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A WEIGHTED (p, 2)-EQUATION WITH DOUBLE RESONANCE

ZHENHAI LIU, NIKOLAOS S. PAPAGEORGIOU

Abstract. We consider a Dirichlet problem driven by a weighted (p, 2)-Laplacian

with a reaction which is resonant both at ±∞ and at zero (double resonance).

We prove a multiplicity theorem producing three nontrivial smooth solutions
with sign information and ordered. In the appendix we develop the spectral

properties of the weighted r-Laplace differential operator.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this article we
study the weighted (p, 2)-equation:

−∆a1
p u(z)−∆a2u(z) = f(z, u(z)) in Ω,

u|∂Ω = 0, 2 < p.
(1.1)

Given a ∈ L∞(Ω) with 0 < ĉ ≤ ess infΩ a and r ∈ (1,∞), we denote by ∆a
r the

weighted r-Laplace differential operator defined by

∆a
ru = div(a(z)|Du|r−2Du), ∀u ∈W 1,r

0 (Ω).

In problem (1.1) we have the sum of two such operators with different expo-
nents. So,the differential operator driving the equation in (1.1) is not homogeneous
and of course is space dependent. The reaction (right-hand side) of (1.1), is a
Carathéodory function f(z, x) (that is, for all x ∈ R, z → f(z, x) is measurable and
for a.a.z ∈ Ω, x → f(z, x) is continuous) which exhibits (p − 1) sublinear growth
as x → ±∞ and resonance can occur with respect to the principal eigenvalue of
(−∆a1

p ,W
1,p
0 (Ω)) (see the apendix). Also at zero, we can have resonance with

respect to some nonprincipal eigenvalue of (−∆a2 , H1
0 (Ω)). So, our problem has

double resonance. Using variational tools from the critical point theory together
with truncation techniques and critical groups, we prove a multiplicity theorem for
problem (1.1), producing three nontrivial smooth solutions, all with sign informa-
tion and ordered.

Recently a three solutions theorem for a superlinear weignted (p, q)-equation
without resonance at zero, was proved by Liu-Papageorgiou [12], extending the
well-known semilinear work of Wang [20]. Here we complement the aforementioned
work of Liu-Papageorgiou [12], by examining the sublinear, double resonance case.
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Our hypotheses allow for resonance to occur as x → +∞ with respect to the
principal eigenvalue of (−∆a1

p ,W
1,p
0 (Ω)) and as x → 0+ with respect to a higher

eigenvalue of (−∆a2 , H1
0 (Ω)). So we have a double resonance situation which has

not been examined in the past.

2. Mathematical background and hypotheses

The analysis of problem (1.1) uses the Sobolev space W 1,p
0 (Ω) and the Banach

space C1
0 (Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}. The Poincaré inequality implies that on

W 1,p
0 (Ω) we can use the equivalent norm

‖u‖ = ‖Du‖p for all u ∈W 1,p
0 (Ω).

The Banach space C1
0 (Ω) is ordered with positive (order) cone C+ = {u ∈

C1
0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}. This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u

∂n
|∂Ω < 0}

with ∂u
∂n = (Du,n)RN where n(·) is the outward unit normal on ∂Ω.

If u : Ω → R is a measurable function, then we set u±(z) = max{±u(z), 0} for
all z ∈ Ω. Both are measurable functions and we have u = u+ − u−, |u| = u+ + u−

and if u ∈W 1,p
0 (Ω), then u± ∈W 1,p

0 (Ω).

Let V : W 1,p
0 (Ω) → W−1,p′(Ω) ( 1

p + 1
p′ = 1) be the nonlinear operator defined

by

〈V (u), h〉 =

∫
Ω

[a1(z)|Du|p−2 + a2(z)|Du|q−2](Du,Dh)RN dz ∀u, h ∈W 1,p
0 (Ω).

This operator is continuous and strictly monotone, thus maximal monotone too
and of type (S)+ (see [6, p. 279]).

Let X be a Banach space and ϕ ∈ C1(X,R). We say that ϕ(·) satisfies the
“C-condition”, if the following property holds:

Every sequence {un}n∈N ⊆ X such that {ϕ(un)}n∈N ⊆ R is bounded,
and (1 + ‖un‖X)ϕ′(un) → 0 in X∗, admits a strongly convergent
subsequence.

A coercive functional ϕ ∈ C1(X,R) satisfies the C-condition (see Papageorgiou-
Rădulescu-Repovš [16],p. 369).

Given ϕ ∈ C1(X,R) and c ∈ R, we define the sets

Kϕ = {u ∈ X : ϕ′(u) = 0}, ϕc = {u ∈ X : ϕ(u) ≤ c}.

For a topological pair (Y2, Y1) with Y1 ⊆ Y2 ⊆ X and k ∈ N0, by Hk(Y2, Y1) we
denote the kth-singular homology group with integer coefficients. Given u ∈ Kϕ

isolated, the critical groups of ϕ at u, are defined by

Ck(ϕ, u) = Hk(ϕc ∩ U,ϕc ∩ U \ {u}) for all k ∈ N0,

with U a neighborhood of u such that Kϕ ∩ ϕc ∩ U = {u}.The excision property
of singular homology, implies that the above definition of critical groups at u, is
independent of the particular choice of the isolating neighborhood U .

Suppose that ϕ ∈ C1(X,R) satisfies the C-condition and −∞ < inf ϕ(Kϕ). Then
the critical groups of ϕ(·) at infinity are

Ck(ϕ,∞) = Hk(X,ϕc) for all k ∈ N0, with c < inf ϕ(Kϕ).
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The Second Deformation Theorem (see [16, p. 386]) implies that the above definition
is independent of the choice of the level c < inf ϕ(Kϕ).

