Lanxin Huang, Jiabao Su
Abstract:
This article concerns the existence of solutions to the Schrodinger-Poisson system $$\displaylines{ -\Delta_p u+|u|^{p-2}u+\lambda\phi u=|u|^{q-2}u+h(x) \quad \hbox{in }\mathbb{R}^3,\\ -\Delta \phi=u^2 \quad \hbox{in }\mathbb{R}^3, }$$ where \( 4/3 < p < 12/5 \), \( p < q < p^{*}=3p/(3-p) \), \(\Delta_p u =\hbox{div}(|\nabla u|^{p-2}\nabla u)\), \(\lambda >0\), and \(h \not= 0\). The multiplicity results are obtained by using Ekeland's variational principle and the mountain pass theorem.
Submitted July 8, 2022. Published March 11, 2023.
Math Subject Classifications: 35J10, 35J50, 35J60, 35J92.
Key Words: Nonhomogeneous Schrodinger-Poisson system; variational methods;
multiple solutions; p-Laplacian.
DOI: https://doi.org/10.58997/ejde.2023.28
Show me the PDF file (377 KB), TEX file for this article.
Lanxin Huang School of Mathematical Sciences Capital Normal University Beijing 100048, China email: 812419761@qq.com | |
Jiabao Su School of Mathematical Sciences Capital Normal University Beijing 100048, China email: sujb@cnu.edu.cn |
Return to the EJDE web page