ A

0

β(t, a)Y (t, a)da|
]

+
1

2
(cxσ

2
1 + cyσ

2
2) + Ψ> diag(cx, cy)R̄

− C̄(ĀΨ + R̄) +
1

2
λ1(cxh

2
1 + cyh

2
2) +

1

2
Ψ>(diag(cx, cy)Ā+ Ā> diag(cx, cy))Ψ,

where

Ψ =

(
X(t, a)
Y (t, a)

)
, R̄ =

(
r1(a)
r2(a)

)
, C̄> =

(
cx
cy

)
,

Ā =

(
−α11(a) α12(a)
α21(a) −α22(a)

)
, diag(cx, cy) =

(
cx 0
0 cy

)
.

By Assumptions (A1)–(A5), since −Ā is a nonsingular M-matrix, we have

LV (X,Y )

≤ cx log λx + cy log λy −
[
cx log

∣∣ ∫ A

0

γ(t, a)X(t, a)da
∣∣

+ cy log
∣∣ ∫ A

0

β(t, a)Y (t, a)da
∣∣]+

1

2
(cxσ

2
1 + cyσ

2
2)

+ Ψ> diag(cx, cy)R̄− C̄(ĀΨ + R̄) +
1

2
λ1(cxh

2
1 + cyh

2
2)

≤ cx log λx + cy log λy −
[
cx log

∣∣ ∫ A

0

γ(t, a)X(t, a)da
∣∣

+ cy log
∣∣ ∫ A

0

β(t, a)Y (t, a)da
∣∣]+ {R̄> diag(cx, cy)− C̄Ā}Ψ

+
1

2
(cxσ

2
1 + cyσ

2
2)− r1cx − r2cy +

1

2
λ1(cxh

2
1 + cyh

2
2),

and
LV (x, y) ≤

∣∣R̄> diag(cx, cy)− C̄Ā
∣∣ · |Ψ|+ C ≤M1(1 + |Ψ|). (2.7)

Letting M2 =
cx∨cy
cx∧cy and M3 = cx ∧ cy, we obtain

M2V (X,Y ) =
cx ∨ cy
cx ∧ cy

[
cx(X − 1− logX) + cy(Y − 1− log Y )

]
≥ V (X,Y ).

Since |Ψ| = (X2 + Y 2)1/2 ≤ X + Y , it yields

|Ψ| ≤ 2(X − 1− logX) + 2(Y − 1− log Y ) + 4 ≤ 4 +
2

M3
V (X,Y ). (2.8)

By (2.7) and (2.8), we obtain

LV (X,Y ) ≤M4(1 + V (X,Y )),

where M4 = M1(5 ∨ 2/M3). Then, we have

EV (X(t ∧ τk), Y (t ∧ τk)) ≤ V (X0, Y0) + E
∫ t∧τk

0

M4(1 + V (X(s), Y (s)))ds

≤M5 +M4

∫ t

0

EV (X(s ∧ τk), Y (s ∧ τk))ds,

where M5 = V (X0, Y0) +M4T .
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By the Gronwall inequality, we have

EV (X(τk ∧ T ), Y (τk ∧ T )) ≤M5e
M4T .

According to (2.6) and for any k ≥ k1, ω ∈ Ωk, (t, a) ∈ Q, X(τk, ω) and Y (τk, ω)
equal either k or 1

k , hence we have

V (X(τk, ω), Y (τk, ω))

≥
[
cx(k − 1− log k) + cy(k − 1− log k)

]
∧
[
cx(

1

k
− 1 + log k) + cy(

1

k
− 1 + log k)

]
,

and

M5e
M4T ≥ ε

[
cx(k−1−log k)+cy(k−1−log k)

]
∧
[
cx(

1

k
−1+log k)+cy(

1

k
−1+log k)

]
.

Taking k →∞, we obtain a contradictiion, ∞ > M5e
M4T ≥ ∞. �

3. Euler Maruyama (EM) method

In this section, we apply the EM approximate solution to system (1.3), and
discuss the boundedness moments of the scheme. First, we introduce notation.

