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BLOW-UP CRITERIA AND INSTABILITY OF STANDING

WAVES FOR THE FRACTIONAL SCHRÖDINGER POISSON

EQUATION

YICHUN MO, MIN ZHU, BINHUA FENG

Abstract. In this article, we consider blow-up criteria and instability of
standing waves for the fractional Schrödinger-Poisson equation. By using the

localized virial estimates, we establish the blow-up criteria for non-radial so-

lutions in both mass-critical and mass-supercritical cases. Based on these
blow-up criteria and three variational characterizations of the ground state,

we prove that the standing waves are strongly unstable. These obtained re-
sults extend the corresponding ones presented in the literature.

1. Introduction

In recent years, there has been a great deal of interest in using fractional Lapla-
cians to model physical phenomena. By extending the Feynman path integral from
the Brownian-like to the Lévy-like quantum mechanical paths, Laskin [23, 24] used
the theory of functionals over functional measure generated by the Lévy stochastic
process to introduce the fractional nonlinear Schrödinger equation (NLS)

i∂tψ − (−∆)sψ + f(ψ) = 0, (1.1)

where i2 = −1, 0 < s < 1 and f(ψ) is the nonlinearity. The fractional differential
operator (−∆)s is defined by (−∆)sψ = F−1[|ξ|2sF(ψ)], where F and F−1 are the
Fourier transform and inverse Fourier transform, respectively. The fractional NLS
also appears in the continuum limit of discrete models with long-range interactions
(see [22]) and in the description of Bonson stars as well as in water wave dynamics
(see [15]). Recently, an optical realization of the fractional Schrödinger equation
was proposed by Longhi [28].

In this article, we consider the blow-up criteria and the strong instability of
standing waves for the fractional Schrödinger-Poisson equation

i∂tψ − (−∆)sψ − φψ + |ψ|pψ = 0, (t, x) ∈ [0, T ∗)× R3,

(−∆)rφ = |ψ|2,
(1.2)
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where ψ : [0, T ∗) × R3 → C is the complex valued function, s, r ∈ (0, 1), and
0 < T ∗ ≤ ∞, 0 < p < 4s

3−2s . Under this assumption, φ can be expressed as

φ(x) = cr

∫
R3

|ψ(y)|2

|x− y|3−2r
dy, (1.3)

which is called the r-Riesz potential, where

cr = π−3/22−2r Γ( 3
2 − 2r)

Γ(r)
.

In (1.3), and in the sequel, in we often omit the constant cr for convenience of
notation. Substituting φ into (1.2) leads to the fractional Schrödinger equation

i∂tψ − (−∆)sψ − (|x|−(3−2r) ∗ |ψ|2)ψ + |ψ|pψ = 0, (t, x) ∈ [0, T ∗)× R3,

ψ(0, x) = ψ0(x),
(1.4)

where ψ0 ∈ Hs.
For the classical NLS, i.e., s = 1, we have the Variance-Virial Law

1

2

d

dt

∫
R3

|x|2|ψ(t, x)|2 dx = 2 Im

∫
R3

ψ̄(t, x)x · ∇ψ(t, x) dx, (1.5)

provided that ψ0 ∈ Σ := {v ∈ H1 : xv ∈ L2}, where Im denotes the imaginary
part. By using (1.5) and the virial identity, we can obtain the blow-up results for
the classical NLS with negative energy E(ψ0) < 0 and finite variance [5]. However,
this argument breaks down for 0 < s < 1, since identity (1.5) fails in this case
by the dimensional analysis. It turns out that the suitable generalization of the
variance for the fractional NLS is

V(s)[ψ(t)] :=

∫
R3

ψ̄(t, x)x · (−∆)1−sxψ(t, x) dx = ‖x(−∆)
1−s
2 ψ(t)‖2L2 . (1.6)

Given any sufficiently regular and spatially localized solution ψ(t) of the free frac-
tional Schrödinger equation i∂tψ = (−∆)sψ, a calculation yields

1

2

d

dt
V(s)[ψ(t)] := 2 Im

∫
R3

ψ̄(t, x)x · ∇ψ(t, x) dx. (1.7)

This idea has been successfully applied to prove the blow-up results for (1.1) with
radial solutions and the Hartree-type nonlinearity (|x|−γ ∗ |ψ|2)ψ with γ ≥ 1 in
[6, 43]. But this method can not work due to the nontrivial error terms which seem
very hard to control for the local nonlinearity |ψ|pψ. Boulenger et al. [3] applied
the Balakrishman’s formula

(−∆)s =
sinπs

π

∫ ∞
0

ms−1 −∆

−∆ +m
dm, (1.8)

and obtained the differential estimate
d

dt

(
Im

∫
R3

ψ̄(t)∇ϕR · ∇ψ(t) dx
)

≤ 12pE(ψ0)− 2δ‖(−∆)s/2ψ(t)‖2L2 + ◦R(1)(1 + ‖(−∆)s/2ψ(t)‖p/s+L2 ),

where δ = 3p − 2s. With the help of this key estimate, they proved the existence
of radial blow-up Hs solutions by applying the comparison theory.

However, to the best of our knowledge, there are no any blow-up results for
(1.4) so far. In particular, equation (1.4) includes two classical nonlinearities, i.e.,
power-type |ψ|pψ and Hartree-type (|x|−(3−2r) ∗ |ψ|2)ψ. The study of blow-up
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solutions for (1.4) is of particular challenge, because the methods for proving blow-
up results of (1.1) with power-type |ψ|pψ or Hartree-type (|x|−(3−2r) ∗ |ψ|2)ψ are
usually different, so we should develop a new method when both nonlinearities
appear simultaneously.

Inspired by the ideas in [9], we study the blow-up criteria for (1.4). The difficulty
is the presence of the fractional order Laplacian (−∆)s. When s = 1, we have

1

2

d

dt

∫
R3

ϕ(x)|ψ(t, x)|2 dx = 2 Im

∫
R3

ψ̄(t, x)∇ϕ(x) · ∇ψ(t, x) dx. (1.9)

Using this identity, Du et al. [9] derived an L2-estimate in the exterior ball. Thanks
to this L2-estimate and the virial estimates, they established the blow-up criteria for
the classical NLS. In the case s ∈ ( 1

2 , 1), the identity (1.9) does not hold. However,
by exploiting the idea in [3] and the use of the Balakrishman’s formula (1.8), we
can obtain the time derivative of the virial action. Thus, we can obtain the blow-up
criteria for (1.4).

Theorem 1.1. Let s ∈ (1/2, 1) and ψ0 ∈ Hs be the corresponding (not necessary
radial) solution to (1.4) on the maximal time interval [0, T ∗). If there exists δ > 0
such that

sup
t∈[0,T∗)

Q(ψ(t)) ≤ −δ < 0, (1.10)

where Q(ψ(t)) is defined by (1.14). Then one of the following statements is true:

• ψ(t) blows up in finite time, i.e. T ∗ < +∞; or
• ψ(t) blows up in infinite time and there exists a time sequence (tn)n≥1 such

that tn → +∞ and

lim
n→∞

‖(−∆)s/2ψ(tn)‖L2 =∞. (1.11)

Based on the blow-up criterion (1.10), we will study the strong instability of
standing waves of (1.4). The standing waves of (1.4) are solutions of the form
eiωtu, where ω ∈ R is a frequency and u ∈ Hs\{0} is a nontrivial solution to the
elliptic equation

(−∆)su+ ωu+ (|x|−(3−2r) ∗ |u|2)u− |u|pu = 0. (1.12)

Note that (1.12) can be written as S′ω(u) = 0, where

Sω(u) :=
1

2
‖u‖2

Ḣs +
ω

2
‖u‖2L2 +

1

4

∫
R3

(|x|−(3−2r) ∗ |u|2)|u|2dx

− 1

p+ 2
‖u‖p+2

Lp+2

(1.13)

is the action functional. Then we define

Q(u) := ∂λSω(uλ)|λ=1

= s‖u‖2
Ḣs +

3− 2r

4

∫
R3

(|x|−(3−2r) ∗ |u|2)|u|2dx− 3p

2(p+ 2)
‖u‖p+2

Lp+2

(1.14)
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with uλ(x) := λ3/2u(λx) and

