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PYRAMIDAL TRAVELING FRONTS OF A TIME PERIODIC
DIFFUSION EQUATION WITH DEGENERATE MONOSTABLE
NONLINEARITY

ZHEN-HUI BU, CHEN-LU WANG, XIN-TIAN ZHANG

ABSTRACT. This article focuses on the nonplanar traveling fronts of degenerate
monostable time periodic reaction-diffusion equations in R™ with n > 3. By
constructing a couple of proper supersolution and subsolution, we prove the
existence of periodic pyramidal traveling front in R3 and then in R™ with
n > 3.

1. INTRODUCTION

In this article, we investigate nonplanar traveling fronts of the equation
ou(x,t)

ot
where n > 3 is an integer, A is the Laplace operator and the nonlinear reaction
term f is degenerate monostable satisfying the hypotheses:
(H1) f(u,t) € C*44/2([0,1] xR, R) is T-periodic in ¢, where ¢ € (0,1) and T > 0;
(H2) f(0,t) = f(1,t) = 0 with ¢t € R and f(u,t) > 01in (0,1) x R; f,(0,¢) =0
and f,(1,t) <0 for all ¢t € R, where
f(u,t)

. . flu,t)
L(0,8) = lim 2=, f,(1,t) = lim “——2.
Fu0,8) = T, == fu(l ) = lm T

= Au(x,t) + f(u(x,1),t), x€R™ te(0,400), (1.1)

Many diffusion phenomena in nature can be portrayed by reaction-diffusion equa-
tions such as the movement of populations, propagation of burning flame and the
spread of diseases in the air [5, [1]. As the special solutions of reaction-diffusion
equations on an unbounded region, the traveling fronts can describe the propaga-
tion phenomenon of reaction-diffusion equations well. According to whether the
level set of traveling front is a hyperplane, the traveling fronts are classified into
planar traveling fronts and nonplanar traveling fronts.

Planar traveling fronts have been well studied in arbitrary dimensional space be-
cause their simple form and good geometric properties [10, 13} 16} 17, B0]. However,
owing to the effects of curvature and spatial dimension, many reaction phenomena
cannot be accurately described by planar traveling fronts in R™ with n > 1, such
as the conical premixed Bunsen flames [4] and the fertilization Ca?' waves in ma-
ture Xenopus laevis eggs [26]. Therefore, the multidimensional nonplanar traveling
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fronts of reaction-diffusion equations have attracted more and more scholars’ at-
tention.

For the combustion case, Bonnet and Hamel [4] established the existence of
two-dimensional V-shaped traveling fronts. Then, Hamel and Monneau [12] inves-
tigated conical traveling fronts in R™ with n > 3. For the Fisher-KPP monostable
case, Hamel and Nadirashvili [I3] showed the existence of an infinite-dimensional
manifold of solutions. For the bistable case, using the method of the compari-
son principle coupled with the supersolution and subsolution technique, Ninomiya
and Taniguchi [I8, 23] obtained the existence of the two-dimensional V-shaped
traveling fronts and the three-dimensional pyramidal traveling fronts. Kurokawa
and Taniguchi [I5] further considered the existence of n-dimensional pyramidal
traveling fronts with n > 4. For more information on the higher dimensions of
this case, one can refer to the literature of Taniguchi [24] 25]. Recently, the first
author of this paper and Wang [7, 28] investigated the existence and stability of
the three-dimensional pyramidal traveling fronts to the reaction-diffusion equations
with combustion and degenerate Fisher-KPP nonlinearities without periodicity.

To simulate real natural phenomena (e.g. seasonal cycles), the influence of time
periodicity has been considered by researchers recently. Wang and Wu [29] and
Sheng et al. [21] studied the existence and stability of two-dimensional periodic
V-shaped and three-dimensional periodic pyramidal traveling fronts for reaction-
diffusion equations with bistable time-periodic nonlinearity, respectively. El Smaily
et al. [22] explored the traveling fronts of Fisher-KPP monostable reaction-diffusion
equations with periodic advection in R2. Subsequently, Bu and Wang [6] studied
the traveling fronts of reaction-advection-diffusion equations in space-time periodic
medium in R™ (n > 3). Then Zhang et al. [3I] concerned the existence, uniqueness
and stability of V-shaped traveling fronts to reaction-diffusion equations with ig-
nition time-periodic nonlinearity. For more results about time-periodic nonplanar
traveling fronts, we refer to [2, [20] and the references therein.

In this article, we study the nonplanar traveling fronts of degenerate monostable
time periodic reaction-diffusion equation in R™ with n > 3. Inspired by Wang
and Bu [28] and Zhang et al. [3I], we will use the super-sub solution method com-
bined with the comparison principle. The sign of derivative of nonlinear term f at
the equilibrium points 0 and 1 plays a key role in constructing the supersolution. In
contrast to bistable and combustion cases, the derivative of the degenerate monos-
table case that satisfies the hypotheses (H1) and (H2) at the equilibrium point 0 is
zero and f(t+T,u) = f(t,u) > 01in R x (0,1). Thus there will be some difficulties
in constructing the supersolution. To overcome these difficulties, we will adopt
the method of adding small perturbation to the planar traveling front to construct
supersolution.

From [3], we know that under the assumptions on f, equation has a periodic
planar traveling front U(£,¢) : R x R — R with the wave speed ¢, > 0 satisfying

Uyt Ve — Uee — f(U,8) =0, We(&,t) >0, (£,1) € R?,
U(—o0,t) =0,¥(400,t) =1 uniformly in ¢t € R, (1.2)
U(Et+T)=V(E 1), (61) eR?

and

o We(gt) _ o Wee(§t)
6EJLHOOW—AQ—C*>A1—0, lim —>~2

L e =A2=¢2 (1.3)
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uniformly in ¢ € R, where A; and A, are roots of the equation A\> — c,A = 0. In

fact, ¢, > 0 is the critical speed of the periodic planar traveling fronts to (1.1)). For

any 3 € (0,1), we can easily obtain II(3A2) = (BA2)? — c.(BA2) < 0. In addition,

there exist positive constants L1, Ly, L3z, 51 such that

L16A2£ < \P(Eat)7 ‘Ilg(f,t), |\I/§§(£at)| < L26A2Ea VE < Oa te Rv (14)

|\Ij(§7t) - 1|a \ij(évt)v |\I/€£(§7t)| < L36751§7 v§ > 07 teR. (15)

By the super-sub solution method, this paper firstly studies the existence of

the three-dimensional periodic pyramidal traveling fronts of (l.1). That is, we
investigate

ou(x,t)

ot
Then we establish the existence of n-dimensional periodic pyramidal traveling fronts

of (L.1)) with n > 4.