H1x(Ψ) := H1x(X,Y ) := r1(a)X(t, a),

H1y(Ψ) := H1y(X,Y ) := r2(a)Y (t, a),

G1x(Ψ) := G1x(X,Y ) := σ1X(t, a) := σ1X(t),

G1y(Ψ) := G1y(X,Y ) := σ2Y (t, a) := σ2Y (t),

H2x(Ψ) := H2x(X,Y ) := X(t, a)[−α11(a)X(t, a) + α12(a)Y (t, a)],

H2y(Ψ) := H2y(X,Y ) := Y (t, a)[α21(a)X(t, a)− α22(a)Y (t, a)],

J1x(Ψ) := J1x(X,Y ) := h1(t)X(t, a) := h1(t)X(t),

J1y(Ψ) := J1y(X,Y ) := h2(t)Y (t, a) := h2(t)Y (t).

The equilibria of (1.3) are: E0(0, 0), E1( r1(A)
α11

, 0), E2(0, r2(A)
α22

), and E∗(x
∗, y∗),

where

x∗ =
α22(a)r1(A) + α12(a)r2(A)

α11(a)α22(a)− α12(a)α21(a)
, y∗ =

α11(a)r2(A) + α21(a)r1(A)

α11(a)α22(a)− α12(a)α21(a)
.

Lemma 3.1. Under Assumptions (A1)–(A5), for each ψ1, ψ2 ∈W , we have

|H2x(ψ1)−H2x(ψ2)| ≤ ρ1|ψ1 − ψ2|1 ≤ 21/2ρ1|ψ1 − ψ2|2,

|H2y(ψ1)−H2y(ψ2)| ≤ ρ2|ψ1 − ψ2|1 ≤ 21/2ρ2|ψ1 − ψ2|2,
|H1x(ψ1)−H1x(ψ2)| ∨ |G1x(ψ1)−G1x(ψ2)| ∨ |J1x(ψ1)− J1x(ψ2)| ≤ L1|ψ1 − ψ2|,
|H1y(ψ1)−H1y(ψ2)| ∨ |G1y(ψ1)−G1y(ψ2)| ∨ |J1y(ψ1)− J1y(ψ2)| ≤ L2|ψ1 − ψ2|,

where L1, L2 are constants, ρ1 = 2x∗ − r1(0) + α12(x∗ + y∗), ρ2 = 2y∗ − r2(0) +
α21(x∗ + y∗), ψ>i (t, a) = (xi(t, a), yi(t, a)), (i = 1, 2).

The proof of this lemma is similar to that in Yang et al. [25], we omit it here.

Corollary 3.2. From Lemma 3.1, we can conclude that there exist constants K1

and K2 such that

|H1x(ψ)| ∨ |G1x(ψ)| ∨ |J1x(ψ)| ≤ K1(1 + |ψ|),
|H1y(ψ)| ∨ |G1y(ψ)| ∨ |J1y(ψ)| ≤ K2(1 + |ψ|),
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and

x ·H2x(ψ) ≤ 21/2ρ1(1 + |ψ|2), y ·H2y(ψ) ≤ 21/2ρ2(1 + |ψ|2),

where ψ(t, a) is the numerical solution of (1.3) and ψ(t, a) = (x(t, a), y(t, a))>.

From now on, we fix T > 0 and the time step ∆ ∈ (0, 1). Let tk = k∆ for
k = 0, 1, 2, . . . , [T/∆], where [T/∆] denotes the integer part of T/∆. Then, we
form the discrete time EM solutions by setting X(0) = Xa(0), Y (0) = Ya(0) and
computing

xk+1 = xk +
{
− ∂xk

∂a
+ r1(a)xk − α11(a)xkxk + α12(a)xkyk

}
∆ + σ1xk∆wk

+ h1xk∆Nk,

yk+1 = yk +
{
− ∂yk

∂a
+ r2(a)yk + α21(a)xkyk − α22(a)ykyk

}
∆ + σ2yk∆wk

+ h2yk∆Nk,

where ∆wk = wtk+1
− wtk , ∆Nk = Ntk+1

−Ntk .
The continuous time process is defined as

x(t) = x0 −
∫ t

0

∂x̄(s)