Kω(u) := (s+ r)〈S′ω(u), u〉 − Iω(u)

=
4s+ 2r − 3

2
‖u‖2

Ḣs +
ω(2s+ 2r − 3)

2
‖u‖2L2

+
4s+ 2r − 3

4

∫
R3

(|x|−(3−2r) ∗ |u|2)|u|2dx

− (s+ r)(p+ 2)− 3

p+ 2
‖u‖p+2

Lp+2 ,

(1.15)

where Iω(u) denotes the Pohozaev identity related to (1.12), see (2.3).
The usual strategy to show the strong instability of standing waves of the clas-

sical NLS (s=1) is to establish the finite time blow-up by using the variational
characterization of ground states as minimizers of the action functional and the
virial identity. More specifically, the variational characterization of ground states
by the manifold N := {v ∈ H1\{0}, Q(v) = 0} can imply the key estimate
Q(ψ(t)) ≤ 2(Sω(ψ0) − Sω(u)), where u is the ground state solution. Then, it
follows from the virial identity and the choice of initial data ψ0 that

d2

dt2
‖xψ(t)‖2L2 = 8Q(ψ(t)) ≤ 16(Sω(ψ0)− Sω(u)) < 0,

for t ∈ [0, T ∗). This implies that the solution ψ(t) blows up in a finite time. Thus,
we can prove the strong instability of ground state standing waves [5, 26, 31, 32, 33,
37]. However, in many cases, it is hard to obtain the variational characterization of
ground states by the manifoldN . But we can obtain the variational characterization
of ground states by the Nehari manifold and obtain the key estimate Q(ψ(t)) ≤
2(Sω(ψ0)− Sω(u)) [16, 17, 18, 27, 19, 29, 30, 34, 38, 41].

When s = r = 1 and p ∈ {2/3} ∪ (1, 4/3), Bellazzini and Siciliano [1] proved
the existence of orbitally stable standing waves for (1.4). Kikuchi [25] showed the
existence of standing waves for (1.4) with s = r = 1 and 0 < p < 4 and proved that
the standing wave eiωtu is strongly unstable for all ω > 0 when 2 ≤ p < 4. When
4/3 < p < 2, it shows that there exists ω̄ > 0 such that the standing wave eiωtu
is strongly unstable for all ω > ω̄. In the L2-supercritical case, i.e., 4/3 < p < 4,
Bellazzini et al. [2] improved the result of Kikuchi and proved that the standing
wave eiωtu is strongly unstable for all ω > 0. When 4/3 ≤ p < 4, Feng et al. [13]
proved that the standing wave eiωtu is strongly unstable for all ω > 0.

Equation (1.4) with p = 4s/3 is a class of nonlinear Schrödinger equations with
combined L2-critical and L2-subcritical nonlinearities. When we try to study the
variational characterization of ground states by the manifold N , it is hard to ob-
tain S′ω(u) = 0, see Lemma 5.4. Moreover, we find that the usual Nehari mani-
fold is not a good choice in this case. Fortunately, we can obtain the variational
characterization of ground states by the Nehari-Pohozaev manifold N1 := {u ∈
Hs\{0}, Kω(u) = 0}. Based on this variational characterization and a theoretical
analysis, we can obtain the strong instability of standing waves for (1.4).

Theorem 1.2. Let ω > 0, s ∈ (1/2, 1), 2s + 2r > 3, 4s/3 ≤ p < 4s/(3 − 2s) and
u be the ground state related to (1.12). Then the standing wave ψ(t, x) = eiωtu(x)
is strongly unstable in the following sense: there exists {ψ0,n} ⊂ Hs such that
ψ0,n → u in Hs as n→∞ and the corresponding solution ψn of (1.4) with initial
data ψ0,n blows up in finite time or infinite time for any n ≥ 1.
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This article is organized as follows. In Section 2, we present some useful lem-
mas such as the local well-posedness theory of (1.4), Brezis-Lieb’s lemma, and the
compactness lemma. In Section 3, we prove the localized virial estimates related
to (1.4). In Sections 4 and 5, we prove Theorems 1.1 and 1.2, respectively.

2. Preliminary lemmas

In this section, we recall some preliminary results that will be used later. Firstly,
let us recall the local theory for the Cauchy problem (1.4). The local well-posedness
for the fractional NLS in the energy space Hs was studied by Hong and Sire in
[20]. The proof is based on Strichartz’s estimates and the contraction mapping
argument. Note that for non-radial data, Strichartz’s estimates have a loss of
derivatives. Fortunately, this loss of derivatives can be compensated by using the
Sobolev embedding. However, it leads to a weak local well-posedness in the energy
space compared to the classical nonlinear Schrödinger equation. We refer the reader
to [7, 20] for more details. We can remove the loss of derivatives in Strichartz’s
estimates by considering radially symmetric data. However, it needs a restriction
on the validity of s, namely 3

5 ≤ s < 1.

Proposition 2.1. Let 3/5 ≤ s < 1, 0 < p < 4s
3−2s and ψ0 ∈ Hs be radial.

Then there exists T = T (‖ψ0‖Hs) such that (1.4) admits a unique solution ψ ∈
C([0, T ], Hs). Let [0, T ∗) be the maximal time interval on which the solution ψ
is well-defined. If T ∗ < ∞, then ‖ψ(t)‖Ḣs → ∞ as t ↑ T ∗. Moreover, for all
0 ≤ t < T ∗, the solution ψ(t) satisfies the following conservation of mass and
energy

‖ψ(t)‖L2 = ‖ψ0‖L2 ,

E(ψ(t)) = E(ψ0),

where

E(ψ(t)) =
1

2
‖ψ(t)‖2

Ḣs +
1

4

∫
R3

(|x|−(3−2r) ∗ |ψ(t)|2)(x)|ψ(t, x)|2dx

− 1

p+ 2
‖ψ(t)‖p+2

Lp+2 .

(2.1)

In this article, we use the so called Brezis-Lieb’s lemma [4].

Lemma 2.2. Let 0 < p < ∞. Suppose that un → u almost everywhere and {un}
is a bounded sequence in Lp. Then

lim
n→∞

(‖un‖pLp − ‖un − u‖pLp − ‖u‖pLp) = 0.

Lemma 2.3 ([40]). Let u ∈ Hs and 2s+ 2r > 3. Suppose that un ⇀ u in Hs and
un → u a.e. in R3. Then∫

R3

(|x|−(3−2r) ∗ |un|2)|un|2dx =

∫
R3

(|x|−(3−2r) ∗ |un − u|2)|un − u|2dx

+

∫
R3

(|x|−(3−2r) ∗ |u|2)|u|2dx+ ◦(1).

The following compactness lemma is vital in our discussions [8, 10].
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Lemma 2.4. Let 0 < p < 4s
3−2s and {un} be a bounded sequence in Hs such that

lim sup
n→∞

‖un‖Ḣs ≤M, lim inf
n→∞

‖un‖Lp+2 ≥ m.

Then there exist a sequence (xn)n≥1 in R3 and u ∈ Hs \ {0} such that up to a
subsequence,

un(·+ xn) ⇀ u weakly in Hs.

Finally, we recall the Pohozaev identity related to (1.12) [40].

Lemma 2.5. If u ∈ Hs satisfies equation (1.12), then it holds

‖u‖2
Ḣs + ω‖u‖2L2 +

∫
R3

(|x|−(3−2r) ∗ |u|2)|u|2dx− ‖u‖p+2
Lp+2 = 0 (2.2)

and

Iω(u) :=
3− 2s

2
‖u‖2

Ḣs +
3ω

2
‖u‖2L2 +

2r + 3

4

∫
R3

(|x|−(3−2r) ∗ |u|2)|u|2dx

− 3

p+ 2
‖u‖p+2

Lp+2 = 0.

(2.3)

3. Localized virial estimates

In this section, we prove some localized virial estimates related to (1.4). Let us
recall some useful results in [3].