Assume ¢ > ¢, and m, = . Denote x = (x1,%2,23) € R3. We assume
that the traveling fronts travel towards —z3 direction with the speed of ¢ > ¢,. Let

= Au(x,t) + f(u(x,t),t), x€R3 t>0. (1.6)

u(xy, xa, x3,t) = v(x1, T2, 3 + ct, t) = v(x1, T2, w, ).

We still express v(z1, 22, w,t) as v(xy, 22, x3,t) for convenience. By substituting v
into (|1.6)), it follows that

v = Av — cvg, + f(v,t), xXER3 t>0,

v(x,0) = vp(x), x€R>. (L.7)
One of the purposes of this paper is to find the solution V(x,t) satisfying
Vi = Viyay = Vagws — Viaws + Vs — f(V,1) =0, x€R3 t R, (1.8)
V() =V -+T), xeR} teR. (1.9)
Let [ > 3, and {(A;, B;)}1<j<i be a set of unit vectors in R? such that
AjBjyy —A;j1B; >0, j=1,2,....1-1; AB, — A B >0. (1.10)

For each (z1,22) € R?, let
hj(zy, x2) = ma (2145 + 22B;), 1< <1,

h(zy,z) = 1%?%(1 hj(z1,x2) = m, lnél?%cl(zlAj + z2B;),

then {x € R3| — 23 = h(x1,22)} is a pyramid in R?. Clearly, for any (z1,z2) € R?,
we have

h(z1,22) >0 and lim  inf  h”(x;,22) = cc.
R—o szrngRz

Set
Qj = {(Il,.’,EQ) c Rz . h(:l?l,lig) = hj(l‘l,lﬂg)}, ] = 172, . .7l,
then R2 = Uézlﬁj. From (1.10)), the planes Q1,8s, ..., are arranged in a coun-
terclockwise direction. Let 0€); be the boundary of ©;. Denote £ = Ué-:laﬂj.
Each side of the pyramid can be represented as
Gj = {X € Rg L —T3 = hj(xl,xg), ((El,.’EQ) € Qj}, 7=12,... , 1.
We denote

L GiNGjp, 1<j<i—1,
’ G NG, j=L.
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Then I' = Uz-:le represents the set of all edges of a pyramid, and the lateral
surfaces of the pyramid consist of U§:1Gj C R3. For each ¥ > 0, we define

D7) = {x € R? : dist(x,T) > 7}.

Note that the above setting on a pyramid comes from Taniguchi [23].
For any 1 < j <, it is obvious that W(% (x3 + hj(21,2)),t) is the solution of
(1.8). We define

P(x,t) = \P(%(mg + h(z1,22)),t) = max \Il( (3 + hj(z1,22)),1). (1.11)

Then v (x,t) is a subsolution to (L.8). Furthermore, we have ﬂxs (x,t) > 0.

Now we state the main result of this article in R3. The generalized result in R"
with n > 4 will be given in Section 4.

Theorem 1.1. Assume that (H1) and (H2) hold. For each ¢ > c., equation

has a periodic nonplanar traveling front V(x,t) satisfying (1.8 . . Moreover
V(1) = ¢(x, 1)
lim sup = =0, VB8e(0,1),
T xeD(5),t€[0,T] (Q(X, t))’g

and
Vag(x,8) >0,  (x,t) € R" x R.

The rest of this article is organized as follows. Some preliminaries are given
in Section 2. In Section 3, we construct the supersolution, and then prove the
existence of periodic pyramidal traveling fronts in R3. That is, we give the proof
of Theorem We establish the existence of n-dimensional periodic pyramidal
traveling fronts with n > 4 in Section 4. In Section 5, the article ends with a short
conclusion.

2. PRELIMINARIES

In this section, we give some preliminaries which are useful in the proof of the
existence of three-dimensional periodic pyramidal traveling fronts to .
Firstly, we mollify the original pyramid {x € R3| —z3 = h(z1,72)}, see [23]. Let
function p(r) € C*°[0, c0) satisfy the following properties:
(1> ﬁ(’l‘) >0, ﬁr(r) <0,r=>0;
(2) If r > 0 is small enough, p(r) = 1;
(3) If r > 01is large enough, say r > Ro, p(r) = e~ ", where Ry > 0 is a constant;
(

4) fR2 [)(\/I% +I%) dxl dxg =1.

It is easy to check that

ﬁ( z? + m2>dx1d502 = 27r/ rp(r)dr = 1.
furlyei = :

Letting p(x1,22) = p(y/27 + x3), one gets p € C°(R?) and [, p(x1, 22)dx1dzy =
1. Set Ry > 1. For all nonnegative integers i; > 0 and 45 > 0 with 0 <1 + iy < 3,
we have

|Dz1 Dz2p(x1,x2)\ < Mip(x1,22), (x1,22) € R2,
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where M, >0, DI} = ;’;; and D2 = 63;52. Define ¢(z1,22) = p x h. That is,
Plarvaz) = [ plan =t 0 — )hlat, o)) o
R (2.1)

— / p(eh, )y — ), @y — ) de d
R?

for each (x1,z2) € R%. The set {x € R3| — 23 = @(z1,22)} is called the mollified
pyramid of {x € R3| — z3 = h(z1,72)}. Let
c

V14 [Vg(ar,a)?

G(x1, ) = — Cx, (2.2)

where

V@1, 22)| = /2, (21, 22) + @2, (w1, 22).

The next two lemmas come from [23], which show some properties on the functions
(w1, 12) and G(z1,z2) on R2.

