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ASYMPTOTIC BEHAVIOR OF STOCHASTIC FUNCTIONAL

DIFFERENTIAL EVOLUTION EQUATION

JASON CLARK, OLEKSANDR MISIATS,

VIKTORIIA MOGYLOVA, OLEKSANDR STANZHYTSKYI

Abstract. In this work we study the long time behavior of nonlinear sto-

chastic functional-differential equations in Hilbert spaces. In particular, we
start with establishing the existence and uniqueness of mild solutions. We

proceed with deriving a priory uniform in time bounds for the solutions in the

appropriate Hilbert spaces. These bounds enable us to establish the existence
of invariant measure based on Krylov-Bogoliubov theorem on the tightness of

the family of measures. Finally, under certain assumptions on nonlinearities,

we establish the uniqueness of invariant measures.

1. Introduction

In this work we study the asymptotic behavior of the solutions of stochastic
functional-differential equations. In a bounded domain, the equation reads as

du = [Au+ f(ut)] dt+ σ(ut) dW (t) in D, t > 0;

u(t, x) = φ(t, x), t ∈ [−h, 0), u(0, x) = ϕ0(x) in D;

u(t, x) = 0, x ∈ ∂D, t ≥ 0.

(1.1)

The corresponding problem in the entire space has the form

du = [Au+ f(ut)] dt+ σ(ut) dW (t) in Rd, t > 0;

u(t, x) = φ(t, x), t ∈ [−h, 0), u(0, x) = ϕ0(x) in Rd.
(1.2)

Here A is the elliptic operator

A = A(x) =

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

bi(x)
∂

∂xi
+ c(x), (1.3)

the interval [−h, 0] is the interval of delay, and ut = u(t+ θ) with θ ∈ [−h, 0].
Functional differential equations of types (1.1) and (1.2) are mathematical mod-

els of processes, the evolution of which depends on the previous states. One of the
natural examples of such behavior is heat conduction. In particular, the classic
model of heat conduction ut = ∆u has an essential shortcoming: it predicts infi-
nite speed of propagation of thermal fluctuations in Fourier heat conductors. This
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observation suggests that the Fourier’s law of heat conduction may be an approxi-
mation to a more general constitutive assumption relating the heat conduction to
the material’s thermal history. Gurtin and Pipkin [14] have proposed a memory
theory of heat conduction, which has finite heat propagation speeds, and, in its
linearized version reads as

u̇(x, t) +

∫ ∞
0

β(s)u̇(x, t− s) ds = C∆u(x, t),

which is a particular example of a functional-differential equation. Furthermore,
[25] provides an example of temperature regularization through heat injection or
extraction, controlled by a thermostat, which creates additional memory and delay
effects. A closely related problem arises emerges in modeling partially diffused
population dynamics with delay in the birth process [25]

u̇(x, t)− Cuxx(t, x) = u(t, x)
[
1− u(t, x)−

∫ 0

−1

u(t+ r(s), x) ds
]
,

where r(s) is a continuous delay function. In [27] we used a functional-differential
equation to take into account the delay effects in modeling Performance-on-Demand
Micro-electromechanical systems (POD MEMS). Similar memory effects emerge in
Hodgkin-Huxley model, Dawson-Fleming model of population genetics [11], among
others.

The classic results for deterministic functional-differential equations in finite di-
mensional spaces can be found in [13] and references therein. Stochastic functional
differential equation in finite dimensions have be studies extensively as well. In
particular, the existence of invariant measures for stochastic ordinary differential
equations was established in [3, 12]. The work [15] addressed the stochastic stability,
as well as various applications of stochastic delay equations in finite dimensions.

The results on functional differential equations in infinite dimensions are signifi-
cantly more sparse. One example of analysis and applications of functional partial
differential equations may be found in [1]. In this work, the authors study the non-
local reaction-diffusion model of population dynamics. They establish the existence
of time stationary solution and show that all other solutions converge to it.

The results on stochastic functional differential equations include [29, 8], which
establish the existence of solutions and their stability. Stochastic differential equa-
tion of neutral type were studied in [26, 16, 31]. The work [28] established the
comparison principle for such equations.

The main goal of the present work is to establish the existence and uniqueness
of invariant measures for the equations (1.1) and (1.2) based on Krylov-Bogoliubov
theorem on the tightness of the family of measures [17]. More precisely, we will
use the compactness approach of Da Parto and Zabczyk [9], which involves the
following key steps:

(i) Establishing the existence of a Markovian solution of (1.1) or (1.2) in a
certain functional space, in which the corresponding transition semigroup
is Feller;

(ii) Showing that the semigroup S(t) generated by A is compact;
(iii) Showing that the corresponding equation with a suitable initial condition

has a solution, which is bounded in probability.

This approach was used in establishing the existence of invariant measure for a
large class of stochastic nonlinear partial differential equations without delay, e.g.
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[2, 5, 7, 10, 21, 22] and references therein. For functional differential equations
in finite dimensions, the approach above was used in [6]. In this work, the author
established the existence of an invariant measure in Rd×L2(−h, 0;Rd). In contrast,
for stochastic partial differential equations, the natural phase space for the mild
solutions of (1.2) is L2

ρ(Rd)×L2(−h, 0;L2
ρ(Rd)), where L2

ρ(Rd) is a weighted space.

The equations of type (1.1) and (1.2) were studied in the space C([−h, 0];L2
ρ(Rd)),

which is a significantly easier problem [26, 28, 29]. In these spaces the authors
studied the conditions for the existence and uniqueness of the solution, as well as
their Markov’s and Feller properties. However, in order to apply the compactness
approach one needs to work in L2

ρ(Rd) × L2(−h, 0;L2
ρ(Rd)), which is done in this

work. We also establish the existence and uniqueness of the stationary solution,
and the convergence of other solutions to it in square mean, which is the stochastic
analog of the main result of [1].

This article is structured as follows. In Section 2 we introduce the notation and
formulate the main results. Section 3 is devoted to the proof of the existence of
invariant measure, as well as an example of application of this result to integral-
differential equations. Section 4 establishes the uniqueness of invariant measure,
and the convergence to the stationary solution.

2. Preliminaries and main results

Throughout this article, the domain D is either a bounded domain with ∂D
satisfying the Lyapunov condition, or D = Rd. Denote

ρ(x) :=
1

1 + |x|r
(2.1)

where r > d if D = Rd and r = 0 (i.e. no weight) for bounded D. We introduce
the following spaces:

Bρ0 := L2
ρ(D), Bρ1 := L2(−h, 0;L2

ρ(D)), Bρ := Bρ0 ×B
ρ
1 , H := L2(D), (2.2)

with the norms

‖u‖2B0
ρ

:= ‖u(·)‖2ρ :=

∫
D

u2(x)ρ(x) dx,

‖u(θ, ·)‖2B1
ρ

:=

∫ 0

−h

∫
D

u2(θ, x)ρ(x) dx dθ,

‖(u(·), u1(θ, ·))‖2Bρ = ‖u(x)‖2ρ + ‖u1(θ, x)‖2B1
ρ
,

‖u(·)‖2H =

∫
D

u2(x) dx.

