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STABILIZATION OF SEMILINEAR WAVE EQUATIONS WITH

TIME-DEPENDENT VARIABLE COEFFICIENTS AND MEMORY

SHENG-JIE LI, SHUGEN CHAI

Abstract. In this article, we study the stabilization of semilinear wave equa-
tions with time-dependent variable coefficients and memory in the nonlinear

boundary feedback. We obtain the energy decay rate of the solution by an

equivalent energy approach in the framework of Riemannian geometry.

1. Introduction

Let Ω ⊂ Rn (n ≥ 2) be an open bounded domain with a smooth boundary Γ
of class C2. We assume Γ = Γ0 ∪ Γ1 with Γ0 6= ∅, where Γ0 and Γ1 are closed
and disjoint. We consider semilinear wave equations with time-dependent variable
coefficients and memory on the boundary:

utt(x, t) + µ(t)Au(x, t) + h(∇u) + f(u) = 0, (x, t) ∈ Ω× (0,+∞),

u(x, t) = 0, (x, t) ∈ Γ0 × (0,+∞),

µ(t)
∂u

∂νA
(x, t) +

∫ t

0

g(t− s)us(x, s) ds+ l(ut) = 0, (x, t) ∈ Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where

Au = − divA(x)∇u = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
, x ∈ Rn. (1.2)

A(x) = (aij(x)) (i, j = 1, 2, . . . , n) is a symmetric and positive matrix with the
functions aij = aji ∈ C∞(Rn) satisfying

n∑
i,j=1

aij(x)ξiξj ≥ λ
n∑
i=1

ξ2
i , ∀x ∈ Ω, 0 6= ξ = (ξ1, ξ2, . . . , ξn)T ∈ Rn, (1.3)

for some positive constant λ. ν = (ν1, ν2, . . . , νn) be the unit normal vector of Γ
pointing toward the exterior of Ω, νA = Aν, ∂u

∂νA
=
∑n
i=1 aij

∂u
∂xj

νi. µ : (0,+∞)→
(0,+∞) is a continuous non-increasing function. f, l : R → R and h : Rn → R are
continuous nonlinear functions satisfying some hypotheses (see (H3)–(H5) below).
g : [0,+∞)→ (0,+∞) is a C2-function.
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The stabilization of wave equations has been widely investigated; wee [2, 12, 13,
19, 30] and their references. For the constant coefficient case (aij = δij , µ(t) = 1)
and g(t) = 0, a classical semilinear wave equation

utt −∆u+ h(∇u) + f(u) = 0, (x, t) ∈ Ω× (0,+∞),

u = 0, (x, t) ∈ Γ0 × (0,+∞),

∂u

∂ν
+ l(ut) = 0, (x, t) ∈ Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

(1.4)

was considered in [1, 7]. The existence of strong (and weak) solution and uniform
stabilization of the system (1.4) were established.

Variable-coefficients wave equations are mathematical models arisen in solid me-
chanics, electromagnetics, fluid flow in porous media, etc. In the case of variable
coefficients, the main tool is the Riemannian geometry method which was intro-
duced by Yao [28] to obtain boundary exact controllability for the wave equation
in the form

utt −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= 0, (x, t) ∈ Ω× (0, T ).

This method was applied to achieve the controllability and stabilization of PDEs
with variable coefficients in [6, 9, 20, 21]. In 2009, Guo and Shao [8] considered the
semilinear wave equation with variable coefficients

utt −∆gu+ h(∇u) + f(u) = 0, (x, t) ∈ Ω× (0,+∞). (1.5)

This was done under the nonlinear boundary feedback

∂u

∂µ
+ l(ut) = 0, (x, t) ∈ Γ1 × (0,+∞),

where ∆g is the Beltrami-Laplace operator of Riemannian metric g. Here, µ is
the normal vector field on Γ in terms of Riemannian metric g. The existence of
both strong and weak solutions to (1.5) was proven by Faedo-Galerkin method
and denseness argument. The exponential stability of this equation was obtained
by introducing an equivalent energy functional and using the energy multiplier
method on Riemannian manifold.