∂a
ds+

∫ t

0

{r1(a)x̄(s)− α11(a)x̄(s)x̄(s) + α12(a)x̄(s)ȳ(s)}ds

+

∫ t

0

σ1x̄(s)dw(s) +

∫ t

0

h1x̄(s)dN(s),

y(t) = y0 −
∫ t

0

∂ȳ(s)

∂a
ds+

∫ t

0

{r2(a)ȳ(s) + α21(a)x̄(s)ȳ(s)− α22(a)ȳ(s)ȳ(s)}ds

+

∫ t

0

σ2ȳ(s)dw(s) +

∫ t

0

h2ȳ(s)dN(s). (3.1)

where

x̄(t) =

[ T
∆ ]∑
k=0

xk1[tk,tk+1)(t), ȳ(t) =

[ T
∆ ]∑
k=0

yk1[tk,tk+1)(t)

are the step processes. We can easily see that x̄(t) = xk and ȳ(t) = yk for t ∈
[tk, tk+1) when k = 0, 1, 2, . . . , [ T∆ ]. In the following proof, we use ψ(t) = (x(t), y(t))
to represent the numerical solution of the system (1.3).

Theorem 3.3. Under Assumptions (A1)–(A5), there exists a constant C > 0 such
that

sup
0≤t≤T

E|ψ(t)|2 ≤ C,

where C dependents only on T .

Proof. Applying the Itô formula to the first equation of (3.1), we have

|x(t)|2 = |x0|2 + 2

∫ t

0

〈−∂x(s)

∂a
+H1x +H2x, x(s)〉ds+

∫ t

0

||G1x||2ds

+ 2

∫ t

0

(x(s), G1xdw(s)) + 2

∫ t

0

(x(s), J1xdN(s)) + λ1

∫ t

0

|J1x|2ds.

Since 〈
− ∂x(s)

∂a
, x(s)

〉
= −

∫ A

0

x(s)dax(s) =
1

2

[ ∫ A

0

γ(s, a)x(s, a)da
]2



10 M. ZHANG, J. TIAN, K. ZOU EJDE-2023/02

≤ 1

2

∫ A

0

γ2(s, a)da

∫ A

0

x2(s, a)da

≤ 1

2
A2γ̌2(s, a)|x(s, a)|2,

by the assumptions we have

|x(t)|2 ≤

|x0|2 +A2γ̌2(s, a)

∫ t

0

|x(s)|2ds+ 2

∫ t

0

(H1x +H2x, x(s))ds+ 2

∫ t

0

(x(s), G1xdw(s))

+

∫ t

0

||G1x||2ds+ 2

∫ t

0

(J1xdN(s), x(s)) + λ1

∫ t

0

|J1x|2ds

≤ |x0|2 +A2γ̌2(s, a)

∫ t

0

|x(s)|2ds+ 2

∫ t

0

|H1x|2ds+ 2

∫ t

0

|H2x|2ds+

∫ t

0

|x(s)|2ds

+ 2

∫ t

0

(x(s), G1xdw(s)) +

∫ t

0

||G1x||2ds+ 2

∫ t

0

(J1xdN(s), x(s)) + λ1

∫ t

0

|J1x|2ds

≤ |x0|2 + (A2 · γ̌2 + 1)

∫ t

0

|x(s)|2ds+ [(3 + λ1)L2
1 + 4ρ2

1]

∫ t

0

|ψ(s)|2ds

+ 2

∫ t

0

(x(s), G1xdw(s)) + 2

∫ t

0

(x(s), J1xdÑ(s)).