Lemma 2.1. Assume that ¢ and G are defined in (2.1) and (2.2)) respectively.
Then

sup  [Dii D2 @(x1,x2)| < oo,
(z1,2)€ER?

o0
h(z1,22) < g(x1,22) < h(x1,22) + 27rm*/ r2p(r)dr,
0

IVo(z1,22)] < my, 0<G(z,20) <c—cy, (21,22) €R?,
/\lim sup{G(z1,12)|(x1,x2) € R? dist((x1,22), E) > \} = 0,
—00

)\lim sup{@(x1,x2) — h(z1, 20)|(z1, x2) € R?, dist((z1,22), E) > A} = 0.
—00

Lemma 2.2. There exist two positive constants a; and as such that

0 = o(x1,x2) — h(x1,22) < sup o(x1, x2) — h(z1, z2)

= = ag < Q0.
(z1,22)ER2 G(:L'l,SUQ) (@1,22)ER2 G(l’l,l'g)

In addition, for any integers iy > 0 or iy > 0 satisfying 2 < i1 +io < 3, there exists
a constant K > 0 such that

Dl D2 @(x1, x2)

sup | | <K,
(z1,2)ER? G(xl’xQ)
and
|Barar (21, 22)|, |Pasas (21, 02)| < MM, (21,22) € R (2.3)

Secondly, we study the eigenfunction at equilibrium point 1. Assume that A is
the eigenvalue of the linearized periodic system
T'(t) —_fu(l,t)T(t)_: AoY(t), teR, 2.0
Tt+T)=7T(t), teR
By a direct calculation, we have

‘ 1/
T(t) = ehottfo fulbs)ds Ao — _T/ fu(l,s)ds > 0. (2.5)
0
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We define v(t) = kY (t), P1 = minge(o, 7] v(t), and P> = maxse(o, 1) v(t), where k is
a positive constant such that P; > 1.

Next, we give some properties about the reaction term f. By assumptions (H1)
and (H2), we can choose &1 € (0,1) small enough such that

1
fu(u,t) < —1—61'[(6/\2), —e1<u<e, t>0, (2.6)
1
fulwt) = fu,O] < Sho, 1-erSu<lten t>0. (2.7)
Finally, we construct an auxiliary function w(x) € C*°(R) such that

w(z) =1, if x > 1,
O<w(@)<l, 0<u(z)<l, w(z)<0, if —1l<z<]l, (2.8)
w(x) =0, if v < -1,

which will be used in constructing the supersolution.

3. EXISTENCE OF PERIODIC PYRAMIDAL TRAVELING FRONTS IN R?

In this section, we first use the idea of perturbation to construct a suitable super-
solution. And then we prove the existence of three-dimensional periodic pyramidal
traveling front V (x,t) to (L.6).

Obviously, éh(azl, axg) = h(xy1,2z2) for any a € (0,1). Let 23 = axs, 2’ =
(21, 22) = (w1, axs) = ax’, z = ax and

e 1 ezt p(@)
w(x) = ?<173 + 590(0&1,049020 P — (3.1)
13 ’ (!
o(x) = r3 + af(aﬂﬁham) _ st sO(f ) ‘ (3.2)
V1+[Volazy,azs)?  ay/1+[Ve()?
Using Lemma [2.3] we can obtain
sw(x) <o(x) <w(x), ifo(x) <0, (3.3)
w(x) < o(x) < Fw(x), if o(x)>0. .

By a direct calculation, this indicates
Cx Cx _ Cx _

Wz = ?7 Wygzrs = 0, We; = ?9021'7 Wz, = a?(pzizm
1
Ops = —F—=———=, Ozsas =0
VI+IVe(@)P w
and
00 = (VTT VG@P) e, — a0Ci(&),  0re, = aDi() — a?0Ex(a))
where

Ci(2) = VIF Vo Py (VIT Vo@)
Ci(z") _
VITIVe@PE

oCi(z) o,
azi - C’i (Z )a

D) = 5= (VIFIVR@IP) 'e..) -

Ei(Z/) =
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for i =1,2. Let
o(z1,12) = Glazy, axs) = G(Z'),

where a > 0 is a constant, which will be determined later. Then
0s,(x1,22) = aG,,(2) and  0g,q, (01, 72) = @2G.,.. (7)), i=1,2.

3.1. Construction of the supersolution. Motivated by Wang and Bu [28] and
Zhang et al. [31], we construct an appropriate supersolution in this subsection.

Lemma 3.1. For each 3 € (0,1), there exist positive constants e§ (8) and ag (3,¢)
such that, for any 0 < e < el (B) and 0 < o < af (B,¢), the function

(x,t; 8,8,0) = U(o(x), 1) + o (x) (w(@(x)w(t) + (1 - w(w(x))) ¥’ (w@(x), 1))
s a supersolution of — on R3 x (—o0,+00). Moreover,
|E(X7 t; 67 & a) - %(Xa t)' <

li , 3.4
dm e W17 < (34
P(x,t) <P(x,t;8,e,a), (x,t) €R®x[0,T], (3.5)
U, (x,t:8,6,0) >0, (x,t) € R® x [0,T]. (3.6)

Proof. Firstly, we prove that ¥(x,t; 3,, ) is the supersolution of (1.8)-(1.9). We
always assume 0 < a < € < g1, and denote ¥ (x, t; 8, ¢, @), @w(x), o(x) and ¥(o(x), )
by ¥(x,t), @, o and ¥(p,t), respectively.

A direct calculation yields

L(E) = Et (X7 t) - Eﬁclxl (Xv t) - Eaczacz (X, t) - 7/’353:% (X7 t) + C@Z‘:g (X7 t) - f(a(xv t)? t)
=W,(p,t) +eo(x")|w(w) (t) + (1 — w(w))ﬂlllﬂfl(w,t)\lft(w,t)]

2
= Whp(0, )0l — Vyplot)ol,

= Val0 000, = I 20nin (K (@(O) + (1= () ¥ (a2, 1)
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2

+ (1= w(@)B(B ~ V¥, )02 (@, 1) S w2, + =)

i=1

+ (1 - (@) BV (@, ) Ve (s, 1) S 2, + 02,

i=1
+ (1 — w(w))pEP Y (w, t)¥ thwww}

+ 00y Vo (w0, 1) + crwg eo (X )’ (@) (v(t) — v (w,1))
+ cwg e (x)(1 — w(w))ﬁ\l’ﬁ ( )V (o, t) — f(@, t)
= Wy(o, t)+€0( Nw(@)V/(t) + (1 = w(w@)) ¥~ (e, t)‘I’t(w t)]

< ZQz m)‘l’gg@t o(0:1) ngm
D it Tair (X)

o(x’)

- ga(x'){ w(@)w(t)

Yy O, (X)
+ (1 — w(w)) {T‘I’ﬁ(w’ﬂ
2
4 2232'—01(;7:)()qu5 Y, t)qu(w7t)%¢2i

+ B(8 = )W (@, )0 (=, 1) Z @y, + %B@

P
o i (32 + )