By λ̂a11 (p) we denote the first eigenvalue of (−∆a1
p ,W

1,p
0 (Ω)). We know that

λ̂a11 (p) > 0 is simple, isolated and is the only eigenvalue of (−∆a1
p ,W

1,p
0 (Ω)) with

eigenfunctions of constant sign. By û1(p) we denote the positive, Lp-normalized

(that is, ‖û1(p)‖p = 1) eigenfunction corresponding to λ̂a11 (p). If a ∈ C0,1(Ω) (i.e.

the space of all R-valued Lipschitz functions on Ω) and 0 < ĉ ≤ minΩa1, then
the nonlinear regularity theory (see Lieberman [11]) and the nonlinear maximum
principle (see Liu-Papageorgiou [13, 14]), imply that û1(p) ∈ intC+. We denote

by {λ̂a2m }m∈N the sequence of distinct eigenvalues of (−∆a2 , H1
0 (Ω)). We know that

λ̂a2n (2) → +∞ as n → ∞ and the sequence exhausts the set of eigenvalues of
(−∆a2 , H1

0 (Ω)). In the appendix, we present in detail the main spectral properties

of (−∆a1
p ,W

1,p
0 (Ω)) and of (−∆a2 , H1

0 (Ω)).
The hypotheses on the data of (1.1) are as follows:

(H0) Functions a1, a2 ∈ C0,1(Ω), and 0 < ĉ ≤ a1(z), a2(z) for all z ∈ Ω.
(H1) f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for a.a.

z ∈ Ω and
(i) |f(z, x)| ≤ a(z)[1+ |x|p−1] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω)+;

(ii) lim supx→±∞
f(z,x)
|x|p−2x ≤ λ̂

a1
1 (p) uniformly for a.a. z ∈ Ω;

(iii) if F (z, x) =
∫ x

0
f(z, s)ds, then there exists τ ∈ (2, p) such that

lim
x→±∞

f(z, x)x− pF (z, x)

|x|τ
= +∞ uniformly for a.a. z ∈ Ω;

(iv) there exist m ∈ N,m ≥ 2, δ > 0 and η ∈ L∞(Ω) such that

η(z) ≤ λ̂a2m+1(2) for a.a. z ∈ Ω, η 6≡ λ̂a2m+1(2),

lim sup
x→0

f(z, x)

x
≤ η(z) uniformly for a.a. z ∈ Ω;

λ̂a21 (2)x2 ≤ f(z, x)x for a.a. z ∈ Ω, all |x| ≤ δ.

Remark 2.1. Hypothesis (H1)(ii) implies that we can have resonance with respect

to λ̂a11 (p) as x → ±∞. Similarly, hypothesis H1(iv) allows for resonance to occur

with respect to λ̂a2m (2)(m ≥ 2) as x→ 0.

We introduce the energy functional for problem (1.1), ϕ : W 1,p
0 (Ω)→ R defined

by

ϕ(u) =
1

p

∫
Ω

a1(z)|Du|p dz +
1

2

∫
Ω

a2(z)|Du|2 dz −
∫

Ω

F (z, u) dz .

Evidently ϕ ∈ C1(W 1,p
0 (Ω)).

Also we introduce the positive and negative truncations of ϕ(·), namely the

functionals ϕ± : W 1,p
0 (Ω)→ R defined by

ϕ±(u) =
1

p

∫
Ω

a1(z)|Du|p dz +
1

2

∫
Ω

a2(z)|Du|2 dz −
∫

Ω

F (z,±u±) dz .

Again we have ϕ± ∈ C1(W 1,p
0 (Ω)).
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3. Three solution theorem

In this section we prove that problem (1.1) has at least three nontrivial smooth
solutions. Our approach uses variational and truncation techniques and critical
groups.

Proposition 3.1. Under hypotheses (H0), (H1), the functionals ϕ and ϕ± are
coercive.

Proof. We do the proof for ϕ+(·), the proofs for ϕ(·), ϕ−(·) being similar. We argue

indirectly. So, suppose that ϕ+(·) is not coercive. We can find {un}n∈N ⊆W 1,p
0 (Ω)

such that

ϕ+(un) ≤ c1 for some c1 > 0 and all n ∈ N, ‖un‖ → ∞. (3.1)

If {u+
n }n∈N ⊆W

1,p
0 (Ω) is bounded, then from the inequality in (3.1) and hypothesis

(H1)(i) we have {u−n }n∈N ⊆ W 1,p
0 (Ω) is bounded; therefore {un}n∈N ⊆ W 1,p

0 (Ω) is
bounded, a contradiction to (3.1). So, we can say that

‖u+
n ‖ → ∞. (3.2)

Let yn =
u+
n

‖u+
n ‖
, n ∈ N. We have ‖yn‖ = 1, yn ≥ 0 for all n ∈ N. We can assume

that
yn

w→ y in W 1,p
0 (Ω), yn → y in Lp(Ω), y ≥ 0. (3.3)

From the inequality in (3.1), we have

1

p

∫
Ω

a1(z)|Dyn|p dz +
1

2‖u+
n ‖p−2

∫
Ω

a2(z)|Dyn|2 dz ≤ c1 +

∫
Ω

F (z, u+
n )

‖u+
n ‖p

dz (3.4)

for all n ∈ N. Using hypothesis (H1)(i), we have

|F (z, u+
n (z))|

‖u+
n ‖p

≤ c2[1 + yn(z)p] for a.a. z ∈ Ω and all n ∈ N, some c2 > 0,

which implies {F (·, u+
n (·))

‖u+
n ‖p

}
n∈N ⊆ L

1(Ω) is uniformly integrable.

Then invoking the Dunford-Pettis theorem (see Papageorgiou-Winkert [18, p. 289]),
we can say that at least for a subsequence,

F (·, u+
n (·))

‖u+
n ‖p

w→ 1

p
η̂ in L1(Ω). (3.5)

Hypothesis (H1)(ii) implies that

η̂(z) = ϑ(z)y(z)p for a.a. z ∈ Ω, (3.6)

with ϑ ∈ L∞(Ω), ϑ(z) ≤ λ̂a11 (p) for a.a. z ∈ Ω (see Aizicovici-Papageorgiou-Staicu
[1], proof of Proposition 16). If in (3.4) we pass to the limit as n → ∞ and use
(3.2) (recall 2 < p), (3.3), (3.5), (3.6), we obtain∫

Ω

a1(z)|Dy|p dz ≤
∫

Ω

η(z)yp dz. (3.7)

First assume that ϑ 6≡ λ̂a11 (p). Using Proposition 4.1 in the appendix, we have

c3‖y‖p ≤
∫

Ω

a1(z)|Dy|p dz −
∫

Ω

ϑ(z)yp dz for some c3 > 0. (3.8)
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From (3.7) and (3.8) it follows that y = 0. But then from (3.4) we have∫
Ω

a1(z)|Dyn|p dz → 0

which implies yn → 0 in W 1,p
0 (Ω) (see hypotheses (H0)). This contradicts that

‖yn‖ = 1 for all n ∈ N.

