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GROWTH PROPERTIES OF SOLUTIONS OF COMPLEX

DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS

OF FINITE (α, β, γ)-ORDER

BENHARRAT BELAÏDI, TANMAY BISWAS

Abstract. In this article, we investigate the complex higher order linear dif-
ferential equations in which the coefficients are entire functions of (α, β, γ)-

order and obtain some results which improve and generalize some previous

results of Tu et al. [29] as well as Beläıdi [1, 2, 3].

1. Introduction

Throughout this article, we assume that the reader is familiar with the fundamen-
tal results and the standard notations of the Nevanlinna value distribution theory
of entire and meromorphic functions and the theory of complex linear differential
equations which are available in [12, 21, 34] and therefore we do not explain those
in details. To study the generalized growth properties of entire and meromorphic
functions, the concepts of different growth indicators such as the iterated p-order
(see [20, 26] ), the (p, q)-th order (see [17, 18]), (p, q)-ϕ order (see [27]) etc. are
very useful and during the past decades, several authors made close investigations
on the generalized growth properties of entire and meromorphic functions related
to the above growth indicators in some different directions. The theory of complex
linear equations has been developed since 1960s. Many authors have investigated
the complex linear differential equations

f (k)(z) +Ak−1(z)f (k−1)(z) + · · ·+A0(z)f(z) = 0, (1.1)

f (k)(z) +Ak−1(z)f (k−1)(z) + · · ·+A0(z)f(z) = F (z) (1.2)

and achieved many valuable results when the coefficients A0(z), . . . , Ak−1(z), F (z)
(k ≥ 2) in (1.1) or (1.2) are entire functions of finite order or finite iterated p-order
or (p, q)-th order or (p, q)-ϕ order; see [1, 2, 3, 7, 8, 10, 15, 21, 22, 23, 24, 26, 27,
29, 30, 31, 33].

In [9], Chyzhykov and Semochko showed that both definitions of iterated p-
order and the (p, q)-th order have the disadvantage that they do not cover arbitrary
growth (see [9, Example 1.4]). They used more general scale, called the ϕ-order (see
[9]). In recent times, the concept of ϕ-order is used to study the growth of solutions
of complex differential equations which extend and improve many previous results
(see [4, 5, 9, 19]).

2020 Mathematics Subject Classification. 30D35, 34M10.

Key words and phrases. Complex differential equations; (α, β, γ)-order; growth of solutions.
©2023. This work is licensed under a CC BY 4.0 license.
Submitted July 22, 2023. Published March 11, 2023.

1
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In [25], Mulyava et al. have used the concept of (α, β)-order or generalized order
of an entire function in order to investigate the properties of solutions of a hetero-
geneous differential equation of the second order and obtained several interesting
results. For details about (α, β)-order one may see [25, 28].

In this paper, we investigate the complex higher order linear differential equations
in which the coefficients are entire functions of (α, β, γ)-order and obtain some
results which improve and generalize some previous results of Tu et al. [29] as well
as Beläıdi [1, 2, 3].

2. Definitions and notation

First of all, let L be a class of continuous non-negative on (−∞,+∞) function
α such that α(x) = α(x0) ≥ 0 for x ≤ x0 and α(x) ↑ +∞ as x0 ≤ x → +∞. We
say that α ∈ L1, if α ∈ L and α(a+ b) ≤ α(a) +α(b) + c for all a, b ≥ R0 and fixed
c ∈ (0,+∞). Further we say that α ∈ L2, if α ∈ L and α(x+O(1)) = (1+o(1))α(x)
as x→ +∞. Finally, α ∈ L3, if α ∈ L and α(a+ b) ≤ α(a) + α(b) for all a, b ≥ R0,
i.e., α is subadditive. Clearly L3 ⊂ L1.

Particularly, when α ∈ L3, then one can easily verify that α(mr) ≤ mα(r),
m ≥ 2 is an integer. Up to a normalization, subadditivity is implied by concavity.
Indeed, if α(r) is concave on [0,+∞) and satisfies α(0) ≥ 0, then for t ∈ [0, 1],

α(tx) = α(tx+ (1− t) · 0) ≥ tα(x) + (1− t)α(0) ≥ tα(x),

so that by choosing t = a
a+b or t = b

a+b , we obtain

α(a+ b) =
a

a+ b
α(a+ b) +

b

a+ b
α(a+ b)

≤ α
( a

a+ b
(a+ b)

)
+ α

( b

a+ b
(a+ b)

)
= α(a) + α(b), a, b ≥ 0.

As a non-decreasing, subadditive and unbounded function, α(r) satisfies

α(r) ≤ α(r +R0) ≤ α(r) + α(R0)

for any R0 ≥ 0. This yields that α(r) ∼ α(r +R0) as r → +∞.
Now we add two conditions on α, β and γ: (i) Always α ∈ L1, β ∈ L2 and γ ∈ L3;

and (ii) α(log[p] x) = o(β(log γ(x))), p ≥ 2, α(log x) = o(α(x)) and α−1(kx) =
o(α−1(x)) (k < 1) as x→ +∞.