=

+ BYP (w0, 1) U (1) ZQIW ~ e (@, 1)V ()] |
—sa(x’)[w"(W)( (t) = VP (w,1) (i:w:% * )
2 () () (3 2, + )

=

+ o (@) (v(t) — VP (w, 1)) (2 Tt 0, (), 22: S c)]

o(x') P
- f(@v t)
2 1 2
—(;Qi 1+ [Vo(z)? Jrl)‘I'QQ(Q t) — Vol t);&cx
N a2y G (2)
—co(x ){ 2l @)
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2 _
> G (2, (s,
+20&63 Zz—l i - )QO z( Q
¢ o(x)

+ B(8 = DV (@, 00 (w,6) 5 (V) +1)

(w,1)

LGB (o, 1) U (. 1)

2
+ BZ—;\Iﬂ*l(w, OV e (20, 1) (|V<p(z’)|2 +1)

+ 015%\1}571 (’ZD, t)\I/w (w, t)AQE(Z/) - C*B\Ilﬁil (’(ﬂ, t)\llw (w’ t):| }

Q
N % o

— co(a!) [o.}”(w) (v(t) — B8 (w, t))( 2)2 + 1)

*Qw’(ww—w’l(w,t)@( >(|w P+ 1)

C

; a%*A@(z’) - c*)}
+ (5 — ) ¥%(e 1)

+
+ /(% (e ) ) f@,
Let
D51 |Gz (2)] C]
B, = =l | Ty 70 By = =117 /1
L= T Gy TR G
Lemmas and imply that there exist constants B; > 0 (i = 3,4,5,6) such
that

(3.7)

> 6+ e — L < BG(ex) @)+ 0*BiGlx) ()
i=1 3.8
= ao(x')(Bs|o(z)| + aBso*(z)) (38)

< eo(x')(Bs|o(z)| + aByd* (),

and
2

1Y 0ria] < aBsG(ax) + aBsG(ax')o(x)

= (3.9)
= ao’(xl)(B5 + B5|Q(l')|)

< eo(x')(Bs + Beslo(x)]).
We divide the remaining part of the proof into three cases: 1. o < —X’, 2. o0 > X",

3. =X’ < p < X" where X’ > 0 and X" > 0 are sufficiently large constants which
will be determined later.

Case 1: ¢o < — X', where X’ > 0 is a sufficiently large constant. We assume that
w < —1 without loss of generality, then w = 0 by the definition of w, and hence we
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can obtain
— 2 9 1
L(w): (1—;Qwi_]WW)WQQ Q’ - Qv ZQII
/ 2251 Gz ()
eo(x )\Ilﬁ(w t) [a T

Cx Zz 1G.(2)p.,(2') U (w, t)

+ 204[3 (x’) V(o 0)

R

" <W — e ) Wyle,t) + 0 (x) B (@, )W (@, 1)

When o < 0, inequality (3.3)) yields ¢ < w. From (3.8) and (3.9)), it follows that

L(@) > —50'(X/)‘llﬁ(7z7 t)(Bs|o| + 3492) ‘I\LQBQ((Qa t))|

Yol B)|
Ui(e,t)

— co(x) ¥ (,0) a1 + 2aBam. W@jfj’t;) n a%’(f;? > 18]

vo% - (2 “( 20+ Fe =0 (va) +1)

(% ’><|w o))

(w

— e0(x')UP (@, t)(Bs + Bslo D

w,t
+ 5 ( ) B \I;/t((z:tt))}

+(W—C*)‘I’g( ) F@,t) + f(¥(o,1),1).

Since limy_,_ oo (9, t) = 0 uniformly for ¢ € [0,T], by (1.3) and Lemma we
have

f(¥(w,1),t)

i LELD =0,
S [(- Sy sziwm)'w I+ 1] =0
Ll W(mf 5 ey ] =)
i [se. (—(;,tl)f) 5\{1:(; t)t)} 0
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uniformly in ¢ € [0,T]. Thus there exists a sufficiently large constant X; > 0 such
that for any ¢ € [0,7] and w < — X},

_5W <~ TI(8A), m <ons
s tten T,
Py - e =) < o),
o

Inequalities ([1.4])-(1.5) imply that there exists a sufficiently large constant Xo > 0
such that

g 1
(Bslol +B492)‘If)§((§’tt))| < 7176H(6A2)’
|T,(0,1)] 1
(Bs +B6|Q|)m < _EH(5A2)

for any ¢t € [0,7] and ¢ < —X5. In addition, we can choose a; € (0, 3) small enough
such that

1
a?By + 3aBam. Ay + 3am. M. Ay < _EH(BAQ), Va € (0, aq).

It follows from (2.6 that there exists a sufficiently large constant X3 > 0 such that

—£1 < U(p,t) +eo(x) VP (w,t) < e for any 0 < € < 3(ercy- Therefore,

F@,t) = F(¥(0,1),t) = fu(¥(0,t) + o (x") V7 (@, 1), t)eo (x)¥° (w, 1)
< —1—16H(5A2)

for p < —X3 and t € [0,T], where 6 € (0, 1).
Let X' = max{>, =Xi, Xy, = X3}. Thus when ¢ < —X’, we have

Cy ) Cx

L@) 2 2o ()0 (@, 0)(Balel + Bag?) {22 2]

— eo(x') 0P (w, t)(Bs + B6|Q|)|:III’§EZ?)|

—eo(x') ¥ (w, t) [a2Bl + 3aBam. Ao + 3am, M, Ay

02 w (W, www \W, —
+B83| - (\y\p(;’ti)f \ij;’t)t)\(lw(zﬂﬂ)
203 (o, 2 RN 5 (¥Ye(w, 2
+h 02(\11\11(7(3,;)) (V) +1) —5°( \Il(z(mt;))
U, (w,t)\2 U, (w,t)
+52( \I/(w,t)) P (@0
U, (w,t) U ow(w, t) f(U(w,t),t)
te P gmn P P v ]

—eo(xX') fu(V(0,t) + o (x') 0P (w, t), 1)U (w, t)
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> —co ()07 (@, 1) (3 TI(3A2) + - TI(BAS) + o TT(BAS) + - TT(BA2)
- ’ 16 16 16 16

1 1 1 1
— STI(BA2) + TeTI(FAL) + T TI(BA) + 1oTI(BA)) > 0.