Variable coefficients depend not only on space but also on time. In 2019, Liu [15]
dealt with the boundary exact controllability for the wave equation with variable
coefficients in time and space

utt − µ(t)

n∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= 0, (x, t) ∈ Ω× (0, T ),

which was subject to Dirichlet or Neumann boundary controls. In 2021, Ha [10]
explored the time-dependent variable coefficients wave equation with damping and
supercritical source terms

utt + µ(t)Au+ g(ut) = |u|ρu, (x, t) ∈ Ω× (0,+∞),

where ρ is a constant. He proved the existence of solutions and energy decay rate.
When waves propagate in viscous and elastic materials, some properties of the

materials might change. Meanwhile, the state at each moment would be affected
by the previous state in the propagation, that is called the memory effect. Many
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papers have studied the viscoelastic wave equations, see [3, 4, 17, 18, 22]. In 2004,
Chai and Guo [5] established the boundary stabilization of wave equations with
variable coefficients and memory

utt(x, t)− divA(x)∇u(x, t) = 0, (x, t) ∈ Ω× (0,+∞),

u(x, t) = 0, (x, t) ∈ Γ0 × (0,+∞),

∂u

∂νA
(x, t) +

∫ t

0

g(t− s, x)us(x, s) ds+ a(x)l(ut) = 0, (x, t) ∈ Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

by Riemannian geometry method and sharp trace regularity. In 2009, Park and Ha
[24] considered energy decay for non-dissipative distributed systems with source
terms

utt(x, t)−∆u(x, t) + h(∇u) = |u|ρu, (x, t) ∈ Ω× (0,+∞).

And it had the nonlinear boundary condition

∂u

∂νA
(x, t) +

∫ t

0

g(t− s, x)us(x, s) ds+ a(x)l(ut) = 0, (x, t) ∈ Γ1 × (0,+∞).

In 2010, Wu et al. [25] showed the exponential decay of energy for the system

utt(x, t)− divA(x)∇u(x, t) + f(u) = 0, (x, t) ∈ Ω× (0,+∞),

u(x, t) = 0, (x, t) ∈ Γ0 × (0,+∞),

∂u

∂νA
(x, t) = −

∫ t

0

g(t− s, x)us(x, s) ds− l(ut), (x, t) ∈ Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

In 2018, the stabilization of a wave equation with variable coefficients and internal
memory in an open bounded domain

utt +Au+ a(x)
(
µ1ut(x, t) + µ2

∫ +∞

0

g(s)ut(x, t− s) ds
)

= 0,

for (x, t) ∈ Ω × (0,+∞) was considered by Ning and Yang in [23]. Later, some
scholars studied the energy decay rate of wave systems with variable coefficients
combining the memory boundary condition and acoustic boundary condition, see
Jeong et al. [11], Liu [16] and Wu et al. [26].

Motivated by the above work, we explore semilinear wave equations with time-
dependent variable coefficients and memory on the boundary. Compared with pre-
vious articles on this subject, the highlights of this article are the time-dependent
variable coefficients in the principal part and nonlinear terms with the memory
boundary condition. Such a mathematical model can more accurately reflect the
actual situations of wave propagation in materials.

In this article, we study the stabilization of system (1.1) by equivalent energy
approach and Riemannian geometry method. The Riemannian method is a power-
ful tool to deal with variable coefficients PDEs. Several multiplier identities, which
have been built for constant coefficient wave equations (see Lions [14]), are general-
ized to the variable coefficients case by geometric multiplier identities subject to a
different geometric condition. Besides that, it is interesting that some factors cause
the energy to be non-dissipative in the system (1.1), however, the energy decays
exponentially.
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This article is organized as follows. In Section 2, we present some notations
needed for our work and state the main result. In Section 3, we show the energy
decay rate.

2. Preliminaries and main results

In this section, we introduce some notation and assumptions that will be used
in the following content. All definitions and notations related with Riemannian
geometry are standard and classical in the [27].