Throughout this paper, we assume that α, β and γ always satisfy the above two
conditions unless otherwise specifically stated.

Heittokangas et al. [16] introduced a new concept of ϕ-order of entire and mero-
morphic function considering ϕ as subadditive function. For details one may see
[16]. Extending this notion, recently Beläıdi and Biswas [6] introduce the definition
of the (α, β, γ)-order of a meromorphic function in the following way:

Definition 2.1 ([6]). The (α, β, γ)-order denoted by σ(α,β,γ)[f ] of an entire function
f(z) is defined by

σ(α,β,γ)[f ] = lim sup
r→+∞

α(log[2]M(r, f))

β(log γ(r))
.
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By the inequality T (r, f) ≤ log+M(r, f) ≤ R+r
R−rT (R, f) (0 < r < R) [12] for an

entire function f(z), one can easily verify that [6]

σ(α,β,γ)[f ] = lim sup
r→+∞

α(log T (r, f))

β(log γ(r))
= lim sup

r→+∞

α(log[2]M(r, f))

β(log γ(r))
.

Proposition 2.2 ([6]). If f(z) is an entire function, then

σ(α(log),β,γ)[f ] = lim sup
r→+∞

α(log[2] T (r, f))

β(log γ(r))
= lim sup

r→+∞

α(log[3]M(r, f))

β(log γ(r))
.

Similar to Definition 2.1, one can define the (α, β, γ)-exponent convergence of
the zero-sequence of a meromorphic the following way:

Definition 2.3 ([6]). The (α, β, γ)-exponent convergence of the zero-sequence de-
noted by λ(α,β,γ)[f ] of a meromorphic function f(z) is defined by

λ(α,β,γ)[f ] = lim sup
r→+∞

α(log n(r, 1/f))

β(log γ(r))
.

Analogously, the (α, β, γ)-exponent convergence of the distinct zero-sequence de-
noted by λ(α,β,γ)[f ] of f(z) is defined by

λ(α,β,γ)[f ] = lim sup
r→+∞

α(log n(r, 1/f))

β(log γ(r))
.

Accordingly, the values

λ(α(log),β,γ)[f ] = lim sup
r→+∞

α(log[2] n(r, 1/f))

β(log γ(r))
,

λ(α(log),β,γ)[f ] = lim sup
r→+∞

α(log[2] n(r, 1/f))

β(log γ(r))

are respectively called as (α(log), β, γ)-exponent convergence of the zero-sequence
and (α(log), β, γ) -exponent convergence of the distinct zero-sequence of a mero-
morphic function f(z).

The linear measure of a set E ⊂ [0,+∞) is defined as m(E) =
∫ +∞

0
χE(t)dt.

The logarithmic measure of a set E ⊂ [1,+∞) is defined by lm(E) =
∫ +∞

1
χE(t)
t dt,

where χE(t) is the characteristic function of E. The upper and lower densities of
E are

densE = lim sup
r→+∞

m(E ∩ [0, r])

r
, densE = lim inf

r→+∞

m(E ∩ [0, r])

r
.

Proposition 2.4 ([6]). If f(z) is a meromorphic function, then

λ(α,β,γ)[f ] = lim sup
r→+∞

α(log n(r, 1/f))

β(log γ(r))
= lim sup

r→+∞

α(logN(r, 1/f))

β(log γ(r))

and

λ(α,β,γ)[f ] = lim sup
r→+∞

α(log n(r, 1/f))

β(log γ(r))
= lim sup

r→+∞

α(logN(r, 1/f))

β(log γ(r))
.

Proposition 2.5 ([6]). If f(z) is a meromorphic function, then

λ(α(log),β,γ)[f ] = lim sup
r→+∞

α(log[2] n(r, 1/f))

β(log γ(r))
= lim sup

r→+∞

α(log[2]N(r, 1/f))

β(log γ(r))
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and

λ(α(log),β,γ)[f ] = lim sup
r→+∞

α(log[2] n(r, 1/f))

β(log γ(r))
= lim sup

r→+∞

α(log[2]N(r, 1/f))

β(log γ(r))
.

Proposition 2.6 ([6]). Let f1(z), f2(z) be non-constant meromorphic functions
with σ(α(log),β,γ)[f1] and σ(α(log),β,γ)[f2] as their (α(log), β, γ)-order. Then

(i) σ(α(log),β,γ)[f1 ± f2] ≤ max{σ(α(log),β,γ)[f1], σ(α(log),β,γ)[f2]};
(ii) σ(α(log),β,γ)[f2 · f2] ≤ max{σ(α(log),β,γ)[f1], σ(α(log),β,γ)[f2]};

(iii) If σ(α(log),β,γ)[f1] 6= σ(α(log),β,γ)[f2], then
σ(α(log),β,γ)[f1 ± f2] = max{σ(α(log),β,γ)[f1], σ(α(log),β,γ)[f2]};

(iv) If σ(α(log),β,γ)[f1] 6= σ(α(log),β,γ)[f2], then
σ(α(log),β,γ)[f2 · f2] = max{σ(α(log),β,γ)[f1], σ(α(log),β,γ)[f2]}.