Next we assume that ϑ(z) = λ̂a11 (p) for a.a. z ∈ Ω. From (3.7) and the variational

characterization of λ̂a11 (p) > 0 (see (4.2) in the appendix), we have∫
Ω

a1(z)|Dy|p dz = λ̂a11 (p)‖y‖pp,

which implies y = βû1(p) with β ≥ 0 (recall that y ≥ 0).

If β = 0, then y = 0 and as above, we have yn → 0 in W 1,p
0 (Ω), which contradic-

tion that ‖yn‖ = 1 for all n ∈ N. Hence y = βû1(p) with β > 0 and so y ∈ intC+

(since û1(p) ∈ intC+, see hypotheses (H0)). Therefore,

u+
n (z)→ +∞ for a.a. z ∈ Ω. (3.9)

Hypothesis (H1)(iii) implies that given any M > 0, we can find γ > 0 such that

Mxτ ≤ f(z, x)x− pF (z, x) for a.a. z ∈ Ω, and all x ≥ γ. (3.10)

We have

d

dx
(
F (z, x)

xp
) =

f(z, x)xp − pxp−1F (z, x)

x2p

=
f(z, x)x− pF (z, x)

xp+1

≥ M

xp+1−τ for a.a. z ∈ Ω, and all x ≥ γ (see (3.10));

therefore,
F (z, v)

vp
− F (z, x)

xp
≥ − M

p− τ
[ 1

vp−τ
− 1

xp−τ
]

for a.a. z ∈ Ω and all v ≥ x ≥ γ > 0.
Letting v → +∞ and using (H1)(ii), We obtain

1

p
λ̂a11 (p)− F (z, x)

xp
≥ M

p− τ
1

xp−τ
for a.a. z ∈ Ω and all x ≥ γ,

⇒ λ̂a11 (p)xp − pF (z, x) ≥ M

p− τ
xτ for a.a. z ∈ Ω and all x ≥ γ,

⇒ λ̂a11 (p)xp − pF (z, x)

xτ
≥ M

p− τ
for a.a. z ∈ Ω and all x ≥ γ.

Since M > 0 is arbitrary, it follows that

λ̂a11 (p)xp − pF (z, x)

xτ
→ +∞ as x→∞, uniformly for a.a. z ∈ Ω. (3.11)

From (3.1) and (4.2) (in the appendix), we have∫
Ω

[λ̂a11 (p)(u+
n )p − pF (z, u+

n )] dz ≤ pc1 for all n ∈ N,

⇒
∫

Ω

λ̂a11 (p)(u+
n )p − pF (z, u+

n )

(u+
n )τ

yτn dz ≤
pc1

‖u+
n ‖τ

for all n ∈ N.
(3.12)
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Passing to the limit as n → ∞ in (3.12) and using (3.2), (3.9), (3.11) and Fatou’s

lemma, we reach a contradiction. This proves that {u+
n }n∈N ⊆W

1,p
0 (Ω) is bounded.

From the first part of the proof this implies that {un}n∈N ⊆ W 1,p
0 (Ω) ia bounded,

contradicting (3.1). Therefore ϕ+(·) is coercive. Similarly for ϕ(·) and ϕ−(·). �

Using Proposition 3.1, we can produce two constant sign smooth solutions.

Proposition 3.2. Under hypotheses (H0), (H1), problem (1.1) has two constant
sign solutions u0 ∈ intC+ and v0 ∈ − intC+, which are local minimizers of ϕ(·).

Proof. From Proposition 3.1 we know that ϕ+(·) is coercive. Also, using the Sobolev
embedding theorem, we see that ϕ+(·) is sequentially weakly lower semicontinuous.

So, by the Weierstrass-Tonelli theorem, we can find u0 ∈W 1,p
0 (Ω) such that

ϕ+(u0) = inf[ϕ+(u) : u ∈W 1,p
0 (Ω)]. (3.13)

Recall that û1(2) ∈ intC+ (see the appendix). Therefore, we can find t ∈ (0, 1)
small such that

0 ≤ tû1(2)(z) ≤ δ for all z ∈ Ω, (3.14)

where δ > 0 is as postulated by hypothesis H1(iv). Then, using (3.14) and hypoth-
esis (H1)(iv), we have

ϕ+(tû1(2)) ≤ tp

p

∫
Ω

a1(z)|Dû1(2)|p dz +
t2

2
[λ̂a21 (2)− λ̂a2m (2)] = c4t

p − c5t2

for some positive constants c4 and c5 > 0. Here we used that ‖û1(2)‖2 = 1 and
that m ≥ 2.

Since 2 < p, choosing t ∈ (0, 1) and small, we have

ϕ+(tû1(2)) < 0,

which implies ϕ+(u0) < 0 = ϕ+(0) (see (3.13)); thus u0 6= 0. From (3.13) we have

ϕ′+(u0), h〉 = 0 for all h ∈W 1,p
0 (Ω), which implies

〈V (u0), h〉 =

∫
Ω

f(z, u+
0 )h dz for all h ∈W 1,p

0 (Ω). (3.15)

In (3.15) we choose h = −u−0 ∈W
1,p
0 (Ω) and obtain

ĉ‖Du−0 ‖pp ≤ 0 (see hypotheses (H0)

⇒ u0 ≥ 0, u0 6= 0.

Then from (3.15) we have

−∆a1
p u0 −∆a2u0 = f(z, u0) in Ω. (3.16)

From Ladyzhenskaya-Uraltseva [10, p. 286], we have u0 ∈ L∞(Ω). Then the non-
linear regularity theory of Lieberman [11] implies that u0 ∈ C+ \ {0}. On account

of hypotheses (H1)(i),(iv), we can find c6 > 0 such that f(z, x) ≥ λ̂a2m (2)x− c6xp−1

for a.a. z ∈ Ω and all x ≥ 0. So, if ϑ̂ > c6, then

f(z, x) + ϑ̂xp−1 ≥ 0 for a.a. z ∈ Ω and all z ≥ 0.

From (3.16) we have

−∆a1
p u0 −∆a2u0 + ϑ̂up−1

0 ≥ 0 in Ω,

which implies u0 ∈ intC+, see [13, Lemma 1]. Note that

ϕ|C+
= ϕ+|C+

.
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So u0 is a local C1
0 (Ω) minimizer of ϕ(·) and from [17, Proposition A3], we conclude

that u0 is a local W 1,p
0 (Ω)-minimizer of ϕ(·).