Case 2: 9 > X" > 0, where X" is a sufficiently large constant. Let w > 1, (1.5
implies that there exists a sufficiently large constant Xj > 0 such that for any
0> X{ and t € [0,T]

1
(Bslol + B1o®)[Woo(0: )| < g Pido,

1
(Bs + Bslol)|¥,(0,t)] < §P1A0~

Since limy 400 ¥(0,t) = 1, there exists a sufficiently large constant X} > 0, such
that for any £ € (0, ﬁ), we have

1—e; < V(g t) +0eo(x')w(t) <1l+e1, o>X5, tel0,T].
Therefore, for each ¢ > X1, inequality (2.7) yields

1
(fu(1,t) — fu(P(0,t) + Oco(x")v(t), t))v(t) > —§P1A0, t € [0,T).
In addition, from (3.7)), one has

2
ea(x ) AoV (t) — ea? Z G....(Zw(t) > eo(x')(Ag — a*By) Py,
i=1
for x’ € R? and t € [0,7]. Choosing X" = max {XLX;, ci}, then for any o > X/,
one has

. 2 1 2
L(y) = (1 - ; QGQM - W)\Dw@ﬂf) - \I’Q(Q’ t) ; Ox;a;

— W0, )+ f(U(0, 1), ) — f(1,t)

2
+eo(x )WV (t) —ea? Z G....(z"v(t)
i=1

2 2
1
_ 2
- (1 - ; O, — 1+ |V@(ZI)‘2)\DQQ(Q7t) - \I/Q(Qv t) lz:; Oxiaxs — C*\I/L)(Q7 t)

2
— fu(W(o,t) + Oca(x ) (t), t)ea (X ) (t) — ea? Z G.,..(z"v(t)
i=1

+ e (x" ) (t)(fu(1,t) + Ao)
> —e0(x')(Bso| + B10®)[¥go(0. 1) — c0(x)(Bs + Bg|ol)|¥, (0, 1)

1
— 5a(x’)§P1AO +eo(x’) (Ao — a2Bl) P

1 1
> eo(x') [ — —PiAg— =

1
3 8P1A0 — §P1A0 + (AO — OzQBl)Pl > 0,

if0<a< /A
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Case 3: — X' < 9o < X", where X’ and X" are defined in Cases 1 and 2. Let

Yy = min U,(0,t), Qo= sup | fulu, )],
~X'<o<X" telo,T] u€l—e1,1+¢1],t€[0,T] '
Qi= sup [P0, t)], Q2= sup [o]|[¥,(0,t)],
0€R,t€[0,T] 0€R,t€[0,T]
Qs= sup |o|Wpe(0.t)], Qi= sup 0*[¥,.(0,t),
0€R,t€[0,T) 0€R,t€[0,T)
U,(0,1) Wpolo;1)
Qs = sup = , Qe = sup = |
ock,tclo,r] ¥(o,t) ’ oek,teo,r] Y(0st) ’

Since v(t) = kefottfs ful)ds ang /() = kelottfs fuLo)ds (A4 £, (1,1)), v/ (1) is
bounded following from the boundedness of v(t). By Uy, = U, — .U, + f(¥(0), t),
we have WU, is also bounded and

_max [w(@)v/(6) + (1 - (@) 887 (@, )W, )] < Cy

for some constant Cy > 0. Therefore we obtain

( Z@zl m)‘l’ga(@a olost ng,

/ 2 Zi:l G2 (7)
—co(x ){a S @)

+ (1 — w(w)) [QQZi_;%f;i (=) U8 (e, t)

Cx Z?: G.. (2. (z) B—
+2a6? L o) U@, 1)V, (w, 1)

2
FaBT Y fen () (@, 1)U (@, 1)
i=1
+ B (@, W (1) () V() + 1) | }

—eo () [(5)*(IVe(@) 2 + 1) (@) (v(t) — 97 (w,1))
e Yoy Gai (7))@ 20)

+ 2 a ) 2w (@) (v(t) — VP (w, 1))
+Osz§0z7z7 @) (v(t) —\Ifﬂ(w,t))]
+ F(Wle.0),0) = F@.1) + (W —c)¥(0)

+eo(x)w(@)v'(t) + (1 — w(@)) BT (@, ) Ve (w, )]
(x')(Bso| + B10®)|W,,(0, )]
— £0(x')(Bs + Beo])|¥o(0: 1) + o(x') ¥, 0, 1)

—co(x)qaP &=t e Z’ 1 |GZ7Z’( )l [w@)v(t) + (1 — w(@)) ¥ (w,t)]

\Y
&
q
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52 |G (2)3:,(2)| Vo (. 1)

20 () U(w.t)
\Ifw ,t VUow(w,t
+O‘Z|<quz, (( 7 )) + | \I’(;,t) )‘}

—so(X)IW( )| (v(t) — ¥ (w, 1))

Zi:l |GZE)((Z/))<‘OZI'(ZI') w/(w) (V(t) — \I’B(w7 t))

— EO’ Z |50z1z1 )(V(t) - \I]B(w’ t))

—eo(x)2a

— eo(x')Cy — e0(x') fu [qf(g, 0
+beo(x') (w(@)(t) + (1 — w(@)) ¥ (w,1)) - (w(@)v(t)
+ (1~ w(@) ¥ (1))
> o(x')(—aB3Qs — aB4Q4 — aB5;Q1 — aBsQ2 — aB1 P>
—2aB1m.Qs — 2am, M,Qs — eNy — e A+ uy, — eCoy — Qo Ps) > 0,

where
A= (sup |w” (z)| + 2Bam + 2M*m*)P2,
T€R
Ux
a < g = )
2(B3Q3 + B4Q4 + BsQ1 + BsQ2 + B1 P> + 2B1m. Qs + 2m. M. Qs)
U

< = .
ce e 2(N2+ A+ Co + Qo)

To sum up, combining the above Cases 1- 3, 1) is the supersolution of (1.8)-(T.9)
on R3 x (—o0, +00).
Secondly, we prove (3.5). Let
z3 + h(x')
1+ [Va(ax)?

Recall that

w0 = Sy 4 pla)fe), ol = IO

D(x,t) = h(x,t) = ¥(e(x), 1) — T(I(x),t) + o (x') (w(@)r(t)
@)W’ (w, 1)),
)

We divide the proof into two cases.