The coefficients aij of the operator A defined in (1.3) are Holder continuous with
the exponent β ∈ (0, 1), symmetric, bounded and satisfying the elipticity condition

d∑
i,j=1

ai,jηiηj ≥ C0|η|, ∀η ∈ Rd

for some C0 > 0. The coefficients bi and c are also bounded and Holder continuous
with some positive Holder exponent.

If D is bounded, we impose homogeneous Dirichlet boundary conditions on ∂D.
In this case,

D(A) = H2(D) ∩H1
0 (D).
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If D = Rd, then D(A) = H2(Rd). Denote G(t, x, y) to be the fundamental solution
(or the Green’s function in the case of bounded D) for ∂

∂t −A. It follows from, e.g.,
[18, p. 468], that there are positive constants C1(T ), C2(T ) > 0 such that

0 ≤ G(t, x, y) ≤ C1(T )t−d/2e−C2(T )
|x−y|2

t (2.3)

for t ∈ [0, T ] and x, y ∈ D. Note that in (2.3), C1 and C2 depend not only on T ,
but on the constants C0, d, T , maximum values of the coefficients of A, and the
Holder constants. If the operator is in the divergence form Au = div(a∇u), the
estimates are of a different type, see e.g. [17], namely

g1(t, x− y) ≤ G(t, x, y) ≤ g2(t, x− y), (2.4)

where

gi(t, x) = K(C0, d)t−d/2e−K(C0,d)
|x|2
t , i = 1, 2, t ≥ 0, x, y ∈ Rd.

In this case, in contrast with (2.3), the constant K(C0, d) is independent of t.

Lemma 2.1. For each T > 0 there exists a positive C(r, T ) > 0 such that∫
D

G(t, x, y)ρ(y) dy ≤ C(r, T )ρ(x), t ∈ [0, T ]. (2.5)

Proof. Note that the weight (2.1) satisfies

ρ(x)

ρ(y)
≤ C(r)(1 + |x− y|r) (2.6)

for some C(r) > 0. Thus∫
D

G(t, x, y)ρ(y) dy ≤ C(r)

∫
D

G(t, x, y)ρ−1(x− y)ρ(x) dy

≤ C(r)C1(T )

∫
Rd
t−d/2e−C2(T )

|y|2
t (1 + |y|r) dyρ(x)

≤ C(r, T )ρ(x). �

We define

(S(t)ϕ)(x) :=

∫
D

G(t, x, y)ϕ(y) dy, t > 0, x ∈ D,ϕ ∈ L2(D), (2.7)

and S(0) = I, where I is the identity map. This is a semigroup on L2(D) with
generator A. Then for all ϕ ∈ L2(D) and for t ∈ [0, T ] by Lemma 2.1 we have

‖S(t)ϕ‖2B0
ρ

=

∫
D

(∫
D

G(t, x, y)ϕ(y) dy
)2

ρ(x) dx

≤
∫
D

ρ(x)
(∫

D

G(t, x, y) dy
)(∫

D

G(t, x, y)ϕ2(y) dy
)
dx

≤ C
∫
D

(∫
D

G(t, x, y)
ρ(x)

ρ(y)
dx
)
ρ(y)ϕ2(y) dy

≤ Cρ(T )‖ϕ‖2B0
ρ
.

(2.8)

The above estimate allows the semigroup S(t) to be extended to a linear map from
Bρ0 to itself. Since L2(D) is dense in Bρ0 , S(t) is strongly continuous in Bρ0 .

Let ai ≥ 0,
∑∞
i=1 ai < ∞, and en be orthonormal basis in H, such that en ∈

L∞(D) and supn ‖en‖L∞(D) < ∞. We introduce the operator Q ∈ L(H) such
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that Q is non-negative, Tr(Q) < ∞, Qen = anen. Let (Ω,F , P ) be a complete
probability space. We introduce

W (t) :=

∞∑
i=1

√
aiβi(t)ei(x), t ≥ 0,

which is a Q-Wiener process on t ≥ 0 with values in L2(Q). Here βi(t) are standard,
one dimensional, mutually independent Wiener processes. Also let {Ft, t ≥ 0} be a
normal filtration satisfying

• W (t) is Ft-measurable;
• W (t+ h)−W (t) is independent of Ft for all h ≥ 0, t ≥ 0.

Denote U = Q
1
2 (H). From [19, Lemma 2.2], U ∈ L∞(D). Following [19] introduce

the multiplication operator Φ : U → Bρ0 as follows: for a fixed ϕ ∈ Bρ0 , let Φ(ψ) :=
ϕψ, ψ ∈ U . Since ϕ ∈ Bρ0 and ϕ ∈ L∞(D), the operator is well defined and hence

Φ ◦Q1/2 : L2(D)→ Bρ0 defines a Hilbert-Schmidt operator. The operator Φ is also
a Hilbert-Schmidt operator satisfying

‖Φ ◦Q1/2‖2L2
:=

∞∑
n=1

‖Φ ◦Q1/2en‖2Bρ0

=

∞∑
n=1

an

∫
D

ϕ2(x)e2
n(x)ρ(x) dx

≤ Tr(Q) sup
n
‖en‖2∞‖ϕ‖2ρ,

(2.9)

where Tr(Q) =
∑∞
n=1 an = a. Hence if Φ : Ω × [0, T ] → L(U,Bρ0) is a predictable

process satisfying

E
∫ T

0

‖Φ ◦Q1/2‖2L2
ds <∞,

following [9] we can define ∫ t

0

Ψ(s) dW (s) ∈ Bρ0

with the expansion∫ t

0

Ψ(s) dW (s) =

∞∑
i=1

√
ai

∫ t

0

Φ(s, ·)ei(·) dβi(s).

Furthermore,

E
∥∥∫ t

0

Ψ(s) dW (s)
∥∥2

B0
ρ
≤ a sup

n
‖en‖2∞

∫ t

0

E‖Ψ(s, ·)‖2Bρ0 ds. (2.10)

We assume f and σ satisfy the following conditions:

(i) The functionals f and σ map Bρ1 to Bρ0 ,
(ii) There exists a constant L > 0 such that

‖f(ϕ1)− f(ϕ2)‖Bρ0 + ‖σ(ϕ1)− σ(ϕ2)‖Bρ0 ≤ L‖ϕ1 − ϕ2‖Bρ1
for any ϕ1, ϕ2 ∈ Bρ1 .
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Definition 2.2. An Ft measurable random process u(t, ·) ∈ Bρ0 is a mild solution
of (1.1) or (1.2), if

u(t, ·) = S(t)ϕ(0, ·) +

∫ t

0

S(t− s)f(us) ds+

∫ t

0

S(t− s)σ(us) dW (s) (2.11)

where u(0, ·) = ϕ(0, ·) ∈ Bρ0 , u(t, ·) = ϕ(t, ·) ∈ Bρ1 , t ∈ [−h, 0].