Similarly, working now with ϕ−(·), we produce a negative solution v0 ∈ − intC+,
which is a local minimizer of ϕ(·). �

We assume that Kϕ is finite or otherwise we already have an infinity of solutions
of (1.1) and so we are done. Then from Proposition 3.2 and [16, Proposition 6.2.3],
we have the following result.

Corollary 3.3. If (H0), (H1) hold and u0 ∈ intC+ and v0 ∈ − intC+ are the two
constants sign solutions from Proposition 3.2, then Ck(ϕ, u0) = Ck(ϕ, v0) = δk,0Z
for all k ∈ N0.

In what follows we denote by E(λ̂a21 (2)) the eigenspace corresponding is the eigen-

value λ̂a2i (2), i ∈ N. We know that E(λ̂a2i (2)) is finite dimensional and E(λ̂a2i (2)) ⊆
C1

0 (Ω) (see the appendix).

Proposition 3.4. If hypotheses (H0), (H1) hold, then Cdm(ϕ, 0) 6= 0, where dm =

dimHm with Hm = ⊕mi=1E(λ̂a21 (2)).

Proof. We consider the C1-functional ψ : H1
0 (Ω)→ R defined by

ψ(u) =
1

2

∫
Ω

a2(z)|Du|2 dz −
∫

Ω

F (z, u) dz .

Let u ∈ Hm. Since Hm ⊆ C(Ω) is finite dimensional, all norms are equivalent and
so we can find ρ > 0 such that

u ∈ Hm and ‖u‖ ≤ ρ ⇒ |u(z)| ≤ δ for all z ∈ Ω,

with δ > 0 as postulated by hypothesis (H1)(iv). So for u ∈ Hm with ‖u‖ ≤ ρ, we
have

ψ(u) ≤ 1

2
[‖Du‖22 − λ̂a2m (2)‖u‖22] ≤ 0 (3.17)

(see hypothesis (H1)(iv) and the appendix). On account of hypotheses (H1)(i),(iv),
given ε > 0, we can find cε > 0 such that

F (z, x) ≤ 1

2
[η(z) + ε]x2 + cε|x|p for a.a. z ∈ Ω and all x ∈ R. (3.18)

Then for u ∈ Ĥm+1 = H
⊥
m, from (3.18), we have

ψ(u) ≥ 1

2
[

∫
Ω

a2(z)|Du|2 dz −
∫

Ω

η(z)u2 dz − ε‖u‖22]− ĉε‖u‖p for some ĉε > 0

≥ 1

2
[c7 −

ε

λ̂a2m+1

]‖u‖2 − ĉε‖u‖p

for some positive constant c7 (see Proposition 4.2).

Choosing ε ∈ (0, λ̂a2m+1(2)c7), we obtain

ψ(u) ≥ c8‖u‖2 − ĉε‖u‖p for some c8 > 0.

So, we can find ρ0 ∈ (0, ρ] such that

ψ(u) > 0 for all u ∈ Ĥm+1, 0 < ‖u‖ ≤ ρ0. (3.19)
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Then (3.17) and (3.19) imply that ψ(·) has a local linking at u = 0. So, invoking
[16, Theorem 6.6.17], we have

Cdm(ψ, 0) 6= 0.

Let ψ̂ = ψ|W 1,p
0 (Ω). Since W 1,p

0 (Ω) ↪→ H1
0 (Ω) continuously and densely, using [15,

Theorems 16 and 17] (see also Chang [12, p. 14]), we have

Ck(ψ̂, 0) = Ck(ψ, 0) for all k ∈ N0, (3.20)

which implies Cdm(ψ̂, 0) 6= 0. Note that

|ϕ(u)− ψ̂(u)| = 1

p

∫
Ω

a1(z)|Du|p dz ≤ ‖a1‖∞
p
‖u‖p. (3.21)

Also for all h ∈W 1,p
0 (Ω), we have

|〈ϕ′(u)− ψ̂′(u), h〉| =
∫

Ω

a1(z)|Du|p−2(Du,Dh)RN dz

≤ ‖a1‖∞
∫

Ω

|Du|p−1|Dh| dz

≤ ‖a1‖∞‖Du‖p−1
p ‖Dh‖p;

therefore,

‖ϕ′(u)− ψ̂′(u)‖ ≤ c9‖u‖p−1 for some c9 > 0. (3.22)

Recall that we assume Kϕ is finite (otherwise we already have an infinity of distinct
nontrivial smooth positive solutions and so we are done). Then from (3.21), (3.22)
and the C1-continuity property of critical groups (see Gasiński-Papageorgiou [6, p.
836]), we have

Ck(ϕ, 0) = Ck(ψ̂, 0) for all k ∈ N0,

which implies Cdm(ϕ, 0) 6= 0 (see (3.20)). �

Next we will produce a third nontrivial solution which is nodal. To do this, we
need some auxiliary results. Note that hypotheses (H1)(i),(iv) imply that we can
find c10 > 0 such that

f(z, x)x ≥ λ̂a2mx2 − c10|x|p for a.a. z ∈ Ω and all x ∈ R. (3.23)

Then (3.23) leads to the auxiliary Dirichlet problem

−∆a1
p u(z)−∆a2u(z) = λ̂a2m (2)u(z)− c10|u(z)|p−2u(z) in Ω,

u|∂Ω = 0.
(3.24)

Reasoning as in [13, Proposition 3], we have the following result.

Proposition 3.5. If hypotheses (H0) holds and m ≥ 2, then problem (3.24) has a
unique positive solution u ∈ intC+ and since the equation is odd v = −u ∈ − intC+

is the unique negative solution of problem (3.24).

Using Proposition 3.5, we can produce extremal constant sign solutions for prob-
lem (1.1), that is, a smallest positive solution and a biggest negative solution.
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Proposition 3.6. If hypotheses (H0), (H1) hold, then problem (1.1) has a smallest
positive solution

û ∈ intC+

and a biggest negative solution

v̂ ∈ − intC+.

Proof. Let S+ (resp. S−) denote the set of positive (resp. negative) solutions of
(1.1). From Proposition 3.2 and its proof, we know that

∅ 6= S+ ⊆ intC+ and ∅ 6= S− ⊆ − intC+.