Case 1: o(x) > ¥(x) for any x € R3. Since the function W(¢,t) is monotonically
increasing in &, it is obvious that ¢ (x,t) < 1(x,t) for any (x,t) € R? x (—oc0, +00).

Case 2: o(x) < ¥(x) for any x € R3.

o(x) —¥(x) = _x3+@(z)/a o

Ve o)
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e o) = h@)
= (g <)@ e+ e

. 1 c*
Since N > <, we have

b h 1 N

T+ h(x') < — plax’) — (ax) ( _i)
ay/1+[Va(z VI+IVe())? ¢
a1 Cy
< - <0,
«

where a; is defined in Lemma [2:2] Thus
2
o(x) < ¥(x) < —“61;* <0, Ciw(x) < o(x) < w(x).

Furthermore,
(x,t) —(x,1)
= V(o(x),t) = ¥(n(x),t) + ¥(n(x),t) — ¥(I(x),1)
+eo(x) (W@ (t) + (1 — w(@)) ¥ (w, 1))
> U (n(x),t) = V(0(x),1) + o (x) (w(@)v(t) + (1 - w(@)) ¥’ (w,1))
)

1 e
i ( 1+ |Vg(ax')? c)(x3+h( X)W (On(x) + (1 = 0)9(x), 1)
+ o (x') U8 (w(x),t)
1 e e
= ( T+ [Volax)? ) & V0¥ (On(x) + (1 - 0)9(x), 1)

+ eo(x') VP (w(x),1),

where 6 € (0,1). Since z3 + h(x’) < 0, we have n(x) < o(x) < ¥(x) < w(x) < 0,

U, (On(x) + (1 — 0)9(x),t) < Loe 2210nG)+(1=00(x)| < [, cA29(x)
and
\Ijﬁ(w(x),t) > Lfeﬂ/\wﬂ(x) > Lleﬂ/\zw(x) > Lleﬂf\zﬂ(x).
Thus we have
ﬂxxﬂw _f%(x7ﬂ
1 Cx\ C
= — — | — U9 (x)V(On(x) + (1 —0)I(x),t
(T~ ) o=l + (1= 6)9(x), 1)
+ eo(x) 0P (w(x),t)
> o(x')(ﬁ

X L —w
2 o)t (g SR ) + <)

4Lsac
S o (x)e2BY(x) ( _ 2 I )
>o(x)e 0262(1_@2&1[\%—#5 1) >0,

ﬁ(x)emﬁ(x) + €L16A2Bﬁ(x))

if
_earLicie*(1— B)2A3
4LQC '

In conclusion, we can obtain 1 (x,t) > 1(x, t) for any x € R* and t € [0,7].

<0.

15
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Finally, we prove (3.4). We just need to prove
s LHEG00 - H060.0)
=0 xeD(¥),t€[0,T) WA (w(x),t)

We prove it by a contradiction argument. Assume that (3.10]) is not true, then
there exist a positive number £*, sequences {7, }nen € R and {X, }nen € R? such
that

= 0. (3.10)

nh_)rrgo A =00, Xp € D(An), (3.11)
[W(e(x),t) = W), )] _ .
 HEEK > " (3.12)

We denote x, = (x},, 7, 3) € R?, with x|, = (2,1, 22) € R% Obviously,

Tng+ PO g4 (x)) + Blex o)

o(xp) = = = =
VIVe(ax))* +1 IVe(axy)|? +1

Now we consider two cases and prove them separately.

Case 1: lim,_, o dist(x},, ) = co. In this case, we can obtain lim,,_, 1., G(x},) =
0 and lim, o |@(x),) — h(x),)|] = 0. Hence we can obtain lim, . |0(X,) —
9(x,)| = 0.
If9(x,) = < (vp,3+h(x],)) = +00asn — +oo, then o(x,,) — +oc and therefore
lim |\I](Q(Xn)7t) — \P(ﬂ(xn)ut”
T W (w0
which contradicts with ((3.12)).
If 9(xn) = & (2p,3 + h(x],)) = —00 as n — +o0, then o(x,) — —oo. Since

:07

1 2 . ) R
h(x)) < ~@(ax;,) < h(x)) + = / r?p(r)dr,
« « 0

and .
1< VIVl )P +1 < 2,
it can be obtained that, when n is sufficiently large, there are
c
0> w(x,) > o(xn) > C—w(xn)

and

2 *Cx > -
V(xp) < w(x,) < V(%) + WZICC / v25(r)dr.
0

Letting n — 400, we have
|¥(o(xn),t) = U(I(xn), )]
U (w(xp), 1)
_ [(e(xn) =9(xn)) - W'((1 = 0)9(xn) + O0(xn), 1)
U (w(xn), )
Loel2((1=0)9(xn)+00(xn))

LY efham(xn)

IQ(Xn) - ﬁ(xn”

Loet2@(xn) ¢
= LPeBhow(xn) [(*

which contradicts with (3.12)).

2rmacy [
1) (x, %) dr| o,
S ) + o [ ar] -



EJDE-2023/31 PERIODIC PYRAMIDAL TRAVELING FRONTS 17

If 9(x,) = % (zn,3 + h(x;,)) is bounded for each n € N, then we have w(x,) is
also bounded for each n € N. Since lim,,_, 4« |0(%x) — ¥(x,)| = 0, it holds
o [W(e(xn), t) = W(I(xn), 1)

1
o WA (@ (x) 1)

which also contradicts with (3.12)).

Case 2: dist(x),, F) is uniformly bounded in k. From , we can easily obtain
(n,3 + h(x])) = Loo as n — +o0.