Hence the phase space of the problem is the Hilbert space Bρ. In this case
y(t) ∈ Bρ if y(t) = (u(t, ·), ut) ∈ Bρ0 ×B

ρ
1 , with ut = u(t+ θ, ·) and θ ∈ [−h, 0].

Theorem 2.3 (Existence and uniqueness). Suppose f and σ satisfy the conditions
(i) and (ii), and ϕ(t, ·) is an F0 measurable random process for t ∈ [−h, 0], which
is independent of W and such that

E‖ϕ(0, ·)‖p
Bρ0

<∞, E‖ϕ(·, ·)‖p
Bρ1

<∞, p ≥ 2.

Then there exists a unique mild solution of (1.1) (or 1.2) on [0, T ], and

E‖y(t)‖pBρ ≤ K(T )(1 + E‖y(0)‖pBρ), t ∈ [0, T ]. (2.12)

Theorem 2.4 (Continuous dependence on the initial data). Let φ ∈ Bρ1 , φ(0, ·) ∈
Bρ0 , φ1 ∈ Bρ1 , φ1(0, ·) ∈ Bρ0 be two initial sets of data of two solutions

y(t) = y(t, φ) =

(
u(t, φ)
ut(φ)

)
, y1(t) = y(t, φ1) =

(
u(t, φ1)
ut(φ1)

)
respectively. Then under the conditions of Theorem 2.3 there exists a constant C(T )
such that

sup
t∈[0,T ]

E‖y(t)− y1(t)‖2Bρ ≤ C(T )E‖φ(t)− φ1(t)‖2Bρ . (2.13)

The following proposition shows the that the solution u(t, ·) has continuous tra-
jectories.

Proposition 2.5. Let u(t, ·) be a mild solution of (1.1) or (1.2). Then, under the
conditions of Theorem 2.3, ut is continuous at t = 0 in probability with respect to
the norm ‖ · ‖Bρ1 , i.e.

‖ut − u0‖2Bρ1 =

∫ 0

−h
E‖u(t+ θ)− ϕ(θ)‖2Bρ0 dθ →

P 0, t→ 0.

Proof. Note that

E‖ut − u0‖2Bρ1 ≤
∫ −t
−h

E‖ϕ(t+ θ)− ϕ(θ)‖2Bρ0 dθ +

∫ 0

−t
E‖u(t+ θ)− ϕ(θ)‖2Bρ0 dθ.

The convergence of the first term to 0 follows from the density of C([−h, 0], Bρ0 ×
L2(Ω)) in L2([−h, 0], Bρ0×B

ρ
0×L2(Ω)). The second term converges to zero as t→ 0

since the integrand is bounded. �

Let Bb(B
ρ) be the Banach space of bounded real Borel functions from Bρ to

R, and Cb(B
ρ) be the space of bounded continuous functions. Since the choice of

T > 0 in Theorem 2.3 is arbitrary, the solution exists for all t ≥ 0, thus y(t) also
exists for all t ≥ 0. Replacing the initial interval [−h, 0] with [−h + s, s] for all
s ≥ 0, we can guarantee the existence and uniqueness of the solutions for t ≥ s ≥ 0



EJDE-2023/35 STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS 7

with the initial Fs-measurable functions ϕ(θ, ·), ϕ(0, ·), which satisfy the conditions
of Theorem 2.3 on [s−h, s]. This solution will be denoted with u(t, s, ϕ). Similarly,

ut(s, ϕ) = u(t+ θ, s, ϕ), θ ∈ [−h, 0]

is a shift of the solution u(t, ϕ), such that us(s, ϕ) = u(s + θ, s, ϕ) = ϕ(θ) and for
θ = 0, ϕ(0, ·) ∈ Bρ0 .

Following [4], we define the family of shift operators

U tsϕ := u(t+ θ, s, ϕ) = ut(s, ϕ). (2.14)

Let F ts(dW ) be the minimal σ-algebra containing W (τ)−W (s), τ ∈ [s, t]. Note
that ut(s, ϕ) is independent of the σ-algebra Gt, which is the minimal sigma-algebra
containing W (τ)−W (t) for τ ≥ t.

For any nonrandom ϕ ∈ Bρ with s ≥ 0 and t ≥ s, U tsϕ := ut(s, ϕ) is an F ts(dW )
measurable random function taking values in Bρ1 , with u(t, s, ϕ) ∈ Bρ0 for θ = 0.
Defining y(t, s, ϕ) = (u(s, t, ϕ), ut(s, ϕ)), we have that y maps Bρ into itself. The
next proposition follows from Theorem 2.3.

Proposition 2.6. The family of the operators (2.14) satisfies

U tτU
τ
s ϕ = U tsϕ (2.15)

for all t ≥ τ ≥ s ≥ 0 and ϕ ∈ Bρ.

Let D be a σ-algebra of Borel subset of Bρ. Then y(t, s, ϕ) naturally denotes
the following probability measure µt on D,

µt(A) = P{y(t, s, ϕ) ∈ A} = P{U tsϕ ∈ A} = P (s, ϕ, t, A) (2.16)

The measure µ is the transition function corresponding to the random process
y(t, s, ϕ). In a similar way as in the finite dimensional case [4], one can show that
this function satisfies the properties of the transition probability. This way we have

Theorem 2.7 (Markov property). Under the assumptions of Theorem 2.3, the
process y(t, s, ϕ) ∈ Bρ is the Markov process on Bρ with the transition function
P (s, ϕ, t, A) given by (2.16).

Proposition 2.8. For any t ≥ s ≥ 0 we have

P (s, ϕ, t, A) = P (0, ϕ, t− s,A)

Proof. Let ũ(t) = u(s+t, s, ϕ). Then ũ(0) = ϕ(0, ·) and ũ0 = u(s+θ, s, ϕ) = ϕ(θ, ·).
On the other hand,

ũ(t) = u(s+ t, s, ϕ) = S(t)ϕ(0, ·) +

∫ s+t

s

S(s+ t− τ)f(uτ ) dτ

+

∫ s+t

s

S(s+ t− τ)σ(uτ ) dW (τ) = S(t)ϕ(0, ·)

+

∫ t

0

S(t− τ)f(uτ+s) dτ +

∫ t

0

S(t− τ)σ(uτ+s)dW̃ (τ)

where W̃ (τ) := W (s + τ) −W (s) is once again a Q-Wiener process. This way ũ
solves