3. Main Results

In this section we present our main results which considerably extend the results
by Tu et al. [29] as well as those by Beläıdi [1, 2, 3].

Theorem 3.1. Let A0(z), A1(z), . . . , Ak−1(z) be entire functions with A0(z) 6≡ 0
such that for real constants a, b, µ, θ1, θ2 with 0 ≤ b < a, µ > 0, θ1 < θ2, we have

|A0(z)| ≥ exp{a exp(α−1(µβ(log γ(|z|))))} (3.1)

and

|Aj(z)| ≤ exp{b exp(α−1(µβ(log γ(|z|))))}, j = 1, . . . , k − 1, (3.2)

as z → ∞ with θ1 ≤ arg z ≤ θ2. Then σ(α(log),β,γ)[f ] ≥ µ holds for all non-trivial
solutions of (1.1).

Theorem 3.2. Let H be a set of complex numbers satisfying dens{|z| : z ∈ H} > 0,
and let A0(z), A1(z), . . . , Ak−1(z) be entire functions and satisfy (3.1) and (3.2) as
z → ∞ for z ∈ H, where 0 ≤ b < a, µ > 0. Then every solution f(z) 6≡ 0 of (1.1)
satisfies σ(α(log),β,γ)[f ] ≥ µ.

Theorem 3.3. Let H be a set of complex numbers satisfying dens{|z| : z ∈
H} > 0, and let A0(z), A1(z), . . . , Ak−1(z) be entire functions of (α, β, γ)-order
with max{σ(α,β,γ)[Aj ] : j = 1, . . . , k − 1} ≤ σ(α,β,γ)[A0] = σ < +∞ such that for
some constants 0 ≤ b < a and for any given ε > 0, we have

|A0(z)| ≥ exp{a exp(α−1((σ − ε)β(log γ(|z|))))} (3.3)

and

|Aj(z)| ≤ exp{b exp(α−1((σ − ε)β(log γ(|z|))))}, j = 1, . . . , k − 1, (3.4)

as z →∞ for z ∈ H. Then every solution f(z) 6≡ 0 of (1.1) satisfies σ(α(log),β,γ)[f ] =
σ(α,β,γ)[A0] = σ.

Theorem 3.4. Let H, A0(z), A1(z), . . . , Ak−1(z) satisfy the hypotheses of Theorem
3.3, and let F (z) 6≡ 0 be an entire function of (α, β, γ)-order.

(i) If σ(α(log),β,γ)[F ] < σ(α,β,γ)[A0], then every solution f(z) of (1.2) satisfies

λ(α(log),β,γ)[f ] = λ(α(log),β,γ)[f ] = σ(α(log),β,γ)[f ] = σ, with at most one
exceptional solution f0(z) satisfying σ(α(log),β,γ)[f0] < σ.

(ii) If σ(α,β,γ)[A0] ≤ σ(α(log),β,γ)[F ] < +∞, then every solution f(z) of (1.2)
satisfies σ(α(log),β,γ)[f ] = σ(α(log),β,γ)[F ].
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4. Some Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 4.1 ([11]). Let f(z) be a nontrivial entire function, and let κ > 1 and
ε > 0 be given constants. Then there exist a constant c > 0 and a set E1 ⊂ [0,+∞)
having finite linear measure such that for all z satisfying |z| = r /∈ E1, we have∣∣f (k)(z)

f(z)

∣∣ ≤ c[T (κr, f)rε log T (κr, f)]k (k ∈ N). (4.1)

Lemma 4.2 ([13, 14, 21, 32]). Let f(z) be a transcendental entire function, and
let z be a point with |z| = r at which |f(z)| = M(r, f). Then, for all |z| outside a
set E2 of r of finite logarithmic measure, we have

f (k)(z)

f(z)
=
(ν(r, f)

z

)k
(1 + o(1)) (k ∈ N, r /∈ E2), (4.2)

where ν(r, f) is the central index of f(z).

Lemma 4.3 ([6]). Let f(z) be an entire function satisfying σ(α(log),β,γ)[f ] = σ1,
and let ν(r, f) be the central index of f(z). Then

lim sup
r→+∞

α(log[2] ν(r, f))

β(log γ(r))
= σ1.

Lemma 4.4. Let f(z) be a transcendental entire function. Then σ(α(log),β,γ)[f ] =
σ(α(log),β,γ)[f

′].

Proof. By Cauchy’s integral formula, we have

f ′(z) =
1

2πi

∮
Γ

f(ζ)

(ζ − z)2
dζ,

where Γ = {ζ : |ζ − z| = R− r}, |z| = r < R. Set ζ − z = (R− r)eiθ (0 ≤ θ ≤ 2π),
dζ = (R− r)ieiθdθ. Since max{|f(ζ)| : ζ ∈ Γ} ≤M(R, f), then we obtain

M(r, f ′) = |f ′(z)| ≤ 1

2π

∫ 2π

0

|f(ζ)|
|ζ − z|2

(R− r)dθ ≤ M(R, f)

R− r
.