If (25,3 + h(x],)) = 400 as n — 400, then ¥(x,) = = (zn,3 + h(x],)) = +00 as
n — 400 and

:07

s h(xX) + P(oxy,) —h(ax))
o(x,) = In,3 () o > 9(x,) > +oo0  asn — +oo.
IVo(ax)|? +1

So we can obtain
|\I/(Q(Xn),t) B \Ij(ﬁ(xn)vt”

li =0
nroo V7 (w (). 1) ’

which contradicts with (3.12)).
If (3 + h(x],)) = —o0 as n — +o0, then

I(xn) = c**(l”n,g + h(x],)) = —occ as n — +oo
c

and

xn’g + h(x’/n) + @(ax;L);h(ax;L)

IVe(axy)? +1
1 2Tme

Q(Xn) =

< ¥(xp) +

2~
r“p(r)dr — —oo asn — +o00.
No(ax )P +1 @ /0 Alr)

Similar to the argument in Case 1, we have

|\I/(Q(Xn)v t) - \I/(ﬂ(xn)a t)‘
Vo))

which contradicts (3.12). Summing up, (3.4)) is true. In conclusion, letting

€ € [ A
63_(6): F;’C—lc*’(SQ}, aa_(saﬂ):{gvalyo[Qaa37 ﬁ}a

we complete the proof. [

3.2. Existence. In this subsection, we give the proof of Theorem [I.1I} That is, we
prove the existence of three-dimensional periodic pyramidal traveling front.
Theorem 3.2. Assume that (H1) and (H2) hold. For each ¢ > ¢, equation (1.1
has a periodic nonplanar traveling front V(x,t) satisfying (1.8))-(1.9) and

Y(x,t) < V(x,t) <(x,t;B,6,0), x€ R3, ¢ € [0, 7).

Moweover,

lim sup |V(X7 t) - Q(Xa t)|
=0 xeD(5),¢€[0,T] (¥(x,1))8
and Vi, (x,t) > 0 for all (x,t) € R? x [0, T].

=0 (3.13)
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Proof. According to the parabolic estimation, there exists a constant C' > 0 such
that the solution ¥(x,t;19) of Eq. (1.7) with the initial value v (x,t) € [0,1]
satisfies

||7/)( ’ ’¢0)” o201+ C

% (B3 x[T+00))
where 0 < 6 < 1. Since 9(x,t) is the subsolution of ( . ) for any x € R3 and
t€[0,T], and ¥(x,t +T) = ¢(x,t), we have

0<Y(x,t+kT;¢) <yp(x,t+ (k+1)T59) <1, xR te0,T]

from the maximum principle. Thus ¢ (x,t + kT’; 1) monotonically increasing con-
verges to V(-,-) under the norm || - || ;2.1 gs [ 77y a8 k — oo. That is

loc

lim ||¢(X,t—|— ET;v) —V(x =0.
k— o0 -

2 ”C{i;i (R3x[0,T])

Meanwhile, since 1(x,t; 3, ¢, @) is a supersolution, it can be obtained that P(x,t) <

V(x,t) < 1(x,t;8,¢, ) by the comparison principle. Since ¥, (x,t) >0, it follows
—&3

that V,,(x,t) > 0. By the strong maximum principle, we can obtain V,, (x,t) > 0.

From (3.4)), we have

V(xt) - %( t)|
(

lim sup < 2e. (3.14)

750 xeD(¥),t€[0,T]

Thenweﬁxﬁe( 1) and let 8 € (8,1). From (3.14), for any 0 < ¢ <
min{ef (8),e¢ (B)} and 0 < a < min{ag (B,¢), af (B,2)}, we can easily get

|V(X’t) - ﬁ X, t)l
), 1)

Fix a € (0, min{ag (8,¢),af (8,€)}). Then there exists 4/ > 0 such that for any
7>

lim sup ;
T xeD(y).tef0,7] WP (& (w5 + plox

(3.15)

[V (x,t) — ¥(x,1)]
Sup - c *(ax/) _—
xeD(3),tel0,1] WA (&= (x5 + L), t)

(3.16)

We divide the remaining part of the proof into two cases.
Case 1: |23 + h(z')| > K1, where K; > 0 is sufficiently large. Obviously if x € R3
satisfies |x3+h(x")| > Ks, we can obtain dist(x, ') > 7/, where K5 > 0 is sufficiently
large. Fix K3 > 0 such that dist(x,T) > 4/ and U#(d(x)) > 1 if |z5 + h(x)| > K.
Because

VGt vt V1) — 9t

W (e (ag + 22Xy gy T ($(x),1)°

for any ¢t € [0,T] and x € R? with |z3 + h(x")| > K3, we have

V) =gt V) —d(x,1)] 1 o
W 1))P T WA (e (wg 2y ) WO (S (25 + A(x')), 1) T

Let K4 > 2”;"* Ooo 25(r)dr large enough satisfy

U7 (% (s + h(x)), 1)

LyP LB A2 (B=B)0 2= haB [5™ (e = 2y < [,

NI
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where gives the definitions of L; and Ls. Since
V(x,1) — 9, 1)]
WB(E (15 + 20X 4)
_ 0% IVent) vt
(V(x),8)7 WB (= (g + 212X
WP (% (23 + h(x)), 1) |V( 1) —¥(x,1)]
B (e (g + 2y 4y ((x),1)7
- ‘Pﬁ(%*(% + h(x)), 1) V(x,t) = 9(x,1)]
T OB (ag 4 h(X) + T [(02p5(r)dr),t) (W), 1)7
then from (L.4), for any x € R? that satisfies z3 + h(x’) < —Kj4, we can obtain
‘V(Xa t) - %(Xa t)‘
E

|
)

t)
)

€ [0,T].

Case 2: |z3+h(x')| < K7 and K > 0 is sufficiently large such that dist(x', E) > K,
where Kl = max{KQ, K37K4}.

When K > 0 is sufficiently large for all x € R?® with dist(x’, E) > K and
|z + h(x)| < Kj, one has

WP (s + h(X)) 1) 4
WO (S (g + 2D, 0) B

Thus we obtain

Vet —v0et)] VOt — el WP(% (s + 259 1)
(B 7 WO (s + A(X)), 1) WB (< (g + 21920y 4) —

According to the definition of D(7), there exists v* > 0 such that
D(v*) C {x € R3: |z3 + h(X)| > K, or |x3 + h(X)] < K, and dist(x', E) > K}.
Thus Cases 1 and 2 imply

V(x,1) — (x|

<5e, xeD(y), telo,T].