ũ(t) = S(t)ϕ(0, ·) +

∫ t

0

S(t− τ)f(ũ(τ)) dτ +

∫ t

0

S(t− τ)σ(ũ(τ))dW̃ (τ) (2.17)
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The same equation is satisfied with u(t, 0, ϕ) such that u(0, 0, ϕ) = ϕ(0, ·) and u0 =
ϕ(θ, ·). The only difference is that u(t, 0, ϕ) solves (2.17) with a different Wiener

process W . However, since the distribution of W is the same as W̃ , the distribution
of u(s+ t, s, ϕ) is the same as the distribution of u(t, 0, ϕ), and hence independent
of s. Thus the distribution of ut(s, ϕ) = u(t+θ, s, ϕ) = u(t−s+θ+s, sϕ) coincides
with the distribution of u(t− s+ θ, 0, ϕ) = ut−s(0, ϕ). Hence

P (s, ϕ, t, A) = P{ut(s, ϕ) ∈ A} = P{u(t+ θ, s, ϕ) ∈ A}
= P{u(t− s+ θ, 0, ϕ) ∈ A} = P{ut−s(0, ϕ) ∈ A}

which yields the desired result. �

For g ∈ Bb(Bρ), for ϕ ∈ Bρ and t ≥ s ≥ 0, we define

Ps,t(ϕ) := Eg(y(t, s, ϕ)).

From proposition 2.8 we have P0,t−s(ϕ) and denote Ptϕ = P0,t(ϕ). From Theorem
2.4 and Proposition 2.5 we have the following result.

Proposition 2.9. Under the assumptions of Theorem 2.3 the transition semigroup
Pt, t ≥ 0 is stochastically continuous an satisfies the Feller property

Pt : Cb(B
ρ)→ Cb(B

ρ), lim
t→0

Ptϕ(θ) = ϕ(θ).

We define ρ̄(x) = (1 + |x|r̄)−1. The main result of the paper is the following
theorem.

Theorem 2.10. Let the assumptions of Theorem 2.3 hold. Assume the equation
(2.11) has a solution in Bρ̄ which is bounded in probability for t ≥ 0 with

r > d+ r̄. (2.18)

Then there exists an invariant measure µ on Bρ, i.e.∫
Bρ
Ptϕ(x)dµ(x) =

∫
Bρ
ϕ(x)dµ, for all t ≥ 0 and ϕ ∈ Cb(Bρ).

Remark 2.11. Condition (2.18) is equivalent to∫
Rd

ρ(x)

ρ̄(x)
dx <∞.

The key condition in Theorem 2.10 is the existence of a globally bounded solu-
tion. The next theorem provides the sufficient conditions for the existence of such
solution in terms of the coefficients, in the case when A is in the divergence form.

Theorem 2.12. Assume

• D = Rd, d ≥ 3;
• the conditions of Theorem 2.3 hold;
• for some σ0 > 0, we have |σ(u)| ≤ σ0, for all u ∈ Bρ1 ;
• there exists Ψ ∈ L1(Rd)∩L∞(Rd) such that |f(u(·))| ≤ Ψ(·) for all u ∈ Bρ1 ;
• u(t, ·) = ϕ(t, ·), t ∈ [−h, 0], u(0, ·) = ϕ(0, x) satisfy

E
∫
Rd
|ϕ(0, x)|2 dx <∞ and E

∫
Rd

∫ 0

−h
|ϕ(θ, x)|2 dx dθ <∞.
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Then

sup
t≥0

E‖y(t)‖2Bρ <∞,

which is a sufficient condition for the boundedness in probability.

Finally, for a bounded domain D we establish the uniqueness of the stationary
solution as well as its stability. In this section, the weight ρ ≡ 1, thus

B0 := L2(D), B1 := L2(−h, 0;B0), B := B0 ×B1.

The semigroup (2.7) now satisfies the exponential estimate

‖S(t)u0‖2B0
≤ e−2λ1t‖u0‖2B0

,

where λ1 > 0 is the principle eigenvalue of −A. In a standard way, we can extend
the Q-Weiner process W (t) to t ∈ R as

W (t) =

{
W (t), t ≥ 0;

V (−t), t ≤ 0.

Here V is another Q-Weiner process, independent of W .

Definition 2.13. A B0-valued process u(t) is a mild solution of (1.1) for t ∈ R if

(1) for all t ∈ R, u(t) is Ft measurable;
(2) for all t ∈ R

E‖u(t)‖2B0
<∞;

(3) for all −∞ < t0 < t <∞ with probability 1 we have

u(t) = S(t− t0)u(t0) +

∫ t

t0

S(t− s)f(us) ds+

∫ t

t0

S(t− s)σ(us) dW (s)

Theorem 2.14. Assume the Lipschitz constant L is sufficiently small (see (4.2)
for the exact condition), then equation (1.1) has a unique solution u∗(t, x), defined
for t ∈ R, and

sup
t∈R

E‖u∗(t)‖2B <∞.

Furthermore, this solution is exponentially attractive, that is exist K, γ > 0 such
that for all t0 ∈ R and t > t0 + h, and for any other solution η(t) with η(t0) ∈ B0

and ηt0 ∈ B1 we have

E‖u(·, t)− η(·, t)‖2B ≤ Ke−γ(t−t0)E‖u(·, t0)− η(·, t0)‖2B .

3. Proofs of main results

Proof of Theorem 2.3. Let Bp,T , p ≥ 2 be the space of Ft-measurable for t ∈ [0, T ]

processes, equipped with the norm ‖Φ‖pBp,T := E
∫ T
−h ‖Φ(t, ·)‖p

Bρ0
dt. We define

ΨΦ(t, ·) := S(t)Φ(0, ·) +

∫ t

0

S(t− s)f(Φ(s+ θ, ·)) ds

+

∫ t

0

S(t− s)σ(Φ(s+ θ, ·)) dW (s)

(3.1)

for t ∈ [0, T ], and

ΨΦ(t, ·) = ϕ(t, ·), t ∈ [−h, 0], with ΨΦ(0, ·) = ϕ(0, ·).
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This way,

ΨΦ(t, ·)‖pBp,T ≤ E
∫ 0

−h
‖ϕ(t, ·)‖p

Bρ0
dt+ 3p−1E

∫ T

0

‖S(t)ϕ(0, ·)‖p
Bρ0
dt

+ 3p−1E
∫ T

0

∥∥∫ t

0

S(t− s)f(Φ(s+ θ, ·)) ds
∥∥p
Bρ0
dt

+ 3p−1E
∫ T

0

∥∥∫ t

0

S(t− s)σ(Φ(s+ θ, ·)) dW (s)
∥∥p
Bρ0
dt

≤ C1(T ) + 3p−1(I1 + I2 + I3).

It follows from (2.8) that

I1 ≤ Cpρ (T )

∫ T

0

E‖ϕ(0, ·)‖p
Bρ0
dt <∞.