Setting R = r + 1, it follows that

M(r, f ′) ≤M(r + 1, f).

Since γ(r +R0) ∼ γ(r) as r → +∞, it follows that

σ(α(log),β,γ)[f
′] = lim sup

r→+∞

α(log[3]M(r, f ′))

β(log γ(r))

≤ lim sup
r→+∞

(α(log[3]M(r + 1, f))

β(log γ(r + 1))
· β(log γ(r + 1))

β(log γ(r))

)
= lim sup

r→+∞

(α(log[3]M(r + 1, f))

β(log γ(r + 1))
· β(log γ(r))

β(log γ(r))

)
= lim sup

r→+∞

α(log[3]M(r + 1, f))

β(log γ(r + 1))
.

Thus, from the above we obtain

σ(α(log),β,γ)[f
′] ≤ σ(α(log),β,γ)[f ]. (4.3)
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On the other hand, for an entire function f(z), we have f(z) − f(0) =
∫ z

0
f ′(t)dt,

where the integral being taken along the straight line from 0 to z, so we obtain that

M(r, f) ≤
∣∣ ∫ z

0

f ′(t)dt|+ |f(0)| ≤ rM(r, f ′) + |f(0)|.

Therefore from above we have

log[3]M(r, f) ≤ log[3]M(r, f ′) + log[3] r + log[3] |f(0)|+O(1).

Since α(a + b) ≤ α(a) + α(b) + c, c > 0 and α(log[3] x) = o(β(log γ(x))), so from
above we get that

σ(α(log),β,γ)[f ] ≤ σ(α(log),β,γ)[f
′]. (4.4)

Hence the lemma follows from (4.3) and (4.4). �

Remark 4.5. In the line of Lemma 4.4 one can easily deduce that σ(α,β,γ)[f ] =
σ(α,β,γ)[f

′], where f(z) is an entire transcendental function.

Lemma 4.6. Let f(z) be an entire function of (α, β, γ)-order that satisfies
σ(α,β,γ)[f ] = σ. Then there exists a set E3 ⊂ (1,+∞) having infinite logarithmic
measure such that for all r ∈ E3, we have

lim
r→+∞

α(log T (r, f))

β(log γ(r))
= σ (r ∈ E3).

Proof. By Definition 2.1, there exists an increasing sequence {rn}+∞n=1 tending to
+∞ that satisfying (1 + 1

n )rn < rn+1 and

lim
rn→+∞

α(log T (rn, f))

β(log γ(rn))
= σ(α,β,γ)[f ] = σ.

So, there exists an n1 ∈ N such that for n ≥ n1 and for any r ∈ E3 = ∪+∞
n=n1

[rn, (1+
1
n )rn], we have

α(log T (rn, f))

β(log γ((1 + 1
n )rn))

≤ α(log T (r, f))

β(log γ(r))
≤
α(log T ((1 + 1

n )rn, f))

β(log γ(rn))
. (4.5)

From this inequality and γ((1 + 1
n )rn) ≤ γ(2rn) ≤ 2γ(rn), we have

lim
r→+∞, r∈E3

α(log T (r, f))

β(log γ(r))

≥ lim
rn→+∞

(α(log T (rn, f))

β(log γ(rn))

β
(

log γ(rn)
)

β
(

log γ((1 + 1
n )rn))

)
≥ lim
rn→+∞

(α(log T (rn, f))

β
(

log γ(rn)
) β(log γ(rn))

β
(

log(2γ(rn))
))

= lim
rn→+∞

(α(log T (rn, f))

β(log γ(rn))

β(log γ(rn))

β((1 + log 2
log γ(rn) ) log γ(rn))

)
= lim
rn→+∞

(α(log T (rn, f))

β
(

log γ(rn)
) β(log γ(rn))

β
(
(1 + o(1)) log γ(rn)

)).

(4.6)
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From this inequality and β(x+ o(1)) = (1 + o(1))β(x) as x→ +∞, we obtain that

lim
r→+∞, r∈E3

α(log T (r, f))

β(log γ(r))

≥ lim
rn→+∞

(α(log T (rn, f))

β(log γ(rn))

β(log γ(rn))

(1 + o(1))β(log γ(rn))

)
= lim
rn→+∞

α(log T (rn, f))

β(log γ(rn))
= σ.