A couple (Rn, g) represents a Riemannian manifold with metric g. G(x) =
(gij(x)) = A−1(x), x ∈ Rn, where A(x) is defined in (1.2). For each x ∈ Rn, we
denote the inner product and norm with Riemannian metric g over the tangent
space Rnx = Rn as

g(X,Y ) = 〈X,Y 〉g =

n∑
i,j=1

gij(x)αiβj , |X|g = 〈X,X〉1/2g ,

∀X =

n∑
i=1

αi
∂

∂xi
, Y =

n∑
i=1

βi
∂

∂xi
∈ Rnx .

We define the usual dot product and norm in Euclidean space Rn by

X · Y =

n∑
i=1

αiβi, |X| = 〈X,X〉1/2, ∀X,Y ∈ Rnx .

And the divergence of X in Euclidean metric is

divX =

n∑
i=1

∂αi(x)

∂xi
, ∀x ∈ Rn.

We denote the Levi-Civita connection in Riemannian metric g by D. Let H
be a vector field on (Rn, g), then the covariant differential DH of H determines a
bilinear form on Rnx × Rnx , defined by

DH(X,Y ) = g(DYH,X) = 〈DYH,X〉g, ∀X,Y ∈ Rnx ,

where DYH is covariant derivative of the vector field H with respect to Y . If
f ∈ C1(Rn), we denote gradients of f by ∇ and ∇g in Euclidean metric and in
Riemannian metric g, respectively. It follows from [28, Lemma 2.1] that

∇gf =

n∑
i=1

( n∑
j=1

aij(x)
∂f

∂xj

) ∂

∂xi
,

|∇gf |2g =

n∑
i,j=1

aij(x)
∂f

∂xi

∂f

∂xj
.

It is easy to verify that

∇gf = A(x)∇f,
and via the Riesz representation theorem, we have

X(f) = 〈∇gf,X〉g,
where X is any vector field on Riemannian manifold (Rn, g). For more details, we
refer to [28, 29].

To obtain the stabilization of problem (1.1), we assume the following hypotheses:
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(H1) There exists a vector field H on Riemannian manifold (Rn, g) such that

DH(X,X) ≥ σ|X|2g, ∀x ∈ Ω, X ∈ Rnx , (2.1)

for some constant σ > 0. The divergence of H satisfies

divH >
r

r − 1
σ, ∀x ∈ Ω, (2.2)

where r is given in (2.7). Futhermore, we suppose that the vector field H
satisfies

H · ν ≤ 0, on Γ0, (2.3)

H · ν ≥ δ > 0, on Γ1, (2.4)

where δ is a constant.
(H2) The function µ ∈ C1 (0,+∞) is non-increasing and satisfies

µ(t) ≥ µ0 > 0, ∀t > 0, (2.5)

where µ0 is a constant.
(H3) f : R→ R is a C1-function deriving from a potential:

F (s) :=

∫ s

0

f(τ)dτ ≥ 0, ∀s ∈ R, (2.6)

and satisfies

|f(s)| ≤ b1|s|ρ + b2, |f ′(s)| ≤ b3|s|ρ−1 + b4,

where bi (i = 1, 2, 3, 4) are positive constants and the parameter ρ satisfies

1 ≤ ρ ≤

{
2, n ≤ 3,
n
n−2 , n ≥ 4.

Also F and f have the following relationship:

2rF (s) ≤ sf(s), ∀s ∈ R, for some constant r > 1. (2.7)

Example. A function satisfying (H3) is given in [8] as

f(s) = γ|s|ρ−1s, for some constants γ > 0, 1 ≤ ρ ≤

{
2, n ≤ 3,
n
n−2 , n ≥ 4.

(H4) h : Rn → R is a C1-function and there exist two constants β > 0 and L > 0
such that

|h(ξ)| ≤ β
√
λ|ξ|, ∀ξ ∈ Rn, (2.8)

|∇h(ξ)| ≤ L, ∀ξ ∈ Rn. (2.9)

Here,

β < min
{ √

λσµ0

4M + 2R(CΩ + 1)
,
εC2

C1

}
, (2.10)

where ε is from (3.18). The constants involved in (2.10) can be found in
the text, and we do not repeat them here.