Then

E sup
0≤s≤t

|x(s)|2 ≤ (A2 · γ̌2 + 1)

∫ t

0

E sup
0≤s≤t

|x(s)|2ds

+ [(3 + λ1)L2
1 + 4ρ2

1]

∫ t

0

E sup
0≤s≤t

|ψ(s)|2ds

+ E|x0|2 + 2E sup
0≤s≤t

∫ s

0

(x(r), G1xdw(r))

+ 2E sup
0≤s≤t

∫ s

0

(x(r), J1xdÑ(r)).

(3.2)

By the BDG inequality, we obtain

E sup
0≤s≤t

∫ s

0

(x(r), G1xdw(r)) ≤ 1

8
E[ sup

0≤s≤t
|x(s)|2] + C1L

2
1

∫ t

0

E|ψ(s)|2ds, (3.3)

E sup
0≤s≤t

∫ s

0

(x(r), J1xdÑ(r)) ≤ 1

8
E[ sup

0≤s≤t
|x(s)|2] + C2

∫ t

0

E|ψ(s)|2ds, (3.4)

where C1 and C2 are determined by the BDG inequality.
According to (3.2), (3.3), and (3.4), we have

E sup
0≤s≤t

|x(s)|2 ≤ [(3 + λ1 + 2C1 + 2C2)L2
1 + 4ρ2

1]

∫ t

0

E sup
0≤s≤t

|ψ(s)|2ds

+ 2E|x0|2 + (A2 · γ̌2 + 1)

∫ t

0

E sup
0≤r≤s

|x(r)|2ds.
(3.5)
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Similarly,

E sup
0≤s≤t

|y(s)|2 ≤ 2E|y0|2 + (A2β̌2 + 2λ1 + 1)

∫ t

0

E sup
0≤s≤t

|y(s)|2ds

+ [(3 + 2λ1 + 2C1 + 2C2)L2
2 + 4ρ2

2]

∫ t

0

E sup
0≤s≤t

|ψ(s)|2ds.
(3.6)

By (3.5) and (3.6), we have

E sup
0≤s≤t

|ψ(t)|2

≤ 2E|ψ0|2 + [2A2(β̌2 ∨ γ̌2) + 2 + 4λ1]

∫ t

0

E sup
0≤r≤s

|ψ(r)|2ds

+ [(6 + 2λ1 + 2C1 + 2C2)(L2
1 ∨ L2

2) + 2(ρ2
1 ∨ ρ2

2)]

∫ t

0

E sup
0≤s≤t

|ψ(s)|2ds.

By Gronwall’s inequality, E supt∈[0,T ] |ψ(t)|2 ≤ C. �

Based on Theorem 3.3, we can prove the convergence of ψ(t) and ψ̄(t).

Theorem 3.4. Under Assumptions (A1)–(A5), we have

E sup
0≤t≤T

|ψ(t)− ψ̄(t)|2 ≤ C∆,

where C only dependents on T .

Proof. First, we have

x(t)− x̄(t) = −
∫ t

tk

∂x(s)

∂a
ds+

∫ t

tk

[H1x +H2x]ds+

∫ t

tk

G1xdw(s) +

∫ t

tk

J1xdN(s),

thus

|x(t)− x̄(t)|2

≤ 4|
∫ t

tk

∂x(s)

∂a
ds|2 + 4|

∫ t

tk

[H1x +H2x]ds|2 + 4|
∫ t

tk

G1xdw(s)|2 + 4|
∫ t

tk

J1xdN(s)|2

≤ 4∆

∫ t

tk

|∂x(s)

∂a
|2ds+ 4∆

∫ t

tk

|H1x +H2x|2ds+ 4|
∫ t

tk

G1xdw(s)|2 + 8|λ1

∫ t

tk

J1xds|2

≤ 4∆

∫ t

tk

|∂x(s)

∂a
|2ds+ 8∆[

∫ t

tk

(|H2
1x|+ |H2

2x|)ds] + 4|
∫ t

tk

G1xdw(s)|2

+ 8|
∫ t

tk

J1xdN̄(s)|2 + 8|λ1

∫ t

tk

J1xds|2.