(4.7)

On the other hand, by (4.5), γ((1 + 1
n )rn) ≤ γ(2rn) ≤ 2γ(rn) and β(x + o(1)) =

(1 + o(1))β(x) as x→ +∞, we have

lim
r→+∞, r∈E3

α(log T (r, f))

β(log γ(r))

≤ lim
rn→+∞

(α(log T ((1 + 1
n )rn, f))

β(log γ(1 + 1
n )rn)

β(log γ((1 + 1
n )rn))

β(log γ(rn))

)
≤ lim
rn→+∞

(α(log T ((1 + 1
n )rn, f))

β(log γ(1 + 1
n )rn)

β(log(2γ(rn)))

β(log γ(rn))

)
= lim
rn→+∞

(α(log T ((1 + 1
n )rn, f))

β(log γ(1 + 1
n )rn)

β((1 + o(1)) log γ(rn))

β(log γ(rn))

)
= lim
rn→+∞

(α(log T ((1 + 1
n )rn, f))

β(log γ(1 + 1
n )rn)

(1 + o(1))β(log γ(rn))

β(log γ(rn))

)
= σ.

(4.8)

Therefore, by (4.7) and (4.8), we obtain

lim
r→+∞, r∈E3

α(log T (r, f))

β(log γ(r))
= σ,

where lm(E3) =
∑+∞
n=n1

∫ (1+ 1
n )

rn
1
t dt =

∑+∞
n=n1

log(1 + 1
n ) = +∞. This completes

the proof. �

Lemma 4.7. Let f(z) be an entire function of (α, β, γ)-order with σ(α,β,γ)[f ] =
σ > 0, and let f1(z) be an entire function of (α1, β1, γ1)-order with σ(α1,β1,γ1)[f1] =
σ1 < +∞. If σ(α,β,γ)[f ] and σ(α1,β1,γ1)[f1] satisfy one of the following conditions:

(i) α(r) = α1(r), β(r) = β1(r), γ(r) = γ1(r). and σ(α1,β1,γ1)[f1] < σ(α,β,γ)[f ];

(ii) limr→+∞
α−1

1 (r)
α−1(r) = 0, β(r) = β1(r), γ(r) = γ1(r) and σ(α1,β1,γ1)[f1] <

σ(α,β,γ)[f ];

then there exists a set E4 ⊂ (1,+∞) having infinite logarithmic measure such that
for all r ∈ E4, we have

lim
r→+∞

T (r, f1)

T (r, f)
= 0 (r ∈ E4).

Proof. (i) By definition, for all sufficiently large values of r, we obtain

T (r, f1) ≤ exp{α−1((σ1 + ε)β(log γ(r)))}. (4.9)

From σ(α,β,γ)[f ] = σ and Lemma 4.6, there exists a set E4 of infinite logarithmic
measure satisfying

lim
r→+∞

α(log T (r, f))

β(log γ(r))
= σ (r ∈ E4).
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Then

T (r, f) ≥ exp{α−1((σ − ε)β(log γ(r)))} (r ∈ E4), (4.10)

where 0 < 2ε < σ − σ1. Now by (4.9) and (4.10), we obtain that

T (r, f1)

T (r, f)
≤ exp{α−1((σ1 + ε)β(log γ(r)))}

exp{α−1((σ − ε)β(log γ(r)))}

= exp
{
α−1((σ1 + ε)β(log γ(r)))− α−1((σ − ε)β(log γ(r)))

}
= exp

{
α−1((σ − ε)β(log γ(r)))

(α−1((σ1 + ε)β(log γ(r)))

α−1((σ − ε)β(log γ(r)))
− 1
)}

= exp
{
α−1((σ − ε)β(log γ(r)))

(α−1(σ1+ε
σ−ε (σ − ε)β(log γ(r)))

α−1((σ − ε)β(log γ(r)))
− 1
)}

= exp
{
α−1((σ − ε)β(log γ(r)))

(α−1(k(σ − ε)β(log γ(r)))

α−1((σ − ε)β(log γ(r)))
− 1
)}

→ 0, r → +∞ (r ∈ E4), k =
σ1 + ε

σ − ε
< 1.

From the above inequality we obtain

lim
r→+∞

T (r, f1)

T (r, f)
= 0 (r ∈ E4).

(ii) By definition, we obtain for all sufficiently large values of r that

T (r, f1) ≤ exp{α−1
1 ((σ1 + ε)β(log γ(r)))}. (4.11)

Now by (4.10) and (4.11), for any given ε with 0 < 2ε < σ − σ1. we obtain that

T (r, f1)

T (r, f)
≤ exp{α−1

1 ((σ1 + ε)β(log γ(r)))}
exp{α−1((σ − ε)β(log γ(r)))}

=
exp{α−1

1 ((σ1 + ε)β(log γ(r)))}
exp{α−1((σ1 + ε)β(log γ(r)))}

exp{α−1((σ1 + ε)β(log γ(r)))}
exp{α−1((σ − ε)β(log γ(r)))}

= exp
{
α−1((σ1 + ε)β(log γ(r)))

(α−1
1 ((σ1 + ε)β(log γ(r)))

α−1((σ1 + ε)β(log γ(r)))
− 1
)}

× exp{α−1((σ1 + ε)β(log γ(r)))}
exp{α−1((σ − ε)β(log γ(r)))}

.

Since limr→+∞
α−1

1 (r)
α−1(r) = 0 and limr→+∞

α−1(kr)
α−1(r) = 0 (k < 1), then by the inequality

obove, we obtain

lim
r→+∞

T (r, f1)

T (r, f)
= 0 (r ∈ E4).