Moreover, we know (see Filippakis-Papageorgiou [4]) that

S+ is downward directed

(that is, if u1, u2 ∈ S+, then there exists u ∈ S+ such that u ≤ u1, u ≤ u2),

S− is upward directed

(that is, if v1, v2 ∈ S−, then there exists v ∈ S− such that v1 ≤ v, v2 ≤ v).
Next we show that

u ≤ u for all u ∈ S+, v ≤ v for all v ∈ S−. (3.25)

To this end, let u ∈ S+ ⊆ intC+ and introduce the Caratheodory function k+ :
Ω× R→ R defined

k+(z, x) =

{
λ̂a2m (2)x+ − c10(x+)p−1 if x ≤ u(z)

λ̂a2m (2)u(z)− c10(u(z))p−1 if u(z) ≤ x.
(3.26)

We set K+(z, x) =
∫ x

0
k+(z, s)ds and consider the C1-functional σ+ : W 1,p

0 (Ω)→ R
defined by

σ+(u) =
1

p

∫
Ω

a1(z)|Du|p dz +
1

2

∫
Ω

a2(z)|Du|2 dz −
∫

Ω

K+(z, u) dz.

From hypotheses H0 and (3.26), we see that σ+(·) is coercive. Also, by the Sobolev
embedding theorem σ+(·) is sequentially weakly lower semicontinuous. So, we can

find ũ ∈W 1,p
0 (Ω) such that

σ+(ũ) = inf[σ+(u) : u ∈W 1,p
0 (Ω)]. (3.27)

Since u ∈ intC+, we can find t ∈ (0, 1) small such that tû1(2) ≤ u (see [16,
Proposition 4.1.22]. Then using (3.26) and since m ≥ 2 we have (by taking t ∈ (0, 1)
and small, σ+(tû1(2)) < 0 which implies

σ+(ũ) < 0 = σ+(0) (see (3.27));

thus, ũ 6= 0. From (3.27) we have that 〈σ′+, h〉 = 0 for all h ∈W 1,p
0 (Ω). Therefore,

〈V (ũ), h〉 =

∫
Ω

k+(z, ũ)h dz for all h ∈W 1,p
0 (Ω). (3.28)

In (3.28) first we use the test function h = −ũ− ∈W 1,p
0 (Ω) and obtain ĉ‖Dũ−‖pp ≤

0, hence ũ ≥ 0, ũ 6= 0.
Next choosing h = [ũ− u]+ ∈W 1,p

0 (Ω) in (3.28), we have

〈V (ũ), (ũ− u)+〉 =

∫
Ω

[λ̂a2m (2)u− c10u
p−1](ũ− u)+ dz (see (3.26))
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≤
∫

Ω

f(z, u)(ũ− u)+ dz (see (3.23))

= 〈V (u), (ũ− u)+〉 (since u ∈ S+),

which implies ũ ≤ u, from the monotonicity of V (·)). So, we have proved that

ũ ∈ [0, u], ũ 6= 0. (3.29)

Then (3.29), (3.26), (3.28), and Proposition 3.5 imply that ũ = u ∈ intC+. This in
turn implies u ≤ u for all u ∈ S+. Similarly, we can show that v ≤ v for all v ∈ S−.

Using [8, Theorem 5.109], we can find {un}n∈N ⊆ S+ decreasing (since S+ is
downward directed) such that

inf S+ = inf
n∈N

un.

We have

〈V (un), h〉 =

∫
Ω

f(z, un)h dz for all h ∈W 1,p
0 (Ω) and all n ∈ N, (3.30)

u ≤ un ≤ u1 for all n ∈ N (see (3.25)). (3.31)

Choosing h = un ∈ W 1,p
0 (Ω) in (3.30) and using (3.31) and (H1)(i), we infer that

{un}n∈N ⊆W 1,p
0 (Ω) is bounded. So, we may assume that

un
w→ û in W 1,p

0 (Ω), un → û in Lp(Ω), as n→∞. (3.32)

In (3.30) we use h = un− û ∈W 1,p
0 (Ω), pass to the limit as n→∞ and use (3.32).

We obtain limn→∞〈V (un), un − û〉 = 0 which implies

un → û in W 1,p
0 (Ω) (the (S)+-property of V (·)). (3.33)

Passing to the limit as n→∞ in (3.30) and using (3.33), we obtain

〈V (û), h〉 =

∫
Ω

f(z, û)h dz for all h ∈W 1,p
0 (Ω),

u ≤ û (see (3.31)),

Therefore, û ∈ S+ ⊆ intC+ and û = inf S+.
Similarly for S− which is upward directed and so the sequence {vn}n∈N ⊆ S−

such that supS− = supn∈N vn, will be increasing. �

Now we try to produce a nontrivial solution of (1.1) in the order interval

[v̂, û] = {h ∈W 1,p
0 (Ω) : v̂(z) ≤ h(z) ≤ û(z) for a.a. z ∈ Ω}.

On account of the extremality of û and v̂ any such solution distinct from û and v̂
will be nodal.

To this end, we introduce the following truncation of the reaction f(z, ·)

e(z, x) =


f(z, v̂(z)) if x < v̂(z)

f(z, x) if v̂(z) ≤ x ≤ û(z)

f(z, û(z)) if û(z) < x.

(3.34)

Also, we consider the positive and negative truncations of e(z, ·), namely the func-
tions

e±(z, x) = e(z,±x±). (3.35)
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All three functions are Caratheodory. We set

E(z, x) =

∫ x

0

e(z, s)ds, E±(z, x) =

∫ x

0

e±(z, s)ds.

Then we consider the C1-functionals w,w± : W 1,p
0 (Ω)→ R defined by

w(u) =
1

p

∫
Ω

a1(z)|Du|p dz +
1

2

∫
Ω

a2(z)|Du|2 dz −
∫

Ω

E(z, u) dz,

w±(u) =
1

p

∫
Ω

a1(z)|Du|p dz +
1

2

∫
Ω

a2(z)|Du|2 dz −
∫

Ω

E±(z, u) dz .

Using (3.34) and (3.35), we can easily show that

Kw ⊆ [v̂, û] ∩ C1
0 (Ω),Kw+ ⊆ [0, û] ∩ C+,Kw− ⊆ [v̂, 0] ∩ (−C+).

The extremality of û, v̂ implies that

Kw ⊆ [v̂, û] ∩ C1
0 (Ω), Kw+

= {0, û},Kw− ⊆ {v̂, 0}. (3.36)

Now, we can generate the third nontrivial smooth solution of (1.1) which is nodal.
By intC1

0 (Ω)[v̂, û] we denote the interior in C1
0 (Ω) of [v̂, û] ∩ C1

0 (Ω).