Lemma 3.1 ([3]). Suppose ϕ : R3 → R is such that ∇ϕ ∈ W 1,∞. Then for all
u ∈ H1/2, it holds∣∣ ∫

R3

u(x)∇ϕ(x) · ∇u(x)dx
∣∣ ≤ C‖∇ϕ‖W 1,∞

(
‖|∇|1/2u‖2L2 + ‖u‖L2‖|∇|1/2u‖L2

)
for some constant C > 0.

To study the localized virial estimates for (1.4), we introduce the auxiliary func-
tion

um(x) := cs
1

−∆ +m
u(x) = csF−1

( û(ξ)

|ξ|2 +m

)
, m > 0, (3.1)

where

cs :=

√
sinπs

π
.

Lemma 3.2 ([3]). Let s ∈ (0, 1) and ϕ : R3 → R with ∆ϕ ∈ W 2,∞. Then for all
u ∈ L2 it holds∣∣ ∫ ∞

0

ms

∫
R3

(∆2ϕ)|um|2 dx dm
∣∣ ≤ C‖∆2ϕ‖sL∞‖∆ϕ‖1−sL∞ ‖u‖

2
L2

for some constant C > 0 dependent only on s.

We refer the reader to [3, Appendix A] for the proof of Lemmas 3.1 and 3.2.
Given that

sinπs

π

∫ ∞
0

ms

(|ξ|2 +m)2
dm = s|ξ|2s−2,
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Plancherel’s and Fubini’s theorems imply that∫ ∞
0

ms

∫
R3

|∇um|2 dx dm =

∫
R3

( sinπs

π

∫ ∞
0

ms dm

(|ξ|2 +m)2

)
|ξ|2|û(ξ)|2dξ

=

∫
R3

(s|ξ|2s−2)|ξ|2|û(ξ)|2dξ = s‖(−∆)s/2u‖2L2

(3.2)

for any u ∈ Ḣs.

Lemma 3.3. Let s ∈ (1/2, 1) and ϕ : R3 → R be such that ∇ϕ ∈W 1,∞. Then for
any u ∈ L2 it holds∣∣∣ ∫ ∞

0

ms

∫
R3

(∆ϕ)|um|2 dx dm
∣∣∣ ≤ C‖∆ϕ‖2s−1

L∞ ‖∇ϕ‖
2−2s
L∞ ‖u‖

2
L2

for some constant C > 0 dependent only on s.

Proof. The idea is essentially similar to [3, Lemma A.2]. For the reader’s conve-
nience, we just present the outline of our proof. Splitting m-integral into

∫ ρ
0
. . .

and
∫∞
ρ
. . . with ρ > 0 to be chosen later. For the first term, we use integration by

parts and Hölder’s inequality to have∣∣∣ ∫ ρ

0

ms

∫
R3

(∆ϕ)|um|2 dx dm
∣∣∣ =

∣∣∣ ∫ ρ

0

ms

∫
R3

∇ϕ · (∇umum + um∇um) dx dm
∣∣∣

= ‖∇ϕ‖L∞
∫ ρ

0

ms‖∇um‖L2‖um‖L2 dm

= ‖∇ϕ‖L∞‖u‖2L2

(∫ ρ

0

ms−3/2 dm
)

≤ Cρs−1/2‖∇ϕ‖L∞‖u‖2L2 .

Here we use the fact ‖∇um‖L2 ≤ Cm−1/2‖u‖L2 and ‖um‖L2 ≤ Cm−1‖u‖L2 which
follows from the definition of um. For the second term, we have∣∣∣ ∫ ∞

ρ

ms

∫
R3

(∆ϕ)|um|2 dx dm
∣∣∣ ≤ C‖∆ϕ‖L∞(∫ ∞

ρ

ms‖um‖2L2 dm
)

≤ C‖∆ϕ‖L∞‖u‖2L2

(∫ ∞
ρ

ms−2 dm
)

≤ Cρs−1‖∆ϕ‖L∞‖u‖2L2 .

Combining two terms yields∣∣∣ ∫ ∞
0

∫
R3

(∆ϕ)|um|2 dx dm
∣∣∣ ≤ C(ρs−1/2‖∇ϕ‖L∞ + ρs−1‖∆ϕ‖L∞

)
‖u‖2L2

for arbitrary ρ > 0. Minimizing the right hand side with respect to ρ, i.e. choosing

ρ =
( (1−s)‖∆ϕ‖L∞

(s−1/2)‖∇ϕ‖L∞
)2

, we obtain the desired result. �

By the same argument as in Lemma 3.3 and Lemma 3.1, we obtain the following
result.

Lemma 3.4. Let s ∈ (1/2, 1) and ϕ : R3 → R be such that ∇ϕ ∈W 1,∞. Then for
any u ∈ H1/2 we have∣∣∣ ∫ ∞

0

∫
R3

um∇ϕ · ∇um dx dm
∣∣∣ ≤ C‖∇ϕ‖W 1,∞‖u‖2H1/2

for some constant C > 0.
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Let 1/2 < s < 1 and ϕ : R3 → R be such that ϕ ∈ W 2,∞. Assume that
ψ ∈ C([0, T ∗), Hs) is a solution to (1.4). We define the localized virial action of ψ
associated to ϕ by

Vϕ[ψ(t)] :=

∫
R3

ϕ(x)|ψ(t, x)|2 dx.

Lemma 3.5 (Virial identity). Let s ∈ (1/2, 1) and ϕ : R3 → R be such that
ϕ ∈ W 2,∞. Assume that ψ ∈ C([0, T ∗), Hs) is a solution to (1.4). Then for any
t ∈ [0, T ∗) we have

d

dt
Vϕ[ψ(t)]

= −i
∫ ∞

0

ms

∫
R3

(∆ϕ)|ψm(t)|2 dx dm− 2i

∫ ∞
0

ms

∫
R3

ψm(t)∇ϕ · ∇ψm(t) dx dm,

where ψm(t) = cs(−∆ +m)−1ψ(t).

Proof. It suffices to prove Lemma 3.5 for ψ(t) ∈ C∞0 (R3). The general case follows
by an approximation argument. We write

Vϕ[ψ(t)] = 〈ψ(t), ϕψ(t)〉,
where 〈·, ·〉 is the scalar product in L2. Since ψ(t) satisfies (1.4), it is easy to see
that

d

dt
Vϕ[ψ(t)] = i〈ψ(t), [(−∆)s, ϕ]ψ(t)〉,

where [X,Y ] = XY −Y X is the commutator of X and Y . To study [(−∆)s, ϕ], we
recall the Balakrishman’s formula

(−∆)s =
sinπs

π

∫ ∞
0

ms−1 −∆

−∆ +m
dm.

Using the fact that for operators A ≥ 0, B with m > 0 being any positive real
number[ A

A+m
,B
]

=
[
1− m

A+m
,B
]

= −m
[ 1

A+m
,B
]

= m
1

A+m
[A,B]

1

A+m
.

and letting A = (−∆)s, B = ϕ and using the Balakrishman’s formula, we have

[(−∆)s, ϕ] =
sinπs

π

∫ ∞
0

ms
[ −∆

−∆ +m
,ϕ
]
dm

=
sinπs

π

∫ ∞
0

ms 1

−∆ +m
[−∆, ϕ]

1

−∆ +m
dm.

Thus we obtain

〈ψ(t), [(−∆)s, ϕ]ψ(t)〉

= 〈ψ(t),
( sinπs

π

∫ ∞
0

ms 1

−∆ +m
[−∆, ϕ]

1

−∆ +m
dm
)
ψ(t)〉

= c2s

∫ ∞
0

ms〈ψ(t),
1

−∆ +m
[−∆, ϕ]

1

−∆ +m
ψ(t)〉 dm

=

∫ ∞
0

ms〈cs(−∆ +m)−1ψ(t), [−∆, ϕ]cs(−∆ +m)−1ψ(t)〉 dm

=

∫ ∞
0

ms

∫
R3

ψm(t)
(
−∆ϕψm(t)− 2∇ϕ · ∇ψm(t)

)
dx dm
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=

∫ ∞
0

ms

∫
R3

(
(−∆ϕ)|ψm(t)|2 − 2ψm(t)∇ϕ · ∇um(t)

)
dx dm.