(H5) l : R → R is a non-decreasing C1-function and there exist two positive
constants c1 and c2 such that

c1|s|2 ≤ l(s)s ≤ c2|s|2, ∀s ∈ R. (2.11)
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(H6) g : [0,+∞)→ (0,+∞) is a non-increasing C2-function satisfying g(0) > 0,
and there exist constants ζ1, ζ2 > 0 such that

g′(t) ≤ −ζ1g(t), ∀t ≥ 0, (2.12)

g′′(t) ≥ −ζ2g′(t), ∀t ≥ 0. (2.13)

We denote

g ◦ u(t) :=

∫ t

0

g(t− s)|u(x, t)− u(x, s)|2ds. (2.14)

We define the energy corresponding to the solution of problem (1.1) by

E(t) :=
1

2

∫
Ω

u2
t dx+

1

2
µ(t)

∫
Ω

|∇gu|2g dx+

∫
Ω

F (u) dx− 1

2

∫
Γ1

g′ ◦ u(t) dΓ

+
1

2
g(t)

∫
Γ1

|u(t)− u0|2 dΓ,

(2.15)

and denote

E0(t) :=
1

2

∫
Ω

u2
t dx+

1

2
µ(t)

∫
Ω

|∇gu|2g dx+

∫
Ω

F (u) dx. (2.16)

Set

H1
Γ0

(Ω) = {u ∈ H1(Ω), u|Γ0
= 0} and V = H2(Ω) ∩H1

Γ0
(Ω).

Proposition 2.1 (Well-posedness). Let us assume (H1)-(H6), and let the initial
values (u0, u1) ∈ V × V satisfy the compatibility condition

µ(0)
∂u0

∂νA
+ l(u1) = 0, on Γ1 .

Then problem (1.1) admits a unique solution u such that

u ∈ L∞(0,∞;V ), ut ∈ L∞(0,∞;H1
Γ0

(Ω)), utt ∈ L∞(0,∞;L∞(Ω)).

Moreover, if (u0, u1) ∈ H1
Γ0

(Ω) × L2(Ω), then problem (1.1) possesses at least a
weak solution in the class

u ∈ C([0,∞);H1
Γ0

(Ω)) ∩ C1([0,∞);L2(Ω)).

The above proposition can be proved using the Faedo-Galerkin method and a
denseness argument (see [8] for details). We omit it here.

Theorem 2.2. Let u be a solution to problem (1.1). Suppose that (H1)–(H6) hold.
Then, the energy E(t) associated with (1.1) decays exponentially. That is to say,
there exist two positive constants γ and ω independent of initial values such that

E(t) ≤ γE(0)e−ωt, ∀t ≥ 0. (2.17)

3. Proof of main result

Lemma 3.1 ([28, 29]). Let u, v ∈ C1(Ω) and H be a vector field on (Rn, g). Then,
the following formulae hold:

(i) divergence theorem:

div(uH) = udivH +H(u), (3.1)∫
Ω

divH dx =

∫
Γ

H · ν dΓ. (3.2)
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(ii) Green’s formula:∫
Ω

vAu dx =

∫
Ω

〈∇gu,∇gv〉g dx−
∫

Γ

v
∂u

∂νA
dΓ. (3.3)

(iii)

〈∇gu,∇g (H(u))〉g = DH(∇gu,∇gu) +
1

2
div(|∇gu|2gH)− 1

2
|∇gu|2g divH. (3.4)

To simplify computations, we integrate by parts using the boundary condition
on Γ1 of problem (1.1). This means∫ t

0

g(t− s)us(x, s) ds = g(t− s)u(x, s)
∣∣t
0

+

∫ t

0

g′(t− s)u(x, s) ds

= g(0)u(x, t)− g(t)u(x, 0) +

∫ t

0

g′(t− s) (u(x, s)− u(x, t)) ds

+ u(x, t)

∫ t

0

g′(t− s) ds

=

∫ t

0

g′(t− s) (u(x, s)− u(x, t)) ds+ g(t) (u(x, t)− u0(x)) .