�

Lemma 4.8. Let F (z) 6≡ 0, Aj(z) (j = 0, . . . , k − 1) be entire functions. Also let
f(z) be a solution of (1.2) satisfying

max{σ(α(log),β,γ)[Aj ], σ(α(log),β,γ)[F ] : j = 0, 1, . . . , k − 1} < σ(α(log),β,γ)[f ].

Then

λ(α(log),β,γ)[f ] = λ(α(log),β,γ)[f ] = σ(α(log),β,γ)[f ].
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Proof. By (1.2) we have

1

f
=

1

F

(f (k)

f
+Ak−1(z)

f (k−1)

f
+ · · ·+A1(z)

f ′

f
+A0

)
. (4.12)

Now it is easy to see that if f(z) has a zero at z0 of order a (a > k), and A0, . . . , Ak−1

are analytic at z0, then F (z) must have a zero at z0 of order a− k, hence

n
(
r,

1

f

)
≤ kn

(
r,

1

f

)
+ n

(
r,

1

F

)
(4.13)

and

N
(
r,

1

f

)
≤ kN

(
r,

1

f

)
+N

(
r,

1

F

)
. (4.14)

By the lemma on logarithmic derivative and (4.12), we have

m
(
r,

1

f

)
≤ m

(
r,

1

F

)
+

k−1∑
j=0

m(r,Aj) +O(log T (r, f) + log r) (r /∈ E5), (4.15)

where E5 is a set of r of finite linear measure. By (4.14) and ( 4.15), we obtain that

T (r, f) = T
(
r,

1

f

)
+O(1)

≤ kN
(
r,

1

f

)
+ T (r, F ) +

k−1∑
j=0

T (r,Aj) +O(log(rT (r, f)))

(4.16)

for r /∈ E5. Since max{σ(α(log),β,γ)[Aj ], σ(α(log),β,γ)[F ] : j = 0, 1, . . . , k − 1} <
σ(α(log),β,γ)[f ], by Lemma 4.7, there exists a set E4 having infinite logarithmic
measure such that

max
{T (r, F )

T (r, f)
,
T (r,Aj)

T (r, f)

}
→ 0, r → +∞ (r ∈ E4, j = 0, . . . , k − 1). (4.17)

Since f(z) is transcendental, we have

O(log(rT (r, f))) = o(T (r, f)) as r → +∞. (4.18)

Therefore, by substituting (4.17) and (4.18) into (4.16), for all |z| = r ∈ E4\E5, we
obtain

T (r, f) ≤ O
(
N
(
r,

1

f

))
.

Hence from above we have

σ(α(log),β,γ)[f ] ≤ λ(α(log),β,γ)[f ].

Therefore,

λ(α(log),β,γ)[f ] = λ(α(log),β,γ)[f ] = σ(α(log),β,γ)[f ].

Hence the lemma follows. �

Lemma 4.9. Let f be a meromorphic function. If σ(α,β,γ)[f ] = σ < +∞, then
σ(α(log),β,γ)[f ] = 0.

Proof. Suppose that σ(α,β,γ)[f ] = σ < +∞. Then, for any given ε > 0 and suffi-
ciently large r, we have

T (r, f) ≤ exp{α−1((σ + ε)β(log γ(r)))}.
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Then, we immediately obtain

σ(α(log),β,γ)[f ] = lim sup
r→+∞

α(log[2] T (r, f))

β(log γ(r))

≤ lim sup
r→+∞

α(log[2](exp{α−1((σ + ε)β(log γ(r)))}))
β(log γ(r))

= lim sup
r→+∞

α(logα−1((σ + ε)β(log γ(r))))

β(log γ(r))

= lim sup
x→+∞

α(logα−1((σ + ε)x))

x

= (σ + ε)lim sup
x→+∞

α(log x)

α(x)
= 0. �

5. Proof of main results

Proof of Theorem 3.1. Let f(z) 6≡ 0 be a solution of (1.1) and rewrite (1.1) as

A0(z) = −
(f (k)(z)

f(z)
+Ak−1(z)

f (k−1)(z)

f(z)
+ · · ·+A1(z)

f ′(z)

f(z)

)
.

Therefore,

|A0(z)| ≤
∣∣f (k)(z)

f(z)

∣∣+ |Ak−1(z)|
∣∣f (k−1)(z)

f(z)

∣∣+ · · ·+ |A1(z)|
∣∣f ′(z)
f(z)

∣∣. (5.1)

By Lemma 4.1, there exist a constant c > 0 and a set E1 ⊂ [0,+∞) having finite
linear measure such that |z| = r /∈ E1 for all z = reiθ, we have

|f
(j)(z)

f(z)
| ≤ c[rT (2r, f)]2k, j = 1, . . . , k. (5.2)

By (5.1), (5.2), and the hypotheses of Theorem 3.1, we have

exp{a exp(α−1(µβ(log γ(|z|))))}
≤ |A0(z)|

≤ k exp{b exp(α−1(µβ(log γ(|z|))))}c[rT (2r, f)]2k
(5.3)

as z →∞ with |z| = r /∈ E1, θ1 ≤ arg z = θ ≤ θ2. Now from (5.3) we have

exp{(a− b) exp(α−1(µβ(log γ(|z|))))} ≤ kc[rT (2r, f)]2k,

(a− b) exp(α−1(µβ(log γ(|z|)))) ≤ 2k(log r + log T (2r, f)) + log(kc),

exp(α−1(µβ(log γ(|z|)))) ≤ 2k

a− b
(log r + log T (2r, f)) +

log(kc)

a− b
.