�

A direct consequence of Lemmas 3.3 and 3.4 is the following estimate.

Lemma 3.6. Let s ∈ (1/2, 1) and ϕ : R3 → R be such that ϕ ∈ W 2,∞. Assume
that ψ ∈ C([0, T ∗), Hs) is a solution to (1.4). Then for any t ∈ [0, T ∗) we have∣∣ d

dt
Vϕ[ψ(t)]

∣∣ ≤ C‖∇ϕ‖W 1,∞‖ψ(t)‖2Hs

for some constant C > 0 dependent only on s.

We next define the localized Morawetz action of ψ associated to ϕ by

Mϕ[ψ(t)] := 2 Im

∫
R3

ψ̄(t, x)∇ϕ(x) · ∇ψ(t, x)dx. (3.3)

By Lemma 3.1, we obtain the bound

|Mϕ[ψ(t)]| ≤ C (‖∇ϕ‖L∞ , ‖∆ϕ‖L∞) ‖ψ(t)‖2H1/2 .

Hence the quantity Mϕ[ψ(t)] is well-defined, given ψ(t) ∈ Hs(R3) with s > 1/2.

Lemma 3.7 (Morawetz identity). Let s ∈ (1/2, 1) and ϕ : R3 → R be such that
∇ϕ ∈W 3,∞. Assume that ψ ∈ C([0, T ∗), Hs) is a solution to (1.4). Then for each
t ∈ [0, T ∗) we have

d

dt
Mϕ[ψ(t)]

=

∫ ∞
0

ms

∫
R3

{
4∂kψm(t)(∂2

klϕ)∂lψm(t)− (∆2ϕ)|ψm(t)|2
}
dx dm

+ (3− 2r)

∫
R3

∫
R3

|u(t, x)|2|u(t, y)|2(x− y) · (∇ϕ(x)−∇ϕ(y))

|x− y|5−2r
dx dy

− 2p

p+ 2

∫
R3

∆ϕ|ψ(t)|p+2 dx,

(3.4)

where ψm(t) = ψm(t, x) is defined in (3.1).

Proof. Integration by parts yields

〈u(t), [−(|x|−(3−2r) ∗ |u(t)|2), iΓϕ]u(t)〉

= −〈u(t), [(|x|−(3−2r) ∗ |u(t)|2),∇ϕ · ∇+∇ · ∇ϕ]u(t)〉

= 2

∫
R3

∇ϕ · ∇(|x|−(3−2r) ∗ |u(t)|2)|u(t)|2dx

= −(3− 2r)

∫
R3

∫
R3

|u(t, x)|2|u(t, y)|2(x− y) · (∇ϕ(x)−∇ϕ(y))

|x− y|5−2r
dx dy.

The rest proof is similar to [3, Lemma 2.1], so we omit the details. �
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4. Blow-up criteria for (1.4)

Lemma 4.1. Let η > 0, R > 1 and the solution ψ(t) of (1.4) satisfy

C1 := sup
t∈[0,+∞)

‖ψ(t)‖Hs <∞. (4.1)

Then there exists a constant C > 0 independent of R and C1 such that∫
|x|≥R

|ψ(t, x)|2 dx ≤ η + oR(1)

for all t ∈ [0, T0] with T0 := ηR
CC2

1
.

Proof. Let us now introduce θ : [0,∞)→ [0, 1] a smooth function satisfying

θ(r) =

{
0 if 0 ≤ r ≤ 1/2,

1 if r ≥ 1.

For R > 1, we denote the radial function

φR(x) := θ(r/R), r = |x|.
We have

∇φR(x) =
x

rR
θ′(r/R), ∆φR(x) =

1

R2
θ′′(r/R) +

2

rR
θ′(r/R).

In particular, we have

‖∇φR‖W 1,∞ ∼ ‖∇φR‖L∞ + ‖∆φR‖L∞ ≤ CR−1. (4.2)

We define the localized virial potential as

VφR
[ψ(t)] :=

∫
R3

φR(x)|ψ(t, x)|2 dx.

We have

VφR
[ψ(t)] = VφR

[ψ0] +

∫ t

0

d

dτ
VφR

[ψ(τ)]dτ

≤ VφR
[ψ0] +

(
sup
τ∈[0,t]

∣∣ d
dτ
VφR

[ψ(τ)]
∣∣)t.

By Lemma 3.6, (4.1) and (4.2), we obtain

sup
τ∈[0,t]

∣∣ d
dτ
VφR

[ψ(τ)]
∣∣ ≤ C‖∇φR‖W 1,∞ sup

τ∈[0,t]

‖ψ(τ)‖2Hs ≤ CC2
1R
−1,

for some constant C > 0 independent of R and C1. Therefore,

VφR
[ψ(t)] ≤ VφR

[ψ0] + CC2
1R
−1t,

for all t ≥ 0. By the choice of θ and the conservation of mass, we have

VφR
[ψ0] =

∫
R3

φR(x)|ψ0(x)|2 dx ≤
∫
|x|>R/2

|ψ0(x)|2 dx→ 0,

as R→∞ or VφR
[ψ0] = oR(1). On the other hand,∫

|x|≥R
|ψ(t, x)|2 dx ≤ VφR

[ψ(t)].

Combing the above estimates, we arrive at the desired result. �
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Proof of Theorem 1.1. If T ∗ < +∞, then the proof is done. If T ∗ = +∞, then we
need to show (1.11). Let ϕ : R3 → R be such that ∇ϕ ∈ W 3,∞. In addition, we
assume that ϕ = ϕ(r) is radial and satisfies

ϕ(r) =

{
r2

2 for r ≤ 1,

const. for r ≥ 10,

and ϕ′′(r) ≤ 1 for r ≥ 0. Given R > 0 , we define the rescaled function ϕR : R3 → R
by

ϕR(r) := R2ϕ
( x
R

)
. (4.3)

We readily verify the inequalities

1− ϕ′′R(r) ≥ 0, 1− ϕ′R(r)

r
≥ 0, 3−∆ϕR(x) ≥ 0,

for all r ≥ 0 and all x ∈ R3. It is easy to see that

‖∇kϕR‖L∞ ≤ R2−k, k = 0, . . . , 4,

and

supt(∇kϕR) ⊂

{
{|x| ≤ 10R} for k = 1, 2,

{R ≤ |x| ≤ 10R} for k = 3, 4.

Applying Lemma 3.7, we have

d

dt
MϕR

[ψ(t)]

=

∫ ∞
0

ms

∫
R3

{
4∂kψm(t)(∂2

klϕR)∂lψm(t)− (∆2ϕR)|ψm(t)|2
}
dx dm

− 2p

p+ 2

∫
R3

∆ϕR|ψ(t)|p+2 dx

+ (3− 2r)

∫
R3

∫
R3

|ψ(t, x)|2|ψ(t, y)|2(x− y) · (∇ϕR(x)−∇ϕR(y))

|x− y|5−2r
dx dy,

(4.4)

where ψm(t) = ψm(t, x) is defined in (3.1). Since supt(∆2ϕR) ⊂ {|x| ≥ R}, by
Lemma 3.2, we have∣∣∣ ∫ ∞

0

ms

∫
R3

(∆2ϕR)|ψm(t)|2 dx dm
∣∣∣ ≤ C‖∆2ϕR‖sL∞‖∆ϕR‖1−sL∞ ‖ψ(t)‖2L2(|x|≥R)

≤ CR−2s‖ψ(t)‖2L2(|x|≥R).

(4.5)
Since ϕR is radial, we use

∂2
jk =

(δjk
r
− xjxk

r3

)
∂r +

xjxk
r2

∂2
r

to deduce ∫ ∞
0

ms

∫
R3

∂kψm(t)(∂2
jkϕR)∂lψm(t) dx dm

=

∫ ∞
0

ms

∫
R3

ϕ′R
r
|∇ψm(t)|2 dx dm

+

∫ ∞
0

ms

∫
R3

(ϕ′′R
r2
− ϕ′R

r3

)
|x · ∇ψm(t)|2 dx dm.