by Lemma 3.1,

E sup
t∈[0,T ]

|x(t)− x̄(t)|2 ≤ 5E sup
t∈[0,T ]

max
k=0,1,...,N−1

∣∣ ∫ t

tk

G1x(ψ)dw(s)
∣∣2

+ 8E sup
t∈[0,T ]

max
k=0,1,...,N−1

∣∣ ∫ t

tk

J1x(ψ)dÑ(s)
∣∣2

+ 5∆

∫ t

tk

|∂x(s)

∂a
|2ds+ 8TC[L2

1 + 2ρ1 + 8λ2
1L

2
1]∆.
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According to the Doob inequality, we obtain

E sup
t∈[0,T ]

|x(t)− x̄(t)|2 ≤ 5∆

∫ t

tk

|∂x(s)

∂a
|2ds+ 8TC[L2

1 + 2ρ1 + 8λ2
1L

2
1]∆

+ 5 max
k=0,1,...,N−1

∫ (k+1)∆

k∆

E|G1x(x, y)|2ds

+ 8λ1 max
k=0,1,...,N−1

∫ (k+1)∆

k∆

E|J1x(x, y)|2ds

≤ 5∆

∫ t

tk

|∂x(s)

∂a
|2ds+ 8TC[L2

1 + 2ρ1 + 8λ2
1L

2
1]∆

+ 5L2
1C∆ + 8λ1L

2
1C∆.

(3.7)

Since

y(t)− ȳ(t) =

∫ t

tk

∂y(s)

∂a
ds+

∫ t

tk

[H1y +H2y]ds+

∫ t

tk

G1ydw(s) +

∫ t

tk

J1ydN(s),

we have

|y(t)− ȳ(t)|2

≤ 4|
∫ t

tk

∂y(s)

∂a
ds|2 + 4|

∫ t

tk

[H1y +H2y]ds|2 + 4|
∫ t

tk

G1ydw(s)|2 + 4|
∫ t

tk

J1ydN(s)|2

≤ 4∆

∫ t

tk

|∂y(s)

∂a
|2ds+ 4∆

∫ t

tk

|H1y +H2y|2ds+ 4|
∫ t

tk

G1ydw(s)|2

+ 8|
∫ t

tk

J1ydN̄(s)|2 + 8|λ1

∫ t

tk

J1yds|2

≤ 4∆

∫ t

tk

|∂y(s)

∂a
|2ds+ 8∆

∂y(s)

∂a
[|H2

1y + |H2y|2]ds+ 4|
∫ t

tk

G1ydw(s)|2

+ 8|
∫ t

tk

J1ydN̄(s)|2 + 8|λ1J1yds|2.

Using Lemma 3.1, we obtain

E sup
t∈[0,T ]

|y(t)− ȳ(t)|2

≤ 4∆

∫ t

tk

|∂y(s)

∂a
|2ds+ 8TC∆[L2

2 + 2ρ2] + 8λ2
1L

2
2TC∆

+ 4E sup
t∈[0,T ]

max
0≤k≤N−1

∣∣ ∫ t

k∆

G1y(ψ)dw(s)
∣∣2

+ 4E sup
t∈[0,T ]

∣∣ ∫ t

k∆

J1y(ψ)dÑ(s)
∣∣2

≤ 4∆

∫ t

tk

|∂y(s)

∂a
|2ds+ C[8T (L2

2 + 2ρ2 + λ2
1L

2
2) + 4L2

2 + 8λ1L
2
2]∆.

(3.8)

By (3.7) and (3.8), we deduce that

E sup
t∈[0,T ]

|ψ(t)− ψ̄(t)|2 ≤ 4∆

∫ t

tk

|∂ψ(s)

∂a
|2ds+ C ′∆.
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Then, we obtain the result. �

Theorem 3.4 shows that the numerical solution converges to the step process.
Now, we can discuss the convergence relation between the true and numerical so-
lution of the system (1.3).

4. Convergence rates over the time interval [0, T ]

Theorem 4.1. Under Assumptions (A1)–(A5), there exists a constant C such that

E|Ψ(t)− ψ(t)|2 < C∆.