Thus, problem (1.1) is transformed into the problem

utt(x, t) + µ(t)Au(x, t) + h(∇u) + f(u) = 0, (x, t) ∈ Ω× (0,+∞),

u(x, t) = 0, (x, t) ∈ Γ0 × (0,+∞),

µ(t)
∂u

∂νA
(x, t) +

∫ t

0

g′(t− s) (u(x, s)− u(x, t)) ds

+ g(t) (u(x, t)− u0(x)) + l(ut) = 0, (x, t) ∈ Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(3.5)

Proposition 3.2. Under hypotheses (H1)–(H6), the energy (2.15) associated with
system (1.1) satisfies

d

dt
E(t) ≤ βC1E(t)− c1

∫
Γ1

u2
t dΓ− 1

2

∫
Γ1

g′′ ◦ u(t) dΓ

+
1

2
g′(t)

∫
Γ1

|u(t)− u0|2 dΓ,

(3.6)

where β and c1 are defined in (2.8) and (2.11), C1 > 0 is a constant.

Proof. Differentiating the energy E(t) in system (3.5) induces

d

dt
E(t) =

∫
Ω

ututt dx+ µ(t)

∫
Ω

〈∇gu,∇gut〉g dx+
1

2
µ′(t)

∫
Ω

|∇gu|2g dx

+

∫
Ω

f(u)ut dx−
1

2

∫
Γ1

g′′ ◦ u(t) dΓ + g(t)

∫
Γ1

ut(t)(u(t)− u0) dΓ

+
1

2
g′(t)

∫
Γ1

|u(t)− u0|2 dΓ−
∫

Γ1

∫ t

0

g′(t− s)ut(t)(u(t)− u(s)) ds dΓ

=

∫
Ω

ututt dx+ µ(t)

∫
Ω

utAu dx+

∫
Ω

f(u)ut dx+
1

2
µ′(t)

∫
Ω

|∇gu|2g dx

+ µ(t)

∫
Γ1

∂u

∂νA
ut dΓ− 1

2

∫
Γ1

g′′ ◦ u(t) dΓ + g(t)

∫
Γ1

ut(t)(u(t)− u0) dΓ
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+
1

2
g′(t)

∫
Γ1

|u(t)− u0|2 dΓ−
∫

Γ1

∫ t

0

g′(t− s)ut(t)(u(t)− u(s)) ds dΓ

= −
∫

Ω

h(∇u)ut dx−
∫

Γ1

l(ut)ut dΓ− 1

2

∫
Γ1

g′′ ◦ u(t) dΓ

+
1

2
g′(t)

∫
Γ1

|u(t)− u0|2 dΓ +
1

2
µ′(t)

∫
Ω

|∇gu|2g dx.

In terms of (1.3), (2.5) and (2.8), we have

−
∫

Ω

h(∇u)ut dx ≤
β

2

∫
Ω

u2
t dx+

β

2µ0
µ(t)

∫
Ω

|∇gu|2g dx.

The monotonicity of µ(t) and (2.11) lead to

d

dt
E(t) ≤ β

2

∫
Ω

u2
t dx+

β

2µ0
µ(t)

∫
Ω

|∇gu|2g dx− c1
∫

Γ1

u2
t dΓ− 1

2

∫
Γ1

g′′ ◦ u(t) dΓ

+
1

2
g′(t)

∫
Γ1

|u(t)− u0|2 dΓ

≤ βC1E(t)− c1
∫

Γ1

u2
t dΓ− 1

2

∫
Γ1

g′′ ◦ u(t) dΓ +
1

2
g′(t)

∫
Γ1

|u(t)− u0|2 dΓ,

where C1 = max{1, 1
µ0
} > 0. �

Suppose that H is a vector field on Ω, we construct a functional

P (t) :=

∫
Ω

ut

(
H(u) +

divH − σ
2

u
)
dx, (3.7)

where the vector field H and the constant σ satisfy (2.1) and (2.2).