12 Y. MO, M. ZHU, B. FENG EJDE-2023/24

Using (3.2) leads to∫ ∞
0

ms

∫
R3

ϕ′R
r
|∇ψm(t)|2 dx dm

= s‖(−∆)s/2ψ(t)‖2L2 +

∫ ∞
0

ms

∫
R3

(ϕ′R
r
− 1
)
|∇ψm(t)|2 dx dm.

Since ϕ′′R ≤ 1, the Cauchy-Schwarz inequality implies∫ ∞
0

ms

∫
R3

(ϕ′R
r
− 1
)
|∇ψm(t)|2 dx dm

+

∫ ∞
0

ms

∫
R3

(
ϕ′′R −

ϕ′R
r

) |x · ∇ψm(t)|2

r2
dx dm ≤ 0.

Thus, we have

4

∫ ∞
0

ms

∫
R3

∂kψm(t)(∂2
jkϕR)∂lψm(t) dx dm ≤ 4s‖(−∆)s/2ψ(t)‖2L2 . (4.6)

Note that

− 2p

p+ 2

∫
R3

∆ϕR|ψ(t)|p+2 dx = − 6p

p+ 2
‖ψ(t)‖p+2

Lp+2+
2p

p+ 2

∫
R3

(3−∆ϕR)|ψ(t)|p+2 dx.

Since supt(3−∆ϕR) ⊂ {|x| ≥ R} and ‖3−∆ϕR‖L∞ ≤ C, we have∫
R3

(3−∆ϕR)|ψ(t)|p+2 dx ≤ C
∫
|x|≥R

|ψ(t)|p+2 dx

≤ C‖ψ(t)‖
3p
2s

L
6

3−2s (|x|≥R)
‖ψ‖

4s−(3−2s)p
2s

L2(|x|≥R)

≤ C‖ψ(t)‖
3p
2s

Hs‖ψ(t)‖
4s−(3−2s)p

2s

L2(|x|≥R)

≤ CC
3p
2s
1 ‖ψ(t)‖

4s−(3−2s)p
2s

L2(|x|≥R) .

Thus we obtain

− 2p

p+ 2

∫
R3

∆ϕR|ψ(t)|p+2 dx ≤ − 6p

p+ 2
‖ψ(t)‖p+2

Lp+2 + CC
3p
2s
1 ‖ψ(t)‖

4s−(3−2s)p
2s

L2(|x|≥R) . (4.7)

We denote the last term in (4.4) by T . We have

T = (3− 2r)

∫
R3

∫
R3

(x− y) · (∇ϕR(x)−∇ϕR(y))
|ψ(t, x)|2|ψ(t, y)|2

|x− y|5−2r
dx dy.

By using

supt(|x− y|2 − (x− y) · (∇ϕR(x)−∇ϕR(y))) ⊂ {|x| ≥ R} ∪ {|y| ≥ R},

in the region {|x| ≥ R} we obtain∣∣ |x− y|2 − (x− y) · (∇ϕR(x)−∇ϕR(y))
∣∣ ≤ C|x− y|2.

Thus, we obtain∣∣∣ ∫
|x|≥R

∫
R3

[|x− y|2 − (x− y) · (∇ϕR(x)−∇ϕR(y))]
|u(t, x)|2|ψ(t, y)|2p2
|x− y|5−2r

dx dy
∣∣∣

≤ C
∫
|x|≥R

(|x|−(3−2r) ∗ |ψ(t)|2)|ψ(t)|2 dx.
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To estimate this term, we deduce from the Sobolev embedding that

‖ψ(t)‖2
L

12
3+2r

≤ C‖ψ(t)‖
4s+2r−3

2s

L2 ‖ψ(t)‖
3−2r
2s

L
6

3−2s
≤ C‖(−∆)s/2ψ(t)‖

3−2r
2s

L2 . (4.8)

Thus, it follows from the Hardy-Littlewood-Sobolev inequality and the conservation
of mass that∫

|x|≥R
(|x|−(3−2r) ∗ |ψ(t)|2)|ψ(t)|2 dx

≤ C‖|x|−(3−2r) ∗ |ψ(t)|2‖
L

6
3−2r (|x|≥R)

‖|ψ(t)|2‖
L

6
3+2r (|x|≥R)

≤ C‖ψ(t)‖2
L

12
3+2r
‖ψ(t)‖2

L
12

3+2r (|x|≥R)

≤ C‖ψ(t)‖
3−2r

s

Hs ‖ψ(t)‖
4s+2r−3

2s

L2(|x|≥R)

≤ CC
3−2r

s
1 ‖ψ(t)‖

4s+2r−3
2s

L2(|x|≥R).

We can derive an estimate in the region {|y| ≥ R} too. Similarly, we can obtain

T ≤ (3− 2r)

∫
R3

(|x|−(3−2r) ∗ |ψ(t)|2)|ψ(t)|2 dx+ CC
3−2r

s
1 ‖ψ(t)‖

4s+2r−3
2s

L2(|x|≥R). (4.9)

By using (4.5)–(4.9), we obtain

d

dt
MϕR

[ψ(t)]

≤ 4s‖(−∆)s/2ψ(t)‖2L2 + CR−2s‖ψ(t)‖2L2(|x|≥R)

+ (3− 2r)

∫
R3

(|x|−(3−2r) ∗ |ψ(t)|2)|u(t)|2 dx− 6p

p+ 2
‖ψ(t)‖p+2

Lp+2

+ CC
3p
2s
1 ‖ψ(t)‖

4s−(3−2s)p
2s

L2(|x|≥R) + CC
3−2r

s
1 ‖ψ(t)‖

4s+2r−3
2s

L2(|x|≥R)

≤ 4Q(ψ(t)) + CR−2s‖ψ(t)‖2L2(|x|≥R) + CC
3p
2s
1 ‖ψ(t)‖

4s−(3−2s)p
2s

L2(|x|≥R)

+ CC
3−2r

s
1 ‖ψ(t)‖

4s+2r−3
2s

L2(|x|≥R).

(4.10)

By Lemma 4.1, we see that for any η > 0 and any R > 1, there exists C > 0
independent of R and C1 such that for any t ∈ [0, T0] with T0 = ηR

CC2
1

, we have

d

dt
MϕR

[ψ(t)] ≤ 4Q(ψ(t)) + CR−2s(η + oR(1))2 + CC
3p
2s
1 (η + oR(1))

4s−p(3−2s)
2s

+ CC
3−2r

s
1 (η + oR(1))

4s+2r−3
2s

≤ −4δ + CR−2s(η2 + oR(1)) + CC
3p
2s
1 (η

4s−p(3−2s)
2s + oR(1))

+ CC
3−2r

s
1 (η

4s+2r−3
2s + oR(1)).

We first choose η > 0 small enough so that

CC
3p
2s
1 η

4s−p(3−2s)
2s + CC

3−2r
s

1 η
4s+2r−3

2s = −3δ > 0.

We next choose R > 1 large enough so that

d

dt
MϕR

[ψ(t)] ≤ −δ < 0 (4.11)
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for any t ∈ [0, T0] with T0 = ηR
CC2

1
. Note that η > 0 is fixed, so we can choose R > 1

large enough such that T0 is as large as we want. From (4.11) it follows that

MϕR
[ψ(t)] ≤ −δt,

for all t ∈ [t0, T0] with some sufficiently large t0 ∈ [0, T0]. On the other hand, by
Lemma 3.1 and the conservation of mass, we have for any t ∈ [0,+∞),

|MϕR
[ψ(t)]| ≤ CC(ϕR)

(
‖|∇|1/2ψ(t)‖2L2 + ‖ψ(t)‖L2‖|∇|1/2ψ(t)‖L2

)
≤ CC(ϕR)

(
‖|∇|1/2ψ(t)‖2L2 + ‖ψ(t)‖2L2

)
≤ CC(ϕR)

(
‖|∇|1/2ψ(t)‖2L2 + 1

)
.

By interpolating between L2 and Ḣs, we obtain for any t ∈ [t0, T0]

δt ≤ −MϕR
[ψ(t)] = |MϕR

[ψ(t)]| ≤ CC(ϕR)
(
‖(−∆)s/2ψ(t)‖

1
s

L2 + 1
)
.