By using α(a + b) ≤ α(a) + α(b) + c for all x, y ≥ R0 and fixed c ∈ (0,+∞), from
the above we obtain

α−1(µβ(log γ(|z|))) ≤ log[2] T (2r, f) + log[2] r +O(1),

µβ(log γ(r)) ≤ α((log[2] T (2r, f) + log[2] r +O(1))),

µβ(log γ(r)) ≤ α(log[2] T (2r, f)) + α(log[2] r) + c.

(5.4)



EJDE-2023/27 GROWTH OF SOLUTIONS OF COMPLEX DIFFERENTIAL EQUATIONS 11

By using γ(2r) ≤ 2γ(r), β(r+o(1)) = (1+o(1))β(r) as r → +∞, and α(log[2] r)
β(log γ(r)) → 0

as r → +∞, then by (5.4) and Proposition 2.2, we have σ(α(log),β)[f ] ≥ µ. This
completes the proof. �

Proof of Theorem 3.2. Let f(z) 6≡ 0 be a solution of (1.1). By the hypotheses of
Theorem 3.2, there exists a set H with dens{|z| : z ∈ H} > 0 such that for all z
satisfying z ∈ H, we have

|A0(z)| ≥ exp{a exp(α−1(µβ(log γ(|z|))))}, (5.5)

|Aj(z)| ≤ exp{b exp(α−1(µβ(log γ(|z|))))}, j = 1, . . . , k − 1 , (5.6)

as z → ∞. We set H1 = {|z| = r : z ∈ H}, since dens{|z| : z ∈ H} > 0, it follows
that H1 is a set with

∫
H1
dr = +∞. Therefore from, by substituting (5.2), (5.5)

and (5.6) into (5.1), it follows that for all z satisfying |z| = r ∈ H1 \ E1, we have

exp{a exp(α−1(µβ(log γ(|z|))))} ≤ k exp{b exp(α−1(µβ(log γ(|z|))))}c[rT (2r, f)]2k

as |z| = r → +∞. Thus

exp{(a− b) exp(α−1(µβ(log γ(|z|))))} ≤ kc[rT (2r, f)]2k (5.7)

as |z| = r ∈ H1 \ E1, r → +∞. Since α(a + b) ≤ α(a) + α(b) + c for all x, y ≥ R0

and fixed c ∈ (0,+∞), γ(2r) ≤ 2γ(r), β(r + o(1)) = (1 + o(1))β(r) as r → +∞,

and α(log[2] r)
β(log γ(r)) → 0 as r → +∞, then by (5.7) and Proposition 2.2, we obtain

σ(α(log),β,γ)[f ] ≥ µ. �

Proof of Theorem 3.3. By Theorem 3.2, we have σ(α(log),β,γ)[f ] ≥ σ−ε, since ε > 0
is arbitrary, we obtain σ(α(log),β,γ)[f ] ≥ σ(α,β,γ)[A0] = σ. On the other hand, by
Lemma 4.2, there exists a set E2 ⊂ [1,+∞) having finite logarithmic measure such
that (4.2) holds for all z satisfying |z| = r /∈ [0, 1] ∪ E2 and |f(z)| = M(r, f). Now
for any given ε > 0 and for sufficiently large r, we obtain

|Aj(z)| ≤ exp[2]{α−1((σ + ε)β(log γ(r)))}, j = 0, 1, . . . , k − 1. (5.8)

Substituting (4.2) and (5.8) into (1.1), for all z satisfying |z| = r /∈ [0, 1] ∪ E2 and
|f(z)| = M(r, f), we have(ν(r, f)

|z|

)k
|1 + o(1)| ≤ k

(ν(r, f)

|z|

)k−1

|1 + o(1)| exp[2]{α−1((σ + ε)β(log γ(r)))}.