Remark 3.3. Here, H(u) = H · ∇u, where u is a continuous and differentiable
function. We can see [28, 29] for more details regarding the existence and examples
of vector field H. If aij = δij in (1.2), we choose H = x − x0 for fixed x0 ∈ Rn.
The inequality (2.1) can take the equal sign and σ = 1.

Proposition 3.4. Under hypotheses (H1)–(H6). If β in (2.8) conforms to (2.10),
the functional P (t) satisfies

d

dt
P (t) ≤ −C2E0(t)− 2C3

∫
Γ1

g′ ◦ u(t) dΓ + C3g(t)

∫
Γ1

|u(t)− u0|2 dΓ

+
(M

2
+ C4

) ∫
Γ1

u2
t dΓ,

(3.8)

where E0(t) is defined in (2.16), C2, C3, C4,M are the positive constants indepen-
dent of initial values.

Proof. Direct calculations yield

d

dt
P (t)

=

∫
Ω

ut

(
H(ut) +

divH − σ
2

ut

)
dx+

∫
Ω

utt

(
H(u) +

divH − σ
2

u
)
dx

=

∫
Ω

ut

(
H(ut) +

divH − σ
2

ut

)
dx− µ(t)

∫
Ω

Au
(
H(u) +

divH − σ
2

u
)
dx
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−
∫

Ω

h(∇u)
(
H(u) +

divH − σ
2

u
)
dx−

∫
Ω

f(u)
(
H(u) +

divH − σ
2

u
)
dx

:= I1 + I2 + I3 + I4,

where

I1 :=

∫
Ω

ut

(
H(ut) +

divH − σ
2

ut

)
dx,

I2 := −µ(t)

∫
Ω

Au
(
H(u) +

divH − σ
2

u
)
dx,

I3 := −
∫

Ω

h(∇u)
(
H(u) +

divH − σ
2

u
)
dx,

I4 := −
∫

Ω

f(u)
(
H(u) +

divH − σ
2

u
)
dx.

Now, we estimate Ii (i = 1, 2, 3, 4), respectively. Set M = supx∈Ω |H|. Using the
formulae (3.1) and (3.2), we obtain

I1 =
1

2

∫
Ω

H(u2
t ) dx+

∫
Ω

divH − σ
2

u2
t dx

=

∫
Ω

(1

2
div(u2

tH)− 1

2
u2
t divH

)
dx+

∫
Ω

divH − σ
2

u2
t dx

=
1

2

∫
Γ

u2
tH · ν dΓ− σ

2

∫
Ω

u2
t dx

≤ M

2

∫
Γ1

u2
t dΓ− σ

2

∫
Ω

u2
t dx.

(3.9)

Next, we estimate I2. Since u|Γ0
= 0, it follows that

∂u

∂νA
H(u) = |∇gu|2gH · ν.

This together with (2.1) and (3.4) yields

I2 = µ(t)

∫
Ω

divA(x)∇u
(
H(u) +

divH − σ
2

u
)
dx

= µ(t)

∫
Γ

∂u

∂νA
H(u) dΓ− µ(t)

∫
Ω

〈∇gu,∇gH(u)〉g dx

+ µ(t)

∫
Γ

divH − σ
2

∂u

∂νA
u dΓ− µ(t)

∫
Ω

divH − σ
2

|∇gu|2g dx

= µ(t)

∫
Γ0

|∇gu|2gH · ν dΓ + µ(t)

∫
Γ1

( ∂u

∂νA
H(u) +

divH − σ
2

∂u

∂νA
u
)
dΓ

− µ(t)

∫
Ω

DH(∇gu,∇gu) dx− 1

2
µ(t)

∫
Ω

div
(
|∇gu|2gH

)
dx

+
1

2
µ(t)

∫
Ω

|∇gu|2g divH dx− µ(t)

∫
Ω

divH − σ
2

|∇gu|2g dx

≤ µ(t)

∫
Γ1

( ∂u

∂νA
H(u) +

divH − σ
2

∂u

∂νA
u− 1

2
|∇gu|2gH · ν

)
dΓ

− σ

2
µ(t)

∫
Ω

|∇gu|2g dx.