Next, using the conditions (i) and (ii) for f , we have

I2 ≤ Cpρ (T )

∫ T

0

T p−1
(
E
∫ t

0

‖f(Φs, ·)‖pBρ0 ds
)
dt

≤ C2

∫ T

0

dt

∫ t

0

(
1 + E‖Φs‖pBρ1

)
ds

≤ C3 + C2

∫ T

0

∫ t

0

E
(∫ 0

−h
‖Φ(s+ θ, ·)‖2Bρ0 dθ

)p/2
ds dt

≤ C3 + C4E
∫ T

−h
‖Φ(t, ·)‖p

Bρ0
dt <∞.

(3.2)

To estimate I3, we use [9, Lemma 7.2] and (2.10). Using the definition of Hilbert-
Schmidt norm given in (2.9), we have

I3 ≤ C(p)

∫ T

0

E
(∫ t

0

‖S(t− s)σ(Φs(·))‖2L2
ds
)p/2

dt

≤ C(p)ap sup
n
‖en‖p∞

∫ T

0

E
(∫ t

0

‖S(t− s)σ(Φs(·))‖2Bρ0 ds
)p/2

dt

≤ C4 + C5

∫ T

0

∫ t

0

E‖Φs(·)‖pBρ0 ds dt <∞

(3.3)

the same way as in (3.2). Combining these estimates, we have Ψ : Bp,T → Bp,T .

We next show that Ψ is contractive. For any Φ, Φ̃ ∈ Bp,t we have

‖ΨΦ(s, ·)−ΨΦ̃(s, ·)‖pBp,T

≤ 2p−1

∫ t

0

E
∥∥∫ s

0

S(s− τ)(f(Φτ (·)− f(Φ̃τ (·)) dτ
∥∥p
Bρ0
ds

+ 2p−1

∫ t

0

E
∥∥∫ s

0

S(s− τ)(σ(Φτ (·))− σ(Φ̃τ (·)) dτ
∥∥p
Bρ0
ds

:= 2p−1(I4 + I5).

(3.4)
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I4 ≤ Cpρ (T )Lp
∫ t

0

E
(∫ s

0

‖Φτ (·)− Φ̃τ (·)‖Bρ1 dτ
)p
ds

≤ C(ρ, T, p)

∫ t

0

∫ s

0

E
(∫ 0

−h
‖Φ(τ + θ, ·)− Φ̃(τ + θ, ·)‖2Bρ0 dθ

)p/2
dτ ds

≤ C5(ρ, T, p)t2‖Φ− Φ̃‖pBp,t

(3.5)

Now from estimate (3.3), we have

I5 ≤ C(p)ap sup
n
‖en‖p∞

∫ t

0

E
(∫ s

0

‖S(s− τ)[σ(Φτ )− σ(Φ̃τ )]‖2Bρ0
)p/2

dt

≤ C6

∫ t

0

∫ s

0

E
(∫ 0

−h
‖Φ(τ + θ, ·)− Φ̃(τ + θ, ·)‖2Bρ0 dθ

)p/2
dτ ds

≤ C6(ρ, T, p, h)t2‖Φ− Φ̃‖pBp,t .

(3.6)

Consequently, for t̃ small enough, (3.5) and (3.6) imply that the map Ψ has a unique
fixed point in Bp,t̃, which is the solution of (2.11). If we consider the problem on

[0, t̃], [t̃, 2t̃], ... with C6t̃
2 < 1. Since the solution is continuous with probability 1 in

Bρ0 norm, we obtain the existence and uniqueness of the solution on [0, T ].
It remains to prove estimate (2.12). It follows from (2.11) that for any t ∈ [−h, T ]

we have

E‖u(t, ·)‖p
Bρ0
≤ 3p−1E‖S(t)ϕ(0, ·)‖p

Bρ0
+ 3p−1E

(∫ t

0

‖S(t− s)f(us)‖Bρ0 ds
)p

+ 3p−1E
∥∥∫ t

0

S(t− s)σ(us) dW (s)
∥∥p
Bρ0

≤ 3p−1Cρ(T )E‖ϕ(0, ·)‖p
Bρ0

+ 3p−1C7

∫ t

0

(1 + E‖us‖pBρ1 ) ds

+ 3p−1C8E
(∫ t

0

‖S(t− s)σ(us)‖2L2 ds
)p/2

≤ C9

(
E‖ϕ(0, ·)‖p

Bρ0
+

∫ t

0

(1 + E‖us‖pBρ1 ) ds
)
.

(3.7)

We consider two separate cases t ∈ [0, h] and t ∈ [h, T ]: If t ∈ [0, h], then

E‖ut‖pBρ1 = E
(∫ 0

−h
‖u(t+ θ, ·)‖2Bρ0 dθ

)p/2
≤ 2

p
2−1
(
E
(∫ −t
−h
‖u(s, ·)‖2Bρ0 ds

)p/2
+ E

(∫ 0

−t
‖u(s, ·)‖2Bρ0 ds

)p/2)
≤ 2

p
2−1
(
E‖ϕ(t, ·)‖p

Bρ1
+ h

p−2
p

∫ t

0

E‖u(s, ·)‖p
Bρ0
ds
)

≤ 2
p
2−1
(
E‖ϕ(t, ·)‖p

Bρ1
+ C10 sup

s∈[0,t]

E‖u(s, ·)‖p
Bρ0

)
.

(3.8)

If t ∈ [h, T ], then

E‖ut‖pBρ1 = E
(∫ 0

−h
‖u(t+ θ, ·)‖2Bρ0 dθ

)p/2
≤ C11(T ) sup

s∈[0,t]

E‖u(s)‖p
Bρ0
. (3.9)
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From (3.7)–(3.9) we have

sup
s∈[0,t]

E‖u(s, ·)‖p
Bρ0

≤ C12(T )
(
E‖ϕ(0, ·)‖p

Bρ0
+ E‖ϕ(t, ·)‖p

Bρ1
+

∫ t

0

sup
τ∈[0,s]

E‖u(τ, ·)‖p
Bρ0
ds
)
.

Estimating the last term separately, we have

sup
s∈[0,t]

E‖u(s, ·)‖p
Bρ0
≤ C13(T )[1 + E‖ϕ(0, ·)‖p

Bρ0
+ E‖ϕ(t, ·)‖p

Bρ1
].

Combining the estimates above, we obtain

E‖ut‖pBρ1 ≤ C14(T )(1 + E‖y(0)‖pBρ ,

which completes the proof. �

Proof of Theorem 2.4. By definition of y1 and y2,

sup
t∈[0,T ]

E‖y(t)− y1(t)‖2Bρ

≤ sup
t∈[0,T ]

E‖u(t, φ)− u(t, φ1)‖2Bρ0 + sup
t∈[0,T ]

E‖ut(φ)− ut(φ1)‖2Bρ1 .
(3.10)

The first term in (3.10) can be estimated as follows

sup
t∈[0,T ]

E‖u(t, φ)− u(t, φ1)‖2Bρ0 ≤ C15 sup
t∈[0,T ]

E‖φ(t)− φ1(t)‖2Bρ0 . (3.11)

As for the second term in (3.10), once again we consider separately the cases t ∈
[0, h] and t ∈ [h, T ]. Taking into account the estimate (3.11), we obtain

sup
t∈[0,T ]

E
∫ 0

−h
‖u(t+ θ, φ)− u(t+ θ, φ1)‖2Bρ0 dθ ≤ C16 sup

t∈[0,T ]

E‖φ(t)− φ1(t)‖2Bρ ,

which completes the proof. �

For the proof of Theorem 2.10, we need the following auxiliary lemmas.