It follows that

ν(r, f) ≤ kr|1 + o(1)| exp[2]{α−1((σ + ε)β(log γ(r)))}. (5.9)

Therefore in view of (5.9), α(a + b) ≤ α(a) + α(b) + c for all x, y ≥ R0 and fixed

c ∈ (0,+∞) and α(log[2] r)
β(log γ(r)) → 0 as r → +∞, we obtain

lim sup
r→+∞

α(log[2] ν(r, f))

β(log γ(r))
≤ σ + ε. (5.10)

Since ε > 0 is arbitrary, by (5.10) and Lemma 4.3, we obtain that σ(α(log),β,γ)[f ] ≤
σ. This and the fact that σ(α(log),β,γ)[f ] ≥ σ yield σ(α(log),β,γ)[f ] = σ. The proof is
complete. �
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Proof of Theorem 3.4. (i) Suppose that σ(α(log),β,γ)[F ] < σ(α,β,γ)[A0]. First, we
show that (1.2) can possess at most one solution f0(z) satisfying σ(α(log),β,γ)[f0] < σ.
In fact, if f∗(z) is a second solution with σ(α(log),β,γ)[f

∗] < σ, then σ(α(log),β,γ)[f0−
f∗] < σ. But f0(z)−f∗(z) is a solution of the corresponding homogeneous equation
(1.1) of (1.2), this contradicts Theorem 3.3. We assume that f(z) is a solution with
σ(α(log),β,γ)[f ] ≥ σ and f1(z), f2(z),. . . , fk(z) is a solution base of the corresponding
homogeneous equation (1.1). Then, f(z) can be expressed in the form

f(z) = B1(z)f1(z) +B2(z)f2(z) + · · ·+Bk(z)fk(z), (5.11)

where B1(z), B2(z), . . . , Bk(z) are determined by

B′1(z)f1(z) +B′2(z)f2(z) + · · ·+B′k(z)fk(z) = 0,

B′1(z)f ′1(z) +B′2(z)f ′2(z) + · · ·+B′k(z)f ′k(z) = 0,

. . .

B′1(z)f
(k−1)
1 (z) +B′2(z)f

(k−1)
2 (z) + · · ·+B′k(z)f

(k−1)
k (z) = F (z).

(5.12)

As the Wronskian W (f1, f2, . . . , fk) is a differential polynomial in f1, f2, . . . , fk with
constant coefficients, it is easy to deduce that

σ(α(log),β,γ)[W ] ≤ σ(α(log),β,γ)[fj ] = σ(α,β,γ)[A0] = σ. (5.13)

From (5.12) we obtain

B′j = F ·Gj(f1, f2, . . . , fk) ·W (f1, f2, . . . , fk)−1, j = 1, . . . , k, (5.14)

where Gj(f1, f2, . . . , fk) are differential polynomials in f1, f2, . . . , fk with constant
coefficients. Therefore,

σ(α(log),β)[Gj ] ≤ σ(α(log),β)[fj ] = σ(α,β,γ)[A0] = σ, j = 1, . . . , k. (5.15)

Since σ(α(log),β,γ)[F ] < σ(α,β,γ)[A0], by Lemma 4.4, (5.13)-(5.15), for j = 1, . . . , k,
we obtain

σ(α(log),β,γ)[Bj ] = σ(α(log),β,γ)[B
′
j ]

≤ max{σ(α(log),β,γ)[F ], σ(α,β,γ)[A0]}
= σ(α,β,γ)[A0] = σ.

(5.16)

Now, from (5.11) and (5.16), we have

σ(α(log),β,γ)[f ] ≤ max
{
σ(α(log),β,γ)[fj ], σ(α(log),β,γ)[Bj ] (j = 1, . . . , k)

}
= σ(α,β,γ)[A0] = σ.

(5.17)

This and the assumption σ(α(log),β,γ)[f ] ≥ σ yield σ(α(log),β,γ)[f ] = σ. By Lemma
4.9, we have

max{σ(α(log),β,γ)[F ], σ(α(log),β,γ)[Aj ] (j = 0, 1, . . . , k − 1)}
= σ(α(log),β,γ)(F )

< σ(α,β,γ)[A0] = σ(α(log),β,γ)[f ].

So, if f(z) is a solution of equation (1.2) satisfying σ(α(log),β,γ)[f ] = σ, then by
Lemma 4.8, we have

λ(α(log),β,γ)[f ] = λ(α(log),β,γ)[f ] = σ(α(log),β,γ)[f ] = σ.
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(ii) Suppose that σ(α,β,γ)[A0] ≤ σ(α(log),β)[F ] < +∞. Then, by (5.16), for j =
1, . . . , k, we obtain

σ(α(log),β,γ)[Bj ] = σ(α(log),β,γ)[B
′
j ]

≤ max{σ(α(log),β,γ)[F ], σ(α,β,γ)[A0]}
= σ(α(log),β,γ)[F ].

(5.18)

Now from (5.11) and (5.18), we obtain

σ(α(log),β,γ)[f ] ≤ max{σ(α(log),β,γ)[fj ], σ(α(log),β,γ)[Bj ] (j = 1, . . . , k)}
≤ σ(α(log),β,γ)[F ]

. (5.19)

From (1.2), a simple consideration of (α(log), β, γ)-order implies that

σ(α(log),β,γ)[f ] ≥ σ(α(log),β,γ)[F ].

By the above inequality and (5.19), we have σ(α(log),β,γ)[f ] = σ(α(log),β,γ)[F ] which
completes the proof. �
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