(3.10)
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Let R = supx∈Ω(divH − σ)/2. Using the Cauchy inequality with η = λσ
4C̃ΩR

> 0

and the trace theorem∫
Γ1

|u|2 dΓ ≤ C̃Ω

∫
Ω

|∇u|2 dx ≤ C̃Ω

λ

∫
Ω

|∇gu|2g dx, (3.11)

for some constant C̃Ω > 0 depending on Ω under condition (1.3), we have

µ(t)

∫
Γ1

( ∂u

∂νA
H(u) +

divH − σ
2

∂u

∂νA
u− 1

2
|∇gu|2gH · ν

)
dΓ

≤ µ(t)

∫
Γ1

(δ
2
|∇gu|2g +

M2

2δλ

∣∣ ∂u
∂νA

∣∣2 +
R

4η

∣∣ ∂u
∂νA

∣∣2 +Rηu2 − δ

2
|∇gu|2g

)
dΓ

≤
(M2

2δλ
+
C̃ΩR

2

λσ

)
µ(t)

∫
Γ1

∣∣ ∂u
∂νA

∣∣2 dΓ +
σ

4
µ(t)

∫
Ω

|∇gu|2g dx,

where δ > 0 is from (2.4). On the other hand, in light of the Cauchy inequality,
Hölder inequality, trace theorem (3.11), and (2.11), we deduce that

µ(t)

∫
Γ1

∣∣ ∂u
∂νA

∣∣2 dΓ

≤ 1

µ0

∫
Γ1

∣∣µ(t)
∂u

∂νA

∣∣2 dΓ

=
1

µ0

∫
Γ1

∣∣∣− ∫ t

0

g′(t− s) (u(s)− u(t)) ds− g(t)(u(t)− u0)− l(ut)
∣∣∣2 dΓ

≤ 3

µ0

∫
Γ1

∫ t

0

−g′(t− s) ds
∫ t

0

−g′(t− s)|u(s)− u(t)|2 ds dΓ

+
3

µ0

∫
Γ1

g2(t)|u(t)− u0|2 dΓ +
3

µ0

∫
Γ1

l2(ut) dΓ

≤ −6g(0)

µ0

∫
Γ1

g′ ◦ u(t) dΓ +
3g(0)

µ0
g(t)

∫
Γ1

|u(t)− u0|2 dΓ +
3c22
µ0

∫
Γ1

u2
t dΓ.

Then

µ(t)

∫
Γ1

( ∂u

∂νA
H(u) +

divH − σ
2

∂u

∂νA
u− 1

2
|∇gu|2gH · ν

)
dΓ

≤ −2C3

∫
Γ1

g′ ◦ u(t) dΓ + C3g(t)

∫
Γ1

|u(t)− u0|2 dΓ + C4

∫
Γ1

u2
t dΓ

+
σ

4
µ(t)

∫
Ω

|∇gu|2g dx,

(3.12)

where C3 = 3M2g(0)
2δλµ0

+ 3C̃ΩR
2g(0)

λσµ0
> 0, C4 =

3M2c22
2δλµ0

+
3C̃ΩR

2c22
λσµ0

> 0. Substituting

(3.12) into (3.10), we arrive at

I2 ≤ −
σ

4
µ(t)

∫
Ω

|∇gu|2g dx− 2C3

∫
Γ1

g′ ◦ u(t) dΓ + C3g(t)

∫
Γ1

|u(t)− u0|2 dΓ

+ C4

∫
Γ1

u2
t dΓ.