(¥(x,1))?
Therefore,
V(x, 1) — i(x, 1)
sup = <be, Vy>~"
xeD(7),t€[0,T) (ﬁ(xv t))ﬁ
Hence ([3.13)) holds by the arbitrariness of e. The proof is complete. O

4. PERIODIC PYRAMIDAL TRAVELING FRONTS IN R” WITH n > 4

In this section, we investigate the existence of periodic nonplanar traveling front
to in R™ (n > 4). We use the same notation as above. We denote s =
(s1,82,..8,) € R" and s’ = (s1,82,...,8,-1) € R Assume that the traveling
fronts travel towards —s,, direction at the speed of ¢ > c,. Let

u(s,t) = v(s', s, +ct,t) = v(s’,w, t).
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We still express v(s’,w,t) as v(s’, s,,t) for convenience. Substitute v into (1.1),
then

=Av—cvs, + f(v,t), seR" t>0,
v(s,0) = wvg(s), seR™
The purpose of this section is to find a functon V(s,t) satisfying the equations
—AV +cV,, — f(Vit) =0, seR" teR, (4.1)
V(s,t) =V (s,t+T), seR" teR. (4.2)

Let [ > 3 be a given integer and {A; }221 C R™ be a set of unit vectors such that
{Az 7é Aj}, if 4 7& j Then Aj = (A17j7A27j, . 7An—1,j) satisfies

n—1
|Aﬂ:§:A%:1,jzlﬂV”J
i=1

Therefore (m,Aj,1) € R™ is a normal vector of {s € R"|—s,, = m,(A;,s')}, where
(Aj,8") = S0 A jsi. Let
hi(s') =m.(A;,s"), 1<j<I,

h(s') = max hi(s') = m. max, (A;,8),

then {s € R"| — s, = h(s')} is a pyramid in R™. Similar to the previous works,
we define Q;,G;,T';,D(), E as in Section 1 by replacing (z1,22) and (z1, z2, x3)
with s” and s, respectively. Let 0Q; be the boundary of Qj. For any 1 < j </, it’s
obvious that W(% (s, + h;(s')),t) is the solution of (4.1)). Define

Wi, 1) = W (T (0 + h(), 1) = max W(T (s + hy(s). 1),

1<5<
then 1(s, ) is the subsolution of (4.1]).
Let function p(r) € C*°[0, 00) satisfy the following properties:
(1) p(r) >0, pr(r) <0, 7> 0;
(2) If r > 0 is small enough, p(r) = 1;
(3) Ifr > 0is large enough, say r > Ry, p(r) = e~", where Ry > 1 is a constant;
(4)

4 fRnfl p |S |) S =1
It is obvious that

Cx

~r1 /_(n_l)ﬂ-nT_l Oorn72~r r
[ s = g [ e

Let p(s’) = p(|s’|), one has
/ p(s)ds' = 1.
Rn—1

For all nonnegative integers ji, ..., jn—1 satisfying 0 < Z - jq < 3, we have
D ... DI p(s)| < Map(s)), & €eR™Y,

where M, is a positive constant. Define ¢(s’) = p * h, then for each s’ € R*~1,

p(s') = /]R2 p(s")h(s' —s")ds" = /R2 p(s" —s")h(s")ds". (4.3)
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The set {s € R"| — s, = @¢(s’)} is called the mollified pyramid of {s € R"| — s,, =
h(s')}. Let

c
G(§) = —————— — s, 4.4
) VI+IVe(s)) -
where [V@(s')| = Z;:ll @2 (s'). The next two lemmas come from the [I5, Lemma

2.2 and Prop. 2.3] and from [28, Remark 2.3].

Lemma 4.1. Let §(s’) and G(s') be as defined in (4.3) and (4.4) respectively.
Then for any fized (ji,-.-;jn-1) # (0,...,0) with j, > 0 (¢ =1,...,n— 1), one
has
sup |DLDL ... DIig(s)] < oo,
s’€Rn—1

n—1

(n—1)m 2 /Do el ~
T T r" 7 p(r)dr,
L% 0 )

IVa(s)| < me, 0<G(s)<c—c,, Vs eR"L

h(s1,82,...,8n-1) < @(s’) < h(s') +

Lemma 4.2. There exist two constants by and by such that

Dby PE)HE) o) A

= by < 0.
s/€Rn—1 G(S/) - S/:Rn—l G(S/) 2 o0

Moreover, for every integer jo > 0 (¢ =1,...,n—1) with2 < ji+jo+ - +jn_1 < 3,
there exists a constant IC > 0 such that
sup |:D;';D§g L.DETp(s) |
s’eRn—1 G(S/)
|Gs,s, () <muM,, i=1,2,...,n—1,8 R

<K,

Proceeding as in the previous sections, we obtain the following lemma and the-
orem.

Lemma 4.3. For each 3 € (0,1), there exist positive constants e§ (8) and ag (83, ¢)
such that, for any 0 < e < el (B) and 0 < o < af (B,¢), the function

U(s,t; By, ) = U(o(s), t) + ea (') (w(w(s))v(t) + (1 — w(w(s)) ¥’ (w(s), )
s a supersolution of — on R™ x (—o0,+00). In addition,

. [9(s.t;8,¢,0) — ¢(s,1)]
lim sup 5 < 2¢,
T—00 seD(7),t€[0,T] Y(s,t)

w(svt) < E(s,t;ﬁ,aa), (Svt) € R" x [OvT]v

@Sn(s,t;ﬁ,a,a) >0, (s,t)eR™x][0,T].

Theorem 4.4. Assume that (H1) and (H2) hold. Then for each ¢ > c., equa-
tion (L.1) has a periodic nonplanar traveling front V(s,t) satisfying (4.1)-(4.2).

Moreover,

lim sup =0, VBe(0,1),
TR seD(¥),t€[0,T] @(S, .1

4
Vs, (s,t) >0, (s,t) e R®" xR.
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5. CONCLUSION

Since the environment changes over time, it is of great practical significance
to study the effect of time period on the dynamical behavior of reaction-diffusion
equations. In this paper, we mainly consider the time periodic reaction-diffusion
equation with degenerate monostable nonlinearity. We prove the existence of pe-
riodic pyramidal traveling fronts in R™ with n > 3. Due to the degeneration at
the equilibrium point 0 and f(u,t) = f(u,t+7T) > 0 on (0,1) x R, the dynamical
properties of degenerate monostable periodic nonlinearity are essentially different
from the bistable and combustion nonlinear terms. For the purpose of obtaining
the existence of nonplanar traveling fronts, we use the super-sub solution method
combined with comparison principle. It is worth noting that we adopt the method
of adding small perturbation to the planar traveling front to overcome the difficul-
ties in constructing the supersolution. Our results enrich the traveling front theory
of degenerate monostable reaction-diffusion equation with time period.

Except for pyramidal traveling fronts, one expects that there exist conical-shaped
traveling fronts and other kinds of nonplanar traveling fronts. These are interesting
problems to study in the future.
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