This implies that

‖(−∆)s/2ψ(t)‖L2 ≥ Cts (4.12)

for all t ∈ [t1, T0] with some sufficiently large t1 ∈ [t0, T0]. Taking t close to

T0 = ηR
CC2

1
, we see that ‖(−∆)s/2ψ(t)‖L2 →∞ as R→∞. Taking R > 1 sufficiently

large, we have a contradiction with (4.1). The proof is complete. �

5. Strong instability of standing waves

In this section, we prove Theorem 1.2. Let us start with the following charac-
terization of the ground state related to (1.12).

Proposition 5.1. Let ω > 0, 2s + 2r > 3 and 4s
3 ≤ p < 4s

3−2s . Then u is the

ground state related to (1.12) if and only if u solves the minimization problem

d(ω) = inf{Sω(v) : v ∈ Hs\{0},Kω(v) = 0}. (5.1)

To solve this minimization problem, we consider the minimization problem

d̃(ω) = inf{S̃ω(v) : v ∈ Hs\{0},Kω(v) ≤ 0}, (5.2)

where

S̃ω(v) := Sω(v)− Kω(v)

4s+ 2r − 3

=
ωs

4s+ 2r − 3
‖v‖2L2 +

p(s+ r)− 2s

(p+ 2)(4s+ 2r − 3)
‖v‖p+2

Lp+2 .

(5.3)

If Kω(v) < 0, then

Kω(λv) =
4s+ 2r − 3

2
λ2‖v‖2

Ḣs +
4s+ 2r − 3

4
λ4

∫
R3

(|x|−(3−2r) ∗ |v|2)|v|2dx

+
ω(2s+ 2r − 3)

2
λ2‖v‖2L2 −

(s+ r)(p+ 2)− 3

p+ 2
λp+2‖v‖p+2

Lp+2 > 0,

for sufficiently small λ > 0. Thus, there exists λ0 ∈ (0, 1) such that Kω(λ0v) = 0.
It follows that

S̃ω(λ0v) =
ωs

4s+ 2r − 3
λ2

0‖v‖2L2 +
p(s+ r)− 2s

(p+ 2)(4s+ 2r − 3)
λp+2

0 ‖v‖p+2
Lp+2 < S̃ω(v),
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This implies that

d̃(ω) = inf{S̃ω(v) : v ∈ Hs\{0},Kω(v) = 0}. (5.4)

In following lemma, we will solve the minimizing problem (5.2).

Lemma 5.2. Let ω > 0, 2s + 2r > 3 and 4s
3 ≤ p < 4s

3−2s . Then there exists

u ∈ Hs\{0}, such that Kω(u) = 0 and S̃ω(u) = d̃(ω).

Proof. We first show that d̃(ω) > 0. From Kω(v) ≤ 0, we have

4s+ 2r − 3

2
‖v‖2

Ḣs +
ω(2s+ 2r − 3)

2
‖v‖2L2 +

4s+ 2r − 3

4

∫
R3

(|x|−(3−2r) ∗ |v|2)|v|2dx

≤ (s+ r)(p+ 2)− 3

p+ 2
‖v‖p+2

Lp+2 ,

which implies

1

2
Hω(v) ≤ (s+ r)(p+ 2)− 3

(p+ 2)(2s+ 2r − 3)
Hω(v)

p
2 +1,

where Hω(v) = ‖v‖2
Ḣs + ω‖v‖2L2 . Thus, there exists C0 > 0 such that Hω(v) > C0

for all Kω(v) ≤ 0. This implies that there exists C1 > 0 such that

S̃ω(v) ≥ p(s+ r)− 2s

2(4s+ 2r − 3)
‖v‖p+2

Lp+2

≥ p(s+ r)− 2s

(p+ 2)(4s+ 2r − 3)

(2s+ 2r − 3)

(s+ r)(p+ 2)− 3
Hω(v) ≥ C1.

Taking the infimum over v, we obtain d̃(ω) > 0.
We now show that the minimizing problem (5.2) attains its minimum. Let

{vn} be a minimizing sequence for (5.2), i.e., {vn} ⊆ Hs\{0}, Kω(vn) ≤ 0 and

S̃ω(vn)→ d̃(ω) as n→∞. Thus, there exists C > 0 such that

‖vn‖2L2 + ‖vn‖p+2
Lp+2 ≤ C. (5.5)

This, together with Kω(vn) ≤ 0 implies that {vn} is bounded in Hs. It follows

from d̃(ω) > 0 that lim infn→∞ ‖vn‖p+2
Lp+2 > 0. Therefore, applying Lemma 2.4,

there exists a subsequence, still denoted by {vn} and u ∈ Hs\{0} such that

un := τxn
vn ⇀ u 6= 0 weakly in Hs

for some {xn} ⊆ R3. We deduce from Brezis-Lieb’s lemma (Lemma 2.2) and Lemma
2.3 that

Kω(un)−Kω(un − u)−Kω(u)→ 0, (5.6)

S̃ω(un)− S̃ω(un − u)− S̃ω(u)→ 0. (5.7)

Now, we claim that Kω(u) ≤ 0. If not, it follows from (5.6) and Kω(un) ≤ 0 that

Kω(un − u) ≤ 0 for sufficiently large n. Thus, by the definition of d̃(ω), it follows
that

S̃ω(un − u) ≥ d̃(ω),

which, together with S̃ω(un)→ d̃(ω), implies that S̃ω(u) ≤ 0, which is a contradic-

tion with S̃ω(u) > 0. We thus obtain Kω(u) ≤ 0.
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Furthermore, we deduce from the definition of d̃(ω) and the weak lower semi-
continuity of norm that

d̃(ω) ≤ S̃ω(u) ≤ lim inf
n→∞

S̃ω(un) = d̃(ω).

This yields S̃ω(u) = d̃(ω).
Finally, we show that Kω(u) = 0. Suppose that Kω(u) < 0 and set

Kω(uλ) =
4s+ 2r − 3

2
λ2s‖u‖2

Ḣs +
ω(2s+ 2r − 3)

2
‖u‖2L2

+
4s+ 2r − 3

4
λ3−2r

∫
R3

(|x|−(3−2r) ∗ |u|2)|u|2dx

− (s+ r)(p+ 2)− 3

p+ 2
λ

3p
2 ‖u‖p+2

Lp+2 > 0

for sufficiently small λ > 0. Then there exists λ0 ∈ (0, 1) such that Kω(uλ0) = 0.
It follows that

S̃ω(uλ0) =
ωs

4s+ 2r − 3
‖u‖2L2 +

p(s+ r)− 2s

(p+ 2)(4s+ 2r − 3)
λ

3p
2

0 ‖u‖
p+2
Lp+2

< S̃ω(u) = d̃(ω),

which contradicts the definition of d̃(ω). Hence, we have Kω(u) = 0. �

From d(ω) = d̃(ω) and the above lemma, we can obtain the existence of mini-
mization problem (5.1).

Lemma 5.3. Let ω > 0, 2s + 2r > 3 and 4s
3 ≤ p < 4s

3−2s . Then there exists

u ∈ Hs\{0} such that Kω(u) = 0 and Sω(u) = d(ω).

Lemma 5.4. Let ω > 0, 2s + 2r > 3, and 4s
3 ≤ p < 4s

3−2s . Assume that u ∈
Hs\{0} is a solution of the minimizing problem (5.1), i.e., such that Kω(u) = 0
and Sω(u) = d(ω). Then S′ω(u) = 0.

