Electron. J. Differential Equations, Vol. 2023 (2023), No. 16, pp. 1-10.

Nonexitence of nontrivial solutions to Dirichlet problems for the fractional Laplacian

Jose Carmona, Alexis Molino

Abstract:
In this article we prove that there are no nontrivial solutions to the Dirichlet problem for the fractional Laplacian $$ \displaylines{(-\Delta)^s u =f(u) \quad \text{in }\Omega,\\ u=0 \quad \text{in } \mathbb{R}^N \backslash \Omega,}$$ where \(\Omega \subset \mathbb{R}^N\) (\(N\geq 1\)) is a bounded domain, and f is locally Lipschitz with non-positive primitive \(F(t)= \int_0^t f(\tau)d\tau\).

Submitted March 30, 2022 Published February 17, 2023.
Math Subject Classifications: 35J05, 35J15, 35J25.
Key Words: Fractional Laplacian; Dirichlet problem; nonexistence of solutions.
DOI: https://doi.org/10.58997/ejde.2023.16

Show me the PDF file (337 KB), TEX file for this article.

José Carmona
Departamento de Matemáticas
Universidad de Almería
Facultad de Ciencias Experimentales
Ctra. de Sacramento sn. 04120 La Cañada de San Urbano. Almería, Spain
email: jcarmona@ual.es
Alexis Molino
Departamento de Matemáticas
Universidad de Almería
Facultad de Ciencias Experimentales
Ctra. de Sacramento sn. 04120 La Cañada de San Urbano. Almería, Spain
email: amolino@ual.es

Return to the EJDE web page