Proposition 3.7. If (H0), (H1) hold, then problem (1.1) has a nodal solution
y0 ∈ [v̂, û] ∩ C1

0 (Ω).

Proof. First we show that û, v̂ are local minimizers of w(·). To this end, note that
w+(·) is coercive (see (H0) and (3.34), (3.35)). Also, it is sequentially weakly lower

semicontinuous. So, we can find ũ ∈W 1,p
0 (Ω) such that

w+(ũ) = inf[w+(u) : u ∈W 1,p
0 (Ω)]. (3.37)

Since û ∈ intC+ as before for t ∈ (0, 1) small (at least such that tû1(2) ≤ û), we
have

w+(±û1(2)) < 0,

⇒ w+(ũ) < 0 = w+(0),

⇒ ũ 6= 0.

(3.38)

From (3.37),(3.38) and (3.36) we infer that ũ = û ∈ intC+. Note that

w|C+ = w+|C+ ,

⇒ û is a local C1
0 (Ω)-minimizer of w(·)

⇒ û is a local W 1,p
0 (Ω)-minimizer of w(·) ;

see Papageorgiou-Rădulescu-Zhang [17, Proposition A3].
Similarly for v̂ ∈ − intC+ using the functional w−(·), we have

Ck(w, û) = Ck(w, v̂) = δk,0Z for all k ∈ N0. (3.39)

Next we show that

Cdm(w, 0) 6= 0. (3.40)

Consider the homotopy

h(t, u) = (1− t)ϕ(u) + tw(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω).

Suppose we can find {(tn, un)}n∈N ⊆ [0, 1]×W 1,p
0 (Ω) such that

tn → t in [0, 1], un → 0 in W 1,p
0 (Ω), h′u(tn, un) = 0 for all n ∈ N. (3.41)



12 Z. LIU, N. S. PAPAGEORGIOU EJDE-2023/30

From the equation in (3.41) we have

〈V (un), h〉 =

∫
Ω

[(1− tn)f(z, un) + tne(z, un)]h dz (3.42)

for all h ∈W 1,p
0 (Ω) and all n ∈ N,

From (3.41), (3.42), and [10, Theorem 7.1], we know that we can find c11 > 0
such that

un ∈ L∞(Ω), ‖un‖∞ ≤ c11 for all n ∈ N.
Then the nonlinear regularity by Lieberman [11], implies that there exist α ∈ (0, 1)
and c12 > 0 such that

un ∈ C1,α
0 (Ω), ‖un‖C1,α

0 (Ω) ≤ c12, for all n ∈ N. (3.43)

Since C1,α
0 (Ω) ↪→ C1

0 (Ω) compactly, from (3.43) and (3.41) it follows that un → u

in C1
0 (Ω). This implies

un ∈ intC1
0 (Ω)[v̂, û] for all n ≥ n0

(recall û ∈ intC+ and v̂ ∈ − intC+). Therefore, {un}n≥n0
⊆ Kϕ; see (3.34)).

But we have assumed that Kϕ is finite (see the proof of Proposition 3.4. There-
fore (3.41) can not be true and then the homotopy invariance property of critical
groups (see [6, p. 836]) implies

Ck(ϕ, 0) = Ck(w, 0) for all k ∈ N0, (3.44)

Then (3.44) and Proposition 3.4 imply that (3.40) is true.
Evidently w(·) is coercive. Hence

Ck(w,∞) = δk,0Z for all k ∈ N0; (3.45)

see [16, Proposition 6.2.24]. From (3.40), (3.45), and [16, Corollary 6.7.8], we know
that there exists y0 ∈ Kw ⊆ [v̂, û] ∩ C1

0 (Ω) such that

w(y0) < 0 = w(0) and Cdm−1(w, y0) 6= 0, or

w(y0) > 0 = w(0) and Cdm+1(w, y0) 6= 0.
(3.46)

Evidently y0 6= 0. Since m ≥ 2, we have that dm ≥ 2. Therefore comparing (3.39)
and (3.46), we conclude that y0 /∈ {û, v̂}. So, finally we have y0 ∈ [v̂, û] ∩ C1

0 (Ω)
and y0 /∈ {0, û, v̂} which imply that y0 is a nodal solution of (1.1). �

If we impose an additional condition on f(z, ·), we can improve the conclusion
of the previous proposition.

The new hypotheses on the reaction f(z, x) are as follows:

(H2) For every ρ > 0, there exists θ̂ρ > 0 such that for a.a. z ∈ Ω, the mapping

x 7→ f(z, x) + θ̂ρx
p−1 is nondecreasing on [−ρ, ρ].

Proposition 3.8. If hypotheses (H0)–(H2) hold, then problem (1.1) has a nodal
solution

y0 ∈ intC1
0 (Ω)[v̂, û].

Proof. From Proposition 3.7, we already have a nodal solution y0 such that

y0 ∈ [v̂, û] ∩ C1
0 (Ω). (3.47)

Let γ(z, y) = a1(z)|y|p−2y + a2(z)y for all z ∈ Ω, y ∈ RN . For every u ∈ W 1,p
0 (Ω)

we have
−div γ(z,Du) = −∆a1

p u−∆a2u.
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Note that

∇yγ(z, y) = a1(z)|y|p−2[id+ (p− 2)
y ⊗ y
|y|2

] + a2(z)id ∀z ∈ Ω, ;∀y ∈ RN

⇒ (∇yγ(z, y)β, β)RN ≥ ĉ|β|2 for all y, β ∈ RN .

Then the tangency principle of Pucci-Serrin [19, p. 35] implies that

y0(z) < û(z) for all z ∈ Ω. (3.48)

Let ρ = max
{
‖û‖∞, ‖v̂‖∞

}
and let θ̂ρ > 0 be as postulated by hypothesis (H1)

and (H2). Choose θ∗ρ > θ̂ρ, we have

−∆a1
p û−∆a2 û+ θ∗ρû

p−1 = f(z, û) + θ∗ρû
p−1

= f(z, û) + θ̂ρû
p−1 + (θ∗ρ − θ̂ρ)ûp−1

≥ f(z, y0) + θ̂ρy
p−1
0 + (θ∗ρ − θρ)y

p−1
0

= f(z, y0) + θ∗ρy
p−1
0

= −∆a1
p y0 −∆a2y0 + θ∗ρy

p−1
0 ,

(3.49)

where we used (3.47), (H1), and (H2). Since û ∈ intC+, y0 ∈ C1
0 (Ω), from (3.48),

we see that for every K ⊆ Ω compact, we have

0 < cK ≤ û(z)− y0(z) for all z ∈ K. (3.50)

Then (3.49), (3.50) and [7, Proposition 3.2] imply that û − y0 ∈ intC+. Similarly
we show that y0 − v̂ ∈ intC+. Therefore finally we have y0 ∈ intC1

0 (Ω)[v̂, û]. �

Concluding we can state the following multiplicity theorem for problem (1.1).
We emphasize that we provide sign information for all the solutions and the three
solutions are ordered.