Proof. For any t ∈ [0, T ], there exists a positive integer k such that t ∈ [tk, tk+1],
and

X(t)− x(t) = −
∫ t

0

∂X(s)− x(s)

∂a
ds

+

∫ t

0

[H1x(Ψ(s)) +H2x(Ψ(s))−H1x(ψ̄(s))−H2x(ψ̄(s))]ds

+

∫ t

0

(G1x(Ψ(s))−G1x(ψ(s)))dw(s)

+

∫ t

0

(J1x(Ψ(s))− J1x(ψ̄(s)))dN(s).

According to the Itô formula, we have

d|X(t)− x(t)|2

= −2〈X(t)− x(t),
∂(X(t)− x(t))

∂a
〉dt+ 2(X(t)− x(t), H1x(Ψ(s)−H1x(ψ̄(s))))dt

+ 2(X(t)− x(t), H2x(Ψ(s)−H2x(ψ̄(s))))dt

+ 2(X(t)− x(t), (G1x(Ψ(t))−G1x(ψ̄(t)))dw(t))

+ |G1x(Ψ(t))−G1x(ψ̄(t))|2dt+ λ1|J1x(Ψ(t))− J1x(ψ̄(t))|2dt
+ 2(X(t)− x(t), (J1x(Ψ(t))− J1x( ¯ψ(t)))dN(t))

≤ A2γ̌2|X(t)− x(t)|2dt+ L1|X(t)− x(t)|2dt+ L1|Ψ(t)− ψ̄(t)|2dt
+ |X(t)− x(t)|2dt+ 2ρ2

1|Ψ(t)− ψ̄(t)|2dt
+ 2(X(t)− x(t), (G1x(Ψ(t))−G1x(ψ̄(t)))dw(t))

+ L2
1|Ψ(t)− ψ(t)|2dt+ λ1L

2
1|Ψ(t)− ψ̄(t)|2dt

+ 2(X(t)− x(t), (J1x(Ψ(t))− J1x(ψ̄(t)))dÑ(t)) + λ1|X(t)− x(t)|2

+ λ1|J1x(Ψ(t))− J1x(ψ̄(t))|2dt.
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Moreover,

E sup
s∈[0,t]

|X(t)− x(t)|2

≤ ((A2)γ̌2 + L1 + λ1 + 1)

∫ t

0

E sup
s∈[0,t]

|X(r)− x(r)|2ds

+ ((2λ1 + 1)L2
1 + 2ρ2

1 + 1)E
∫ t

0

|Ψ(s)− ψ̄(s)|2ds

+ E sup
s∈[0,t]

∫ t

0

2(X(s)− x(s), (G1x(Ψ(s))−G1x(ψ̄(s)))dw(s))

+ 2E sup
s∈[0,t]

∫ t

0

(X(s)− x(s), (J1x(Ψ(s))− J1x(ψ̄(s)))dÑ(s)).

(4.1)

By the BDG inequality, we have

E sup
s∈[0,t]

∫ s

0

(X(s)− x(s), (G1x(Ψ(s))−G1x(ψ̄(s)))dw(s))

≤ 1

8
E[ sup

0≤s≤t
|X(s)− x(s)|2] + k1

∫ t

0

E|Ψ(s)− ψ̄(s)|2ds,
(4.2)

and

E sup
s∈[0,t]

∫ s

0

(X(s)− x(s), (J1x(Ψ(s))− J1x(ψ̄(s)))dÑ(s))

≤ 1

8
E[ sup

0≤s≤t
|X(s)− x(s)|2] + k2

∫ t

0

E|Ψ(s)− ψ̄(s)|2ds,
(4.3)

where k1 and k2 are two positive constants.
Substituting (4.2) and (4.3) into (4.1), we have

E sup
s∈[0,t]

|X(s)− x(s)|2 ≤ (A2γ̌2 + L1 + λ1 + 1)