Proof. We firstly prove K ′ω(u) 6= 0. If K ′ω(u) = 0, then we have

(4s+ 2r − 3)(−∆)su+ ω(2s+ 2r − 3)u+ (4s+ 2r − 3)(|x|−(3−2r) ∗ |u|2)u

− ((s+ r)(p+ 2)− 3)|u|pu = 0.
(5.8)

Then

A+B + C −D = d(ω),

(4s+ 2r − 3)A+ (2s+ 2r − 3)B + (4s+ 2r − 3)C

− ((s+ r)(p+ 2)− 3)D = 0,

2(4s+ 2r − 3)A+ 2(2s+ 2r − 3)B + 4(4s+ 2r − 3)C

− (p+ 2)((s+ r)(p+ 2)− 3)D = 0,

(3− 2s)(4s+ 2r − 3)A+ 3(2s+ 2r − 3)B + (4s+ 2r − 3)(3 + 2r)C

− 3((s+ r)(p+ 2)− 3)D = 0,

(5.9)

where

A =
1

2
‖u‖2

Ḣs , B =
ω

2
‖u‖2L2 ,

C =
1

4

∫
R3

(|x|−(3−2r) ∗ |u|2)(x)|u(x)|2dx, D =
1

p+ 2
‖u‖p+2

Lp+2 .
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The first equation comes from the fact that Sω(u) = d(ω). The second one holds
since Kω(u) = 0. The third one follows by multiplying (5.8) by u and integrating
both sides. The fourth one is derived by applying the Pohozaev equality to (5.8).

After a direct calculations, we have

sA = tC, C =
p((s+ r)(p+ 2)− 3)D

2(4s+ 2r − 3)
,

(2s+ 2r − 3)B +
(p(s+ r)− 2s)((s+ r)(p+ 2)− 3)

2s
D = 0.

These A = B = C = D = 0 which is a contradiction with A,B,C,D > 0. Thus,
K ′ω(u) 6= 0.

Next, applying the Lagrange multiplier rule, there exists µ ∈ R such that S′ω(u)+
µK ′ω(u) = 0. We claim that µ = 0. As above, the equation S′ω(u) + µK ′ω(u) = 0
can be written as

(−∆)su+ ωu+ (|x|−(3−2r) ∗ |u|2)u− |u|pu

+ µ
[
(4s+ 2r − 3)(|x|−(3−2r) ∗ |u|2)u+ ω(2s+ 2r − 3)u

+ (4s+ 2r − 3)(−∆)su− ((s+ r)(p+ 2)− 3)|u|pu
]

= 0.

(5.10)

By the same argument as in (5.9), we have

A+B + C −D = d(ω),

(4s+ 2r − 3)A+ (2s+ 2r − 3)B + (4s+ 2r − 3)C − ((s+ r)(p+ 2)− 3)D = 0,

2(µ(4s+ 2r − 3) + 1)A+ 2(µ(2s+ 2r − 3) + 1)B

+4(µ(4s+ 2r − 3) + 1)C − (p+ 2)(µ((s+ r)(p+ 2)− 3) + 1)D = 0,

(3− 2s)(µ(4s+ 2r − 3) + 1)A+ 3(µ(2s+ 2r − 3) + 1)B

+ (µ(4s+ 2r − 3) + 1)(3 + 2r)C − 3(µ((s+ r)(p+ 2)− 3) + 1)D = 0.

We now deal with the above system. Consider A,B,C,D as unknown quantities,
and denote the coefficient matrix by M . Computing its determinant, we have

detM = −4sµp(s+ r)(1 + µ(4s+ 2r − 3))((p− 2)s+ pr).

Note that

detM = 0⇐⇒ µ = 0, p = 0, µ = − 1

4s+ 2r − 3
, (p− 2)s+ pr = 0.

Because of 2s + 2r > 3 and 4s
3 ≤ p < 4s

3−2s , it follows that (p − 2)s + pr > 0. We
will show that µ must be equal to zero by excluding the other possibilities:

(1) If µ 6= 0, µ 6= − 1
4s+2r−3 , then detM 6= 0, and hence the linear system has a

unique solution (depending on the parameters µ, p, d(ω)). Applying Cramer’s rule,
we obtain

D = −d(ω)(4s+ 2r − 3)(2s+ 2r − 3)

p(s+ r)((p− 2)s+ pr)
< 0,

which contradicts D > 0.
(2) If µ = − 1

4s+2r−3 , then the third equation reads

4sB + (p+ 2)(s(p− 2) + pr)D = 0,

which contradicts B,D > 0. Thus, µ = 0 and S′ω(u) = 0. �
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We now denote the set of all minimizers of (5.1) by

Mω = {u ∈ Hs\{0} : Sω(u) = d(ω), Kω(u) = 0}.

Lemma 5.5. Mω ⊆ Gω.

Proof. Let u ∈ Mω. It follows from Lemma 5.4 that S′ω(u) = 0. In particular,
we have u ∈ Aω. To prove u ∈ Gω, it remains to show that Sω(u) ≤ Sω(v) for all
v ∈ Aω. To see this, we notice that

Kω(v) = (s+ r)〈S′ω(v), v〉 − Iω(v) = 0

for all v ∈ Aω, where Iω(v) is defined by (2.3). By definition of d(ω), we have
Sω(u) ≤ Sω(v). Thus, u ∈ Gω. �

Lemma 5.6. Gω ⊂Mω.

Proof. Let u ∈ Gω. Since Mω is not empty, we take v ∈ Mω. By Lemma 5.5,
v ∈ Gω. In particular, Sω(u) = Sω(v). Since v ∈Mω, we obtain

Sω(u) = Sω(v) = d(ω).

It remains to show that Kω(u) = 0. Since u ∈ Aω, we have S′ω(u) = 0 and
Iω(u) = 0, hence Kω(u) = (s+ r)〈S′ω(u), u〉 − Iω(u) = 0. Therefore, u ∈Mω. �

Proof of Proposition 5.1. It follows immediately from Lemmas 5.3, 5.5, and 5.6. �

When 4s
3 ≤ p <

4s
3−2s , to study the strong instability of standing waves for (1.4),

we need to establish the following characterization of the ground state related to
(1.12).

Lemma 5.7. Let ω > 0, 2s + 2r > 3, 4s
3 ≤ p < 4s

3−2s , and u be the ground state

related to (1.12). Then

Sω(u) = inf{Sω(v) : v ∈ Hs\{0}, Q(v) = 0}. (5.11)

Proof. Firstly, we claim that the minimizing problem in (5.11) is well-defined. Let
v ∈ Hs\{0} and Q(v) = 0. If p = 4s

3 , then

Sω(v) = Sω(v)− 1

2s
Q(v)

=
ω

2
‖v‖2L2 +

2s+ 2r − 3

8s

∫
R3

(|x|−(3−2r) ∗ |v|2)|v|2dx > 0.
(5.12)

And if 4s
3 < p < 4s

3−2s , then

Sω(v)

= Sω(v)− 2

3p
Q(v)

=
3p− 4s

6p
‖v‖2

Ḣs +
ω

2
‖v‖2L2 +

3p+ 4t− 6

12p

∫
R3

(|x|−(3−2r) ∗ |v|2)|v|2dx > 0.

(5.13)

Thus we denote d := inf{Sω(v) : v ∈ Hs\{0}, Q(v) = 0}. Firstly, we deduce from
(2.2) and (2.3) that

Kω(u) = Q(u) = 0.

By the definition of d, we have

Sω(u) ≥ d.
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Let v ∈ Hs\{0} be such that Q(v) = 0. If Kω(v) = 0, then it follows from
Proposition 5.1 that

Sω(v) ≥ Sω(u).

If Kω(v) 6= 0, we notice that

Kω(vλ) =
4s+ 2r − 3

2
λ2s‖v‖2

Ḣs +
ω(2s+ 2r − 3)

2
‖v‖2L2

+
4s+ 2r − 3

4
λ3−2r

∫
R3

(|x|−(3−2r) ∗ |v|2)|v|2dx

− (s+ r)(p+ 2)− 3

p+ 2
λ

3p
2 ‖v‖p+2

Lp+2 ,

where vλ(x) := λ3/2v(λx). When 4s
3 < p < 4s

3−2s , we have

lim
λ→0

Kω(vλ) =
ω(2s+ 2r − 3)

2
‖v‖2L2 > 0, and lim

λ→∞
Kω(vλ) < 0. (5.14)

When p = 4s/3, it follows from Q(v) = 0 that

s‖v‖2
Ḣs <

3p

2(p+ 2)
‖v‖p+2

Lp+2 ,

which implies that (5.14) holds. Thus, there exists λ0 > 0 such that Kω(vλ0) = 0.
This implies that

Sω(vλ0) ≥ Sω(u).