Theorem 3.9. (a) If (H0), (H1) hold, then problem (1.1) has at least three solutions

u0 ∈ intC+, v0 ∈ − intC+, y0 ∈ [v0, u0] ∩ C1
0 (Ω) nodal.

(b) If hypotheses (H0)–(H2) hold, then problem (1.1) has at least three solutions

u0 ∈ intC+, v0 ∈ − intC+, y0 ∈ intC1
0 (Ω)[v0, u0] nodal.

4. Appendix

In this section we present some basic facts concerning the spectral properties of
(−∆a

r ,W
1,r
0 (Ω)) and a ∈ C0,1(Ω), a(z) ≥ ĉ > 0 for all z ∈ Ω, 1 < r < ∞. We

consider the nonlinear eigenvalue problem

−∆a
ru(z) = λ̂|u(z)|r−2u(z) in Ω,

u|∂Ω = 0.
(4.1)

We say that λ̂ ∈ R is an eigenvalue of (−∆a
r ,W

1,r
0 (Ω)) if problem (4.1) has a

nontrivial weak solution û ∈ W 1,p
0 (Ω) known as an eigenfunction corresponding to

the eigenvalue λ̂.

Evidently every eigenvalue λ̂ ≥ 0. We show that there is a smallest eigenvalue

λ̂a1(r) > 0. To see this, we minimize the Rayleigh quotient

R(u) =

∫
Ω
a(z)|Du|r dz
‖u‖rr

, u ∈W 1,r
0 (Ω), u 6= 0.
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We have

0 ≤ λ̂a1(r) = inf[

∫
Ω
a(z)|Du|r dz
‖u‖rr

, u ∈W 1,r
0 (Ω), u 6= 0]

= inf
[ ∫

Ω

a(z)|Du|r dz, u ∈W 1,r
0 (Ω), ‖u‖r = 1

]
,

(4.2)

by homogeneity. The infimum in (4.2) is attained. Consider a sequence {un}n∈N ⊆
W 1,r

0 (Ω) such that∫
Ω

a(z)|Dun|r dz ↓ λ̂a1(r), ‖un‖r = 1 for all n ∈ N.

Therefore {un}n∈N ⊆W 1,p
0 (Ω) is bounded. So, we can assume that

un
w→ û1 in W 1,r

0 (Ω), un → û1 in Lr(Ω).

We have that∫
Ω

a(z)|Dû1|r dz ≤ lim inf
n→∞

∫
Ω

a(z)|Dun|r dz = λ̂a1(r), ‖û1‖r = 1,

implies ∫
Ω

a(z)|Dû1|r dz = λ̂a1(r) > 0, ‖û1‖r = 1.

From (4.2) and the Lagrange multiplier rule, we infer that λ̂a1(r) > 0 is the small-

est eigenvalue of (−∆a
r ,W

1,r
0 (Ω)). Evidently we can replace û1 ∈ W 1,p

0 (Ω) by

|û1| ∈ W 1,p
0 (Ω). Therefore we can always assume that û1 ≥ 0. The nonlinear

regularity theory (see [11]) and the nonlinear maximum principle [13, 19], imply

that û1 ∈ intC+. In fact λ̂a1(r) > 0 is the only eigenvalue with eigenfunctions
of constant sign. All other eigenvalues have eigenfunctions which are nodal (sign-
changing). The proof of this fact is done along the lines of the corresponding result

for (−∆r,W
1,r
0 (Ω)) (see for example Gasiński-Papageorgiou [5, p. 743]).

Suppose û and v̂ are two eigenfunctions corresponding of λ̂a1(r) > 0. As above,
we have that û, v̂ ∈ intC+. Then using the nonlinear Picone’s identity of Jaros [9],
we have

0 ≤ a(z)|Dû|r − a(z)|Dv̂|r−2(Dv̂,D(
ûr

v̂r−1
))RN for all z ∈ Ω

⇒ 0 ≤
∫

Ω

a(z)|Dû|r dz −
∫

Ω

−(∆a
r v̂)

ûr

v̂r−1
dz

(using Green’s identity, see [16, p. 34])

=

∫
Ω

a(z)|Dû|r dz − λ̂a1(r)‖û‖rr = 0,

which implies ûDv̂ = v̂Dû (see Jaros [9]). In turn this implies D( ûv̂ ) = 0 and so

û = ϑv̂ with ϑ > 0. Then λ̂a1(r) > 0 is simple. Also λ̂a1(r) > 0 is isolated in the

spectrum of (−∆a
r ,W

1,r
0 (Ω)). Indeed, if λ̂a1(r) is not isolated, we can find λ̂n ↓ λ̂a1(r)

with λ̂n eigenvalue of (−∆a
r ,W

1,r
0 (Ω)) for every n ∈ N. Let ûn ∈ W 1,p

0 (Ω) be an

eigenfunction corresponding to λ̂n. We have

−∆a
r ûn = λ̂n|ûn|r−2ûn for all n ∈ N. (4.3)
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Normalizing we may assume that ‖ûn‖r = 1 for all n ∈ N. Then from (4.3) it

follows that {un}n∈N ⊆W 1,r
0 (Ω) is bounded. We can assume that

ûn
w→ û∗ in W 1,r

0 (Ω), ûn → û∗ in Lr(Ω). (4.4)

We have ‖û∗‖r = 1. On (4.3) we act with ûn − û∗ ∈ W 1,r
0 (Ω), pass to the limit as

n→∞ and use (4.4). We obtain

lim
n→∞

〈Aar(ûn), ûn − û∗〉 = 0 (4.5)

with Aar : W 1,r
0 (Ω) → W−1,r′(Ω) = W 1,r

0 (Ω)∗( 1
r + 1

r′ = 1) being the nonlinear
operator defined by

〈Aar(u), h〉 =

∫
Ω

a(z)|Du|r−2(Du,Dh)RN dz for all u, h ∈W 1,r
0 (Ω).