Lemma 3.1. For any fixed T0 > 2h, the operator

Aϕ0 := S(T0 + θ) : Bρ̄0 → Bρ1

is a Hilbert-Schmidt operator.

Proof. By [23], there exists an orthonormal basis {hn, n ≥ 1} in Bρ0 such that
supn ‖hn‖L∞(D) < ∞. It is straightforward to verify that if {en, n ≥ 1} is an

orthonormal basis in H = L2(D), then { en
ρ̄1/2 , n ≥ 1} is an orthonormal basis in Bρ̄0 .

Therefore

‖A‖2L2

=

∞∑
i=1

‖A ei√
ρ̄
‖2Bρ1

=

∞∑
i=1

‖S(T0 + θ)
ei√
ρ̄
‖2Bρ1

=

∞∑
i=1

∫ 0

−h
dθ

∫
D

∣∣∣S(T0 + θ)
ei√
ρ̄

∣∣∣2ρ(x) dx
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=

∞∑
i=1

∫ 0

−h
dθ

∫
D

∣∣ ∫
D

G(T0 + θ, x, y)
ei(y)√
ρ̄(y)

dy
∣∣∣2ρ(x) dx

=

∫ 0

−h
dθ

∫
D

ρ(x)

∫
D

G2(T0 + θ, x, y)

ρ̄(y)
dy dx

≤
∫ 0

−h
dθ

∫
D

∫
D

ρ(x)

ρ̄(y)
C1(T0)(T0 + θ)−d exp{−2C2(T0)

|x− y|2

T0 + θ
} dy dx

≤ C17

∫ 0

−h

dθ

(T0 + θ)d/2

∫
Rd

∫
Rd

1

(T0 + θ)d/2
exp{−2C2(T0)

|x− y|2

T0 + θ
}ρ(x)

ρ̄(y)
dx dy.

But ∫
Rd

1

(T0 + θ)d/2
exp{−2C2(T0)

|x− y|2

T0 + θ
}ρ(x)

ρ(y)
dxρ(y)

≤ C(r)

∫
Rd

1

(T0 + θ)d/2
exp

{
− 2C2(T0)

|x− y|2

T0 + θ

}
(1 + |x− y|r) dxρ(y)

≤ C18(T, r)ρ(y).

Thus

‖A‖2L2 ≤ C19(T, r)

∫ 0

−h

dθ

(T0 + θ)d/2

∫
Rd

1 + |y|r̄

1 + |y|r
dy <∞,

which completes the proof. �

Corollary 3.2. Following the lines of the proof of Lemma 3.1 we can show that
S(t) is a compact operator from Bρ̄0 to Bρ0 for t > 0.

We now return to the proof of Theorem 2.10. Following the approach in [9,
Theorem 11.29], we have

u(T0)

= S(T0)ϕ(0, ·) +

∫ T0

0

S(T0 − s)f(us) ds+

∫ T0

0

S(T0 − s)σ(us) dW (s),
(3.12)

uT0
= u(T0 + θ)

= S(T0 + θ)ϕ(0, ·) +

∫ T0+θ

0

S(T0 + θ − s)f(us) ds

+

∫ T0+θ

0

S(T0 + θ − s)σ(us) dW (s).

(3.13)

The arguments in [9, Theorem 11.29] can be applied to (3.12) directly.

Lemma 3.3. For p > 2 and α ≥ 1
p , the operator

(Gαϕ)(θ) =

∫ T0+θ

0

(T0 + θ − s)α−1S(T0 + θ − s)ϕ(s) ds

is compact from Lp(0, T0;Bρ̄0) to C([−h, 0], Bρ0).

Remark 3.4. Compactness in C([−h, 0], Bρ0) implies compactness in Bρ1 .

Proof of Lemma 3.3. We denote

‖ϕ‖pLp :=

∫ T0

0

‖ϕ‖p
Bρ̄0
dt
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We will use the infinite dimensional version of Arzela-Ascoli Theorem. To this, we
need to show

(i) For any fixed θ ∈ [−h, 0] the set {Gα(ϕ)(θ), ‖ϕ‖Lp ≤ 1} is compact in Bρ0 ;
(ii) for any ε > 0 there exists δ > 0 such that if ‖ϕ‖Lp ≤ 1 such that if
‖ϕ‖Lp ≤ 1 and for all θ1, θ2 with |θ1 − θ2| ≤ δ we have

‖Gα(ϕ)(θ1)−Gα(ϕ)(θ2)‖Bρ0 < ε.

To check (i), for fixed θ ∈ [−h, 0] and 0 < ε < T0 + θ, introduce

Gεαϕ :=

∫ T0+θ−ε

0

(T0 + θ − s)α−1S(T0 + θ − s)ϕ(s) ds

= S(ε)

∫ T0+θ−ε

0

(T0 + θ − s)α−1S(T0 + θ − s− ε)ϕ(s) ds

Clearly
∫ T0+θ−ε

0
(T0 + θ − s)α−1S(T0 + θ − s− ε)ϕ(s) ds is in Bρ̄0 . Using Corollary

3.2, S(ε) is a compact operator from Bρ̄0 to Bρ0 . Then, following [9, p.227], Gεα
converges to Gα strongly as ε→ 0, hence Gα is compact and (i) follows.

To prove (ii), fix θ and r such that −h ≤ θ ≤ θ + r ≤ 0, and ‖ϕ‖Lp ≤ 1. Then

‖(Gαϕ)(θ + r)− (Gαϕ)(θ)‖Bρ0

=
∥∥∫ T0+θ+r

0

(T0 + θ + r − s)α−1S(T0 + θ + r − s)ϕ(s) ds

−
∫ T0+θ

0

(T0 + θ − s)α−1S(T0 + θ − s)ϕ(s) ds
∥∥
Bρ0

≤
∫ T0+θ

0

∥∥(T0 + θ + r − s)(α−1)S(T0 + θ + r − s)

− (T0 + θ − s)(α−1)S(T0 + θ − s)‖‖ϕ(s)
∥∥ ds

+

∫ T0+θ+r

T0+θ

‖(T0 + θ + r − s)(α−1)S(T0 + θ + r − s)ϕ(s)‖ ds

≤
(∫ T0

0

‖(r + s)α−1S(s+ r)− sα−1S(s)‖q ds
)1/q

‖ϕ‖Lp

+ C20

(∫ T0

0

s(α−1)q ds
)1/q

‖ϕ‖Lp := J1 + J2.