∫ t

0

E sup
r∈[0,s]

|X(s)− x(s)|2ds

+ 2(L2
1 + 2λ1L

2
1 + 2ρ2

1 + L1)

∫ t

0

E sup
r∈[0,s]

|Ψ(s)− ψ(s)|2ds

+ 2(L2
1 + 2λ1L

2
1 + 2ρ2

1 + L1)E sup
r∈[0,s]

|ψ(s)− ψ̄(s)|2ds

+
1

4
E[ sup

0≤s≤t
|X(s)− x(s)|2] + 2k1

∫ t

0

E|Ψ(s)− ψ̄(s)|2ds

+
1

4
E[ sup

0≤s≤t
|X(s)− x(s)|2] + 2k2

∫ t

0

E|Ψ(s)− ψ̄(s)|2ds

=
1

2
E[ sup

0≤s≤t
|X(s)− x(s)|2] + (A2γ̌2 + L1 + λ1 + 1)

∫ t

0

E sup
r∈[0,s]

|X(s)− x(s)|2ds

+ 2(L2
1 + 2λ1L

2
1 + 2ρ2

1 + L1 + 2k1 + 2k2)

∫ t

0

E sup
r∈[0,s]

|Ψ(s)− ψ(s)|2ds

+ 2(L2
1 + 2λ1L

2
1 + 2ρ2

1 + L1 + 2k2)

∫ t

0

E sup
s∈[0,t]

|ψ(s)− ψ̄(s)|2ds.

We apply the same method to |Y (t)− y(t)|2 and complete the proof. �
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Corollary 4.2. Under Assumptions (A1)–(A5), the numerical solution of system
(1.3) will converge to the true solution in the sense that

lim
∆t→0

E
(

sup
0≤t≤T

|Ψ(t)− ψ(t)|2
)

= 0.

From Theorem 4.1 and Corollary 4.2, we can conclude that the numerical solution
ψ(t) and the true solution Ψ(t) are close to each other, which shows that the
numerical algorithm constructed in this paper is effective.

5. Numerical experiments

To illustrate the theorems in this paper, we consider the stochastic age-structured
cooperative LV system for numerical simulations,

dtX = −∂X
∂a

dt+X[− 1

(1− a)2
X + cos2 aY − 2]dt− 1

2
dw(t) +

1

3
x(t−)dN(t),

dtY = −∂Y
∂a

dt+ Y [sin2 aX − e 1
aY + 3a− 2]dt− 1

2
dw(t) +

1

3
y(t−)dN(t),

X(t, 0) =

∫ 1

0

1

1− a
X(t, a)da, t ∈ [0, 1], (5.1)

Y (t, 0) =

∫ 1

0

1

1− a
Y (t, a)da, t ∈ [0, 1],

X(0, a) = e
−2
1−a , Y (0, a) = e

−2
1−a , a ∈ [0, 1],

where α11(a) = 1
(1−a)2 , α12(a) = cos2 a, α21(a) = sin2 a, α22(a) = e−

1
a , and

γ(t, a) = β(t, a) = 1
1−a . In the first two equations, we have (t, a) ∈ Q We simulate

the EM numerical approximate solution of the two species respectively (see Figure
1).

Approximate solution X(t, a) Approximate solution Y (t, a)

Figure 1. EM numerical approximate solutions of system (5.1).

Next, we simulate the true solution of the system (5.1) by using the method in
literature [10]. The Figure 2 shows that the true solutions of X(t, a) and Y (t, a)
with perturbation, respectively.

Figure 3 and Figure 4 are the error between the true solution and the numerical
approximate solution of system (5.1). We can observe that the maximum value of
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True solution X(t, a) True solution Y (t, a)

Figure 2. True solutions with the perturbation of system (5.1).

the squared error of X(t, a) and Y (t, a) are below 0.3 and 0.15, respectively, which
means that the numerical approximate solution convergent to the true solution
effectively.

Error beqtween X(t, a) and x(t, a) Error square beqtween X(t, a) and x(t, a)

Figure 3. Simulation error in species X(t, a) of system (5.1).
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