Jose Carmona, Alexis Molino
Abstract:
In this article we prove that there are no nontrivial solutions to
the Dirichlet problem for the fractional Laplacian
$$ \displaylines{(-\Delta)^s u =f(u) \quad \text{in }\Omega,\\ u=0 \quad \text{in } \mathbb{R}^N \backslash \Omega,}$$ where
\(\Omega \subset \mathbb{R}^N\) (\(N\geq 1\)) is a bounded domain,
and f is locally Lipschitz with non-positive primitive \(F(t)= \int_0^t f(\tau)d\tau\).
Submitted March 30, 2022 Published February 17, 2023.
Math Subject Classifications: 35J05, 35J15, 35J25.
Key Words: Fractional Laplacian; Dirichlet problem; nonexistence of solutions.
DOI: https://doi.org/10.58997/ejde.2023.16
Show me the PDF file (337 KB), TEX file for this article.
José Carmona Departamento de Matemáticas Universidad de Almería Facultad de Ciencias Experimentales Ctra. de Sacramento sn. 04120 La Cañada de San Urbano. Almería, Spain email: jcarmona@ual.es | |
Alexis Molino Departamento de Matemáticas Universidad de Almería Facultad de Ciencias Experimentales Ctra. de Sacramento sn. 04120 La Cañada de San Urbano. Almería, Spain email: amolino@ual.es |
Return to the EJDE web page