Direct calculations yield

J2 = C20
rα−

1
p

((α− 1)q + 1)1/q
‖ϕ‖Lp → 0 as r → 0.

We now proceed with estimating J1. Since S(t) is compact, then S(t) is strongly
continuous for t > 0 (see [24, Theorem 3.27]), hence ‖S(s + r) − S(s)‖ → 0 as
r → 0, for any s > 0. Furthermore, the integrand in J1 is bounded by 2C20s

(α−1)q.
Hence, by Dominated Convergence Theorem, J1 → 0 as r → 0, which concludes
the proof of the Lemma. �

We now complete the proof of Theorem 2.10. For any r > 0 introduce

K(r) := {(µ, ν), µ ∈ Bρ0 , ν ∈ B
ρ
1}
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such that

µ := S(T0)v + (G1ϕ)(0) + (Gαh)(0),

ν := S(T0 + θ)v + (G1ϕ)(0) + (Gαh)(0)

with ‖v‖Bρ0 ≤ r, ‖ϕ‖Lp(0,T0,B
ρ̄
0 ) ≤ r and ‖h‖Lp(0,T0,B

ρ̄
0 ) ≤ r. It follows from Lemma

3.1, Corollary 3.2 and Lemma 3.3 that K(r) is compact in Bρ.

Lemma 3.5. Under the conditions of Theorem 2.3, there is C > 0 such that for
arbitrary r > 0 and y = (x, z) ∈ Bρ̄ such that ‖y‖Bρ̄ ≤ r we have

P{(u(T0, x, z), uT0(x, z)) ∈ K(r)} ≥ 1− cr−p(1 + ‖y‖pBρ̄), (3.14)

where u(0, x, z) = x ∈ Bρ̄0 and u0(x, z) = z ∈ Bρ̄1 .

Proof. From the factorization formula [10, Thm. 5.2.5], we have

u(T0, y) = S(T0)x+ (G1f(us))(0) +
sin(απ)

π
(GαY (s))(0), (3.15)

uT0
(y) = S(T0 + θ)x+ (G1f(us))(θ) +

sin(απ)

π
(GαY (s))(θ), (3.16)

Y (s) =

∫ s

0

(s− τ)−αS(s− τ)σ(uτ ) dW (τ). (3.17)

Using Lemma 7.2 [9], we obtain

E
∫ T0

0

‖Y (s)‖p
Bρ̄0
ds

= E
∫ T0

0

‖
∫ s

0

(s− τ)−αS(s− τ)σ(uτ ) dW (τ)‖p
Bρ̄0
ds

≤ Cp,T0
E
∫ T0

0

(∫ s

0

(s− τ)−2α‖S(s− τ)σ(uτ ) ◦Q1/2‖L2(H,Bρ̄0 )

)p/2
ds

≤ C21E
∫ T0

0

(∫ s

0

(s− τ)−2α‖σ(uτ )‖2
Bρ̄0
dτ
)p/2

ds.

(3.18)

Using Hausdorff-Young’s inequality and (2.11), we have

E
∫ T0

0

‖Y (s)‖p
Bρ̄0
≤ C21

(∫ T0

0

t−2α dt
)p/2 ∫ T0

0

E‖σ(ut)‖pBρ̄0 dt

≤ C22

∫ T0

0

(1 + E‖ut‖pBρ̄1 ) dt

≤ C23(1 + ‖y‖pBρ̄).

(3.19)

In a similar way,

E
∫ T0

0

‖f(us)‖pBρ̄0 ds ≤ C23(1 + ‖y‖pBρ̄). (3.20)

Hence, if ‖y‖Bρ̄ ≤ r, ‖f(us)‖Lp(0,T0,B
ρ̄
0 ) ≤ r, and

‖σ(us)‖Lp(0,T0,B
ρ̄
0 ) ≤

πr

sin(απ)
,

then from the definition of K(r) we have (u(T0, y), uT0
(y)) ∈ K(r). Assume

‖y‖Bρ̄ ≤ r. Then

P{(u(T0, y), uT0
(y)) /∈ K(r)} ≤ P{‖f(us)‖Lp(0,T0;Bρ̄0 ) > r}+ P{‖Y (s)‖Lp(0,T0,B

ρ̄
0 )}
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≤ 2rpC23(1 + ‖y‖pBρ̄)

where we used (3.19) and (3.20). The proof is complete. �

The rest of the proof of Theorem 2.10 follows the lines of the proof of [9, Theorem
11.29].

Proof of Theorem 2.12. This proof a lot in common with the proof of [20, Theorem
1]. Let us point out the differences caused by the presence of the delay. We have

E‖y(t)‖2Bρ = E
∫
Rd
|u(t, x)|2ρ(x) dx+ E

∫ 0

−h
dθ

∫
Rd
|u(t+ θ, x)|2ρ(x) dx. (3.21)

By definition of a mild solution (2.11), we have

‖u(t, x)‖2Bρ0 ≤ 3(I1(t) + I2(t) + I3(t))

where

I1(t) =

∫
Rd

(∫
Rd
G(t, x, y)ϕ(0, y) dy

)2

ρ(x) dx,

I2(t) =

∫
Rd

(∫ t

0

∫
Rd
G(t− s, x, y)f(us(y)) dy ds

)2

ρ(x) dx,

I3(t) =

∫
Rd

(∫
Rd
G(t− s, x, y)σ(us(y)) dW (s) dy

)2

ρ(x) dx.

It follows from (2.4) that for all t ≥ 0,

EI1 ≤
∫
Rd

(∫
Rd
G(t, x, y) dy

∫
Rd
G(t, x, y)ϕ2(0, y) dy

)
ρ(x) dx

≤ C24E
∫
Rd

(∫
Rd
K(t, x− y)ϕ2(0, y) dy

)
ρ(x) dx

≤ C24‖ρ‖∞E‖ϕ(0, ·)‖2Bρ0 <∞,

where K is the heat kernel in Rd. The estimates for I2 and I3 can be estimated
along the lines of [20, Theorem 1] using the Nash-Aranson type estimates for the
kernel (2.3).

To estimate the second term in (3.21), once again we consider two cases: t ∈ [0, h]
and t ≥ h. If t ∈ [0, h], then

E‖ut‖2Bρ1 = E
∫ 0

−h
‖u(t+ θ)‖2Bρ0 dθ

≤ E
∫ 0

−h
‖u(s)‖2Bρ0 ds+ E

∫ h

0

‖u(s)‖2Bρ0 ds

≤ E‖ϕ(t, ·)‖2Bρ1 + h sup
t≥0

E‖u(t)‖2Bρ0 <∞.

