Julie L. Levandosky, Octavio Vera
Abstract:
In this article we study the smoothness properties of solutions to a two-dimensional
coupled Zakharov-Kuznetsov system.
We show that the equations dispersive nature leads to a gain in regularity for the
solution. In particular, if the initial data (u0,v0) possesses certain
regularity and sufficient decay as x → ∞, then the solution
(u(t),v(t)) will be smoother than (u0, v0)
for 0 < t ≤ T where T is the existence time of the solution.
Submitted April 18, 2022. Published February 4, 2023.
Math Subject Classifications: 35Q53, 35Q35, 47J35.
Key Words: Coupled Zakharov-Kuznetsov system; gain in regularity; weighted Sobolev space.
DOI: https://doi.org/10.58997/ejde.2023.11
Show me the PDF file (456 KB), TEX file for this article.
Julie L. Levandosky Department of Mathematics Framingham State University Framingham, MA 01701 USA email: jlevandosky@framingham.edu | |
Octavio Vera Departamento de Matemáticas Universidad de Tarapaca Casilla 7-D, Arica, Chile email: opverav@academicos.uta.cl |
Return to the EJDE web page