This operator has the same properties as V (·). In particular, (4.5) and the (S)+-
property of Aar(·), imply that

ûn → û∗ in W 1,r
0 (Ω). (4.6)

If in (4.3) we pass to the limit as n→∞, we have

−∆a
r û∗ = λ̂a1(r)|û∗|r−2û∗ in Ω, ‖û∗‖r = 1.

Then we can assume that û∗ ∈ intC+. From (4.6) and the nonlinear regularity
theory of Lieberman [11], we know that there exist α ∈ (0, 1) and M > 0 such that

ûn ∈ C1,α
0 (Ω) and ‖ûn‖C1,α

0 (Ω) ≤M for all n ∈ N. (4.7)

Then the compact embedding of C1,α
0 (Ω) into C1

0 (Ω) and (4.6) imply that ûn → û∗
in C1

0 (Ω). Since û∗ ∈ intC+, we have

{un}n≥n0 ⊆ C+ \ {0},

which contradicts that only λ̂a1(r) > 0 has eigenfunctions of constant sign.
Summarizing, we can state the following basic facts about the spectrum of

(−∆a
r ,W

1,r
0 (Ω)):

• There is a smallest eigenvalue λ̂a1(r) > 0 which has a variational character-
ization given by (4.2).

• λ̂a1(r) is simple, isolated and the corresponding eigenfunctions are of con-
stant sign and belong in (intC+) ∪ (− intC+).

• If λ̂ > λ̂a1(r) is an eigenvalue, then λ̂ has nodal eigenfunctions.

Proposition 4.1. If η ∈ L∞(Ω) and η(z) ≤ λ̂a1(r) for a.a. z ∈ Ω, η 6≡ λ̂a1(r), then
there exists θ > 0 such that

θ‖u‖r ≤
∫

Ω

a(z)|Du|r dz −
∫

Ω

η(z)|u|r dz for all u ∈W 1,r
0 (Ω).

Proof. Arguing by contradiction, suppose we can find {un}n∈N ⊆ W 1,p
0 (Ω) such

that for all n ∈ N, we have∫
Ω

a(z)|Dun|r dz −
∫

Ω

η(z)|un|r dz <
1

n
, ‖un‖ = 1. (4.8)

We may assume that

un
w→ u in W 1,r

0 (Ω), un → u in Lr(Ω). (4.9)
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Passing to the limit as n→∞ in (4.8) and using (4.9), we obtain∫
Ω

a(z)|Du|r dz ≤
∫

Ω

η(z)|u|r dz ≤ λ̂a1(r)‖u‖rr, (4.10)

⇒
∫

Ω

a(z)|Du|r dz = λ̂a1(r)‖u‖rr (see (4.2)) (4.11)

We claim u 6= 0. Otherwise we have

ĉ‖Dun‖rr → 0 ⇒ un → 0 in W 1,r
0 (Ω),

which contradicts that ‖un‖ = 1 for all n ∈ N. From (4.11) we see that we may
assume that u ∈ intC+. Then from (4.10), we have∫

Ω

a(z)|Du|r dz < λ̂a1(r)‖u‖rr,

a contradiction, see (4.2). This completes the proof. �

If r = 2 (the linear eigenvalue problem), then the spectral theorem for compact,
self-adjoint operators, provides a complete description of the spectrum (−∆a, H1

0 (Ω))

which consists of a sequence {λ̂an(2)}n∈N ⊆ (0,∞) such that λ̂an(2)→∞.

We denote by E(λ̂an(2)) the eigenspace corresponding to the eigenvalue λ̂an(2).

We know that E(λ̂an(2)) is finite dimensional and E(λ̂an(2)) ⊆ C1
0 (Ω). (standard

regularity theory). Moreover, the elements of E(λ̂an(2)) have the “Unique Continu-

ation Property” (the UCP for short), that is, if u ∈ E(λ̂an(2)) and u(·) vanishes on
a set of positive measure, then u ≡ 0 (see de Figueiredo-Gossez [3]).

Let Hm = ⊕mi=1E(λ̂ai (2)), Ĥm+1 = H
⊥
m. Then we have

H1
0 (Ω) = Ĥm ⊕ Ĥm+1.

In this case we have variational characterizations for all the eigenvalues. So, we
have

λ̂a1(2) = inf
[∫

Ω
a(z)|Du|2 dz
‖u‖22

: u ∈ H1
0 (Ω), u 6= 0

]
(4.12)

and for m ≥ 2

λ̂a1(2) = sup
[∫

Ω
a(z)|Du|2 dz
‖u‖22

: u ∈ Hm, u 6= 0
]

= inf
[∫

Ω
a(z)|Du|2 dz
‖u‖22

: u ∈ Ĥm, u 6= 0
]
.

(4.13)

In (4.12) and (4.13) the inf and sup are realized on the corresponding eigenspace

E(λ̂am(2)).

Proposition 4.2. If η ∈ L∞(Ω) and η(z) ≤ λ̂am(2) for a.a. z ∈ Ω, η 6≡ λ̂am(2), then
there exists θ > 0 such that

θ‖u‖r ≤
∫

Ω

a(z)|Du|2 dz −
∫

Ω

η(z)|u|2 dz for all u ∈ Ĥm.

Proof. If m = 1, then this follows from Proposition 4.1. So, assume m ≥ 2. Arguing
by contradiction, suppose we can find {un}n∈N ⊆ Ĥm with ‖un‖ = 1 for all n ∈ N
such that ∫

Ω

a(z)|Dun|2 dz −
∫

Ω

η(z)|un|2 dz <
1

n
for all n ∈ N. (4.14)
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We can assume that

un
w→ u in H1

0 (Ω), un → u in L2(Ω). (4.15)

If in (4.14) we pass to the limit as n→∞ and use (4.15), we obtain∫
Ω

a(z)|Du|2 dz ≤
∫

Ω

η(z)|u|2 dz ≤ λ̂am(2)‖u‖22, (4.16)

⇒
∫

Ω

a(z)|Du|2 dz = λ̂am(2)‖u‖22 (since u ∈ Ĥm, see (4.13))

⇒ u ∈ E(λ̂am(2)), u 6= 0.

Then by the UCP we have u(z) 6= 0 for a.a. z ∈ Ω. Using this fact in (4.16), we
obtain ∫

Ω

a(z)|Du|2 dz < λ̂am(2)‖u‖22

which contradicts (4.13). This completes the proof. �
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