Finally, if t ≥ h, then

E‖ut‖2Bρ1 = E
∫ 0

−h
‖u(t+ θ)‖2Bρ0 dθ ≤ sup

t≥0
E‖u(t)‖2Bρ0 <∞,

which completes the proof. �
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Example 3.6. Let f̄ : R→ R and σ̄ : R→ R be Lipschitz functions with Lipschitz
constants L. We define

f [ϕ] := f̄
(∫ 0

−h
ϕ(θ) dθ

)
, σ[ϕ] := σ̄

(∫ 0

−h
ϕ(θ) dθ

)
Then for all ϕ1, ϕ2 ∈ Bρ1 we have

|f [ϕ1]− f [ϕ2]| ≤ L
∫ 0

−h
|ϕ1(θ)− ϕ2(θ)| dθ.

Hence

‖f [ϕ1]− f [ϕ2]‖2Bρ0 ≤ L
2

∫
Rd

(∫ 0

−h
|ϕ1(θ)− ϕ2(θ)| dθ

)2

ρ dx ≤ L2h‖ϕ1 − ϕ2‖2Bρ1 .

Similarly,

‖σ[ϕ1]− σ[ϕ2]‖2Bρ0 ≤ L
2h‖ϕ1 − ϕ2‖2Bρ1 .

Thus f and σ are examples of Lipschits maps from Bρ1 to Bρ0 , for which the theorems
above apply.

4. Uniqueness of the invariant measure

Proof of Theorem 2.14. Let B be the class of Ft measurable B0-valued processes
ξ(t), such that

sup
t∈R

E‖ξ(t)‖2B0
<∞.

Since

sup
t∈R
‖ξ(t)‖2B ≤ (1 + h) sup

t∈R
E‖ξ(t)‖2B0

,

we follow the procedure in [20] and define the successive approximations u(0) ≡ 0
and

du(n+1) = (Au(n+1) + f(u
(n)
t )) dt+ σ(u

(n)
t ) dW (t). (4.1)

Then

sup
t∈R

E‖f(u
(n)
t )‖2B0

≤ 2‖f(0)‖2B0
+ 2L2h2 sup

t∈R
E‖u(n)(t)‖2B0

<∞.

Similarly,

sup
t∈R

E‖σ(u
(n)
t )‖2B0

<∞.

Thus by Theorem 5 [20], equation (4.1) has the unique solution u(n+1)(t) such that

sup
t∈R

E‖u(n+1)(t)‖2B0
<∞,

and therefore,

sup
t∈R

E‖u(n+1)(t)‖2B <∞.

But

sup
t∈R

E‖u(n)‖2B0
≤ (1 + h) sup

t∈R
E‖u(n)(t)‖2B0

≤ C + hL2
( 4

λ2
1

+
2a

λ1

)
sup
t∈R

E‖u(n−1)‖2B0
.

Hence for

hL2
( 4

λ2
1

+
2a

λ1

)
< 1 (4.2)
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in a similar way to [20] we can argue that the sequence is in fact Cauchy, and there
exists a unique u∗(t) such that

sup
t∈R

E‖u∗(t)‖B <∞

and

sup
t∈R

E‖un(t)− u∗(t)‖2B → 0, n→∞.

Furthermore, we can argue that u∗ satisfies

u∗(t) = S(t− t0)u∗(t0) +

∫ t

t0

S(t− t0)f(u∗s) ds+

∫ t

t0

S(t− s)σ(u∗s) dW (s). (4.3)

Consider any other solution (4.3) such that η(t0) is Ft0 -measurable, and E‖η(t0)‖2B <
∞. Here ηt0 = ϕ(θ, x) is defined on [−h, 0]. Let us show that the solution η con-
verges to u∗ exponentially. Since we are interested in the behavior of the solutions
for large t, suppose t > t0 + h. Then t+ θ > t0 and η(t) is defined via the formula
(4.3). Hence

E‖u∗(t)− η(t)‖2B0

≤ 3e−λ1(t−t0)E‖u∗(t0)− η(t0)‖2B0
+ 3

L2

λ1

∫ t

t0

e−λ1(t−s)E‖u∗s − ηs‖2B1
ds

+ 3L2a

∫ t

t0

e−λ1(t−s)E‖u∗s − ηs‖2B1
ds

= 3e−λ1(t−t0)E‖u∗(t0)− η(t0)‖2B0

+ 3
(L2

λ1
+ L2a

)∫ t

t0

e−λ1(t−s)E‖u∗s − ηs‖2B1
ds.

In addition,

E‖u∗t − ηt‖2B1
=

∫ 0

−h
E‖u∗(t+ θ)− η(t+ θ)‖2B0

dθ

+ 3

∫ 0

−h
e−λ1(t+θ−t0)E‖u∗(t0)− η(t0)‖2B0

dθ

+ 3

∫ 0

−h

(L2

λ1

∫ t+θ

t0

e−λ1(t+θ−s)E‖u∗s − ηs‖2B1
ds
)
dθ

+ 3

∫ 0

−h

(
L2a

∫ t+θ

t0

e−λ1(t+θ−s)E‖u∗s − ηs‖2B1
ds
)
dθ.

However,

e−λ1(t+θ−s) ≤ e−λ1(t−s) · eλ1h,

thus

E‖u∗t − ηt‖2B1
≤ 3heλ1he−λ1(t−t0)E‖u∗(t0)− η(t0)‖2B0

+ 3eλ1hh
(L2

λ1
+ L2a

)∫ t

t0

e−λ1(t−s)E‖u∗s − ηs‖2B1
ds.

Altogether,

E‖u∗(t)− η(t)‖2B ≤ (3eλ1hh+ 3)e−λ1(t−t0)E‖u∗(t0)− η(t0)‖2B
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+ (3 + 3heλ1h)
(L2

λ1
+ L2a

)∫ t

t0

e−λ1(t−s)E‖u∗(s)− η(s)‖2B ds.

Therefore, if

(3 + 3heλ1h)
(L2

λ1
+ L2a

)
:= γ0L

2 < λ1 (4.4)

we have

E‖u∗(t)− η(t)‖2B ≤ (3eλ1hh+ 3)e(γ0L
2−λ1)(t−t0)E‖u∗(t0)− η(t0)‖2B .

Then the existence and uniqueness of invariant measure can be established in the
same manner as in [20]. �

5. Conclusions

In summary, we completed the analysis of the long time behavior of nonlinear
stochastic functional-differential equations in Hilbert spaces is several steps. In
Theorem 2.3 and Theorem 2.4 we establish the existence and uniqueness of mild
solutions, as well as their continuous dependence on the initial data. Next, in
Theorem 2.12 we obtain a priory, uniform in time bounds for these solutions in
the appropriate Hilbert spaces, which were further used to deduce the main result,
namely, the existence of invariant measure, in Theorem 2.10. Furthermore, in
Theorem 2.14 we exploit the further properties of the problem, which enable us to
deduce the exponential stability and thus the uniqueness of invariant measures.
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