On the other hand, by some basic calculations, we have

∂λSω(vλ) = sλ2s−1‖v‖2
Ḣs +

3− 2r

4
λ2−2r

∫
R3

(|x|−(3−2r) ∗ |v|2)|v|2dx

− λ
3p
2 −1

p+ 2

3p

2
‖v‖p+2

Lp+2

=
Q(vλ)

λ
.

Next, we define

f(λ) := Q(vλ)

= sλ2s‖v‖2
Ḣs +

3− 2r

4
λ3−2r

∫
R3

(|x|−(3−2r) ∗ |v|2)|v|2dx− λ
3p
2

p+ 2

3p

2
‖v‖p+2

Lp+2 .

When p = 4s
3 , it follows from Q(v) = 0 that s‖v‖2

Ḣs <
3p

2(p+2)‖v‖
p+2
Lp+2 . Thus, it

is easy to see that the equation f(λ) = 0 admits a unique positive solution λ = 1.
When 4s

3 < p < 4s
3−2s , assume that there exists λ1 6= 1 such that f(λ1) = 0. It

easily follows that

3− 2r

4

∫
R3

(|x|−(3−2r) ∗ |v|2)|v|2dx(λ2s
1 − λ3−2r

1 ) =
‖v‖p+2

Lp+2

p+ 2

3p

2
(λ2s

1 − λ
3p
2

1 ).

If λ1 > 1, then λ2s
1 − λ3−2r

1 > 0 and λ2s
1 − λ

3p
2

1 < 0, which is a contradiction. If

λ1 < 1, then λ2s
1 −λ3−2r

1 < 0 and λ2s
1 −λ

3p
2

1 > 0, which is a contradiction. Therefore,
the equation f(λ) = 0 admits a unique positive solution λ = 1. Therefore,

∂λSω(vλ) > 0, for all λ ∈ (0, 1),

∂λSω(vλ) < 0, for all λ ∈ (1,∞).
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We thus obtain that Sω(vλ) < Sω(v) for any λ > 0 and λ 6= 1. In particular, we
have Sω(vλ0) ≤ Sω(v). Thus, Sω(u) ≤ Sω(vλ0) ≤ Sω(v) for all v ∈ Hs\{0} and
Q(v) = 0. Taking the infimum over v, we have Sω(u) ≤ d. This completes the
proof. �

To obtain the key estimate (5.19), we need establish the following variational
characterization of the ground states to (1.12). Firstly, when p = 4s

3 , we define

S1
ω(v) := Sω(v)− 1

2s
Q(v)

=
ω

2
‖v‖2L2 +

2s+ 2r − 3

8s

∫
R3

(|x|−(3−2r) ∗ |v|2)|v|2dx.
(5.15)

When 4s
3 < p < 4s

3−2s , we define

S2
ω(v) := Sω(v)− 2

3p
Q(v)

=
3p− 4s

6p
‖v‖2

Ḣs +
ω

2
‖v‖2L2

+
3p+ 4t− 6

12p

∫
R3

(|x|−(3−2r) ∗ |v|2)|v|2dx.

(5.16)

Lemma 5.8. Let ω > 0, 2s + 2r > 3, 4s
3 ≤ p < 4s

3−2s , and u be the ground state

related to (1.12). Then for k = 1, 2 we have

Sω(u) = Skω(u) = inf{Skω(v) : v ∈ Hs\{0}, Q(v) ≤ 0}. (5.17)

Proof. We only prove the case k = 1. The proof of the case k = 2 is similar. We
denote

d1(ω) = inf{Skω(v) : v ∈ Hs\{0}, Q(v) ≤ 0}.
Since u is the ground state related to (1.12), Q(u) = 0. It follows from the definition
of d1(ω) that

S1
ω(u) ≥ d1(ω). (5.18)

Let v ∈ Hs\{0} and Q(v) ≤ 0. If Q(v) = 0, then from Lemma 5.7 it follows that

S1
ω(v) = Sω(v)− 1

2s
Q(v) = Sω(v) ≥ Sω(u) = S1

ω(u).

If Q(v) < 0, we note that

Q(vλ) = λ2s‖v‖2
Ḣs +

λ3−2r

4

∫
R3

(|x|−(3−2r) ∗ |v|2)|v|2dx− λ
3p
2

p+ 2

3p

2
‖v‖p+2

Lp+2 > 0

for sufficiently small λ > 0, so there exists λ0 ∈ (0, 1) such that Q(vλ0) = 0. We
thus have

S1
ω(v) =

ω

2
‖v‖2L2 +

2s+ 2r − 3

8s

∫
R3

(|x|−(3−2r) ∗ |v|2)|v|2dx

≥ ω

2
‖v‖2L2 +

2s+ 2r − 3

8s
λ3−2r

0

∫
R3

(|x|−(3−2r) ∗ |v|2)|v|2dx

= S1
ω(vλ0) = Sω(vλ0) ≥ Sω(u) = S1

ω(u).

This implies that d1(ω) ≥ S1
ω(u). This, together with (5.18) implies that S1

ω(u) =
d1(ω). �
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Let u be the ground state related to (1.12). We define

Bω = {v ∈ Hs \ {0} : Sω(v) < Sω(u), Q(v) < 0}.

Lemma 5.9. Let ω > 0, 2s+ 2r > 3, and u be the ground state related to (1.12).
If 4s

3 ≤ p < 4s
3−2s , then the set Bω is invariant under the flow of (1.4). That is, if

ψ0 ∈ Bω, then the solution ψ(t) to (1.4) with initial data ψ0 belongs to Bω and

Q(ψ(t)) ≤ 2s(S(ψ0)− S(u)) (5.19)

for any t ∈ [0, T ∗).

Proof. Let ψ0 ∈ Bω, by Proposition 2.1, we see that there exists a unique solution
ψ ∈ C([0, T ∗), Hs) with initial data ψ0. We deduce from the conservations of mass
and energy that

Sω(ψ(t)) = Sω(ψ0) < Sω(u) (5.20)

for any t ∈ [0, T ∗). In addition, by the continuity of the function t 7→ Q(ψ(t)) and
Lemma 5.7, if there exists t0 ∈ [0, T ∗) such that Q(ψ(t0)) = 0, then Sω(ψ(t0)) ≥
Sω(u), which contradicts (5.20). Therefore, we have Q(ψ(t)) < 0 for any t ∈ [0, T ∗).
This, together with Lemma 5.8 implies that

Sω(u) ≤ S1
ω(ψ(t)) = Sω(ψ(t))− 1

2s
Q(ψ(t)) = Sω(ψ0)− Q(ψ(t))

2s
,

Sω(u) ≤ S2
ω(ψ(t)) = Sω(ψ(t))− 2

3p
Q(ψ(t)) < Sω(ψ0)− Q(ψ(t))

2s

for all t ∈ [0, T ∗). This completes the proof. �

Proof of Theorem 1.2. Let u be the ground state related to (1.12) and {λn} ⊆ R+

be such that λn > 1 and limn→∞ λn = 1. We take the initial data

ψ0,n(x) := λ3/2
n u(λnx).

Therefore,

lim
n→∞

‖ψ0,n‖L2 = lim
n→∞

‖u‖L2 = ‖u‖L2 ,

lim
n→∞

‖ψ0,n‖Ḣs = lim
n→∞

λsn‖u‖Ḣs = ‖u‖Ḣs .

Thus, we deduce from Brezis-Lieb’s lemma (Lemma 2.2) that ψ0,n → u in Hs as
n→∞. By Lemma 5.7, we have

Sω(ψ0,n) < Sω(u), Q(ψ0,n) < 0

for all n ≥ 1. Thus, ψ0,n ∈ Bω. Let ψn be the maximal solution of (1.4) with the
initial data ψ0,n. We deduce from Lemma 5.9 that ψn(t) ∈ Bω for all t ∈ [0, T ∗)
and

Q(ψn(t)) ≤ 2s(S(ψ0,n)− S(u)) < 0.

Thus, applying Theorem 1.1, we obtain that the solution ψn(t) of (1.4) with initial
data ψ0,n blows up in finite or infinite time for any n ≥ 1. �
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