(3.13)
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We estimate I3 by the Cauchy-Schwarz inequality and Poincaré inequality under
conditions (H4) and (1.3),∫

Ω

u2 dx ≤ CΩ

∫
Ω

|∇u|2 dx ≤ CΩ

λ

∫
Ω

|∇gu|2g dx, (3.14)

where CΩ > 0 is the Poincaré constant depending on Ω. This implies

I3 ≤ β
√
λM

∫
Ω

|∇u|2 dx+ β
√
λR

∫
Ω

|∇u||u| dx

≤ βM√
λµ0

µ(t)

∫
Ω

|∇gu|2g dx+
βR

2
√
λµ0

µ(t)

∫
Ω

|∇gu|2g dx+
β
√
λR

2

∫
Ω

u2 dx

≤ β (2M +R(CΩ + 1))

2
√
λµ0

µ(t)

∫
Ω

|∇gu|2g dx.

(3.15)

Now we consider I4. Because u|Γ0
= 0, we deduce that F (u) = 0 on Γ0. By

(H1), (H3), and formulae in Lemma 3.1, we have

I4 = −
∫

Ω

H (F (u)) dx−
∫

Ω

divH − σ
2

f(u)u dx

≤ −
∫

Ω

div (F (u)H) dx+

∫
Ω

F (u) divH dx− 2r

∫
Ω

divH − σ
2

F (u) dx

= −
∫

Γ1

F (u)H · ν dΓ−
∫

Ω

[(r − 1) divH − rσ]F (u) dx

≤ −C5

∫
Ω

F (u) dx,

(3.16)

where C5 = infx∈Ω[(r − 1) divH − rσ] > 0.
Using (3.9), (3.13), (3.15), and (3.16), we have

d

dt
P (t) ≤ −σ

2

∫
Ω

u2
t dx−

(σ
4
− β (2M +R(CΩ + 1))

2
√
λµ0

)
µ(t)

∫
Ω

|∇gu|2g dx

− C5

∫
Ω

F (u) dx− 2C3

∫
Γ1

g′ ◦ u(t) dΓ + C3g(t)

∫
Γ1

|u(t)− u0|2 dΓ

+
(M

2
+ C4

) ∫
Γ1

u2
t dΓ

≤ −C2E0(t)− 2C3

∫
Γ1

g′ ◦ u(t) dΓ + C3g(t)

∫
Γ1

|u(t)− u0|2 dΓ

+
(M

2
+ C4

) ∫
Γ1

u2
t dΓ,

where C2 = min
{
σ
2 −

β(2M+R(CΩ+1))√
λµ0

, C5

}
> 0. �

Let us introduce a new energy functional,

Eε(t) := E(t) + εP (t). (3.17)

Here, ε is a suitable small positive constant satisfying

ε < min
{ 2c1
M + 2C4

,
ζ2

C2 + 4C3
,

ζ1
C2 + 2C3

}
. (3.18)
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Through calculations we obtain

ε−1|Eε(t)− E(t)| = |P (t)| =
∣∣∣ ∫

Ω

ut

(
H(u) +

divH − σ
2

u
)∣∣∣

≤ 1

2

∫
Ω

u2
t dx+

M2

2

∫
Ω

|∇u|2 dx+
1

2

∫
Ω

u2
t dx+

R2

2

∫
Ω

u2 dx

≤
∫

Ω

u2
t dx+

M2 +R2CΩ

2λµ0
µ(t)

∫
Ω

|∇gu|2g dx

≤ cE(t),

where c = max
{

2, M2+R2CΩ

λµ0

}
> 0. We show that Eε(t) and E(t) are equivalent.

Next, we prove the main theorem.

Proof of Theorem 2.2. It follows from estimates (3.6), (3.8) and applying (2.12),
(2.13), that

d

dt
Eε(t) =

d

dt
E(t) + ε

d

dt
P (t)

≤ βC1E(t)− c1
∫

Γ1

u2
t dΓ− 1

2

∫
Γ1

g′′ ◦ u(t) dΓ

+
1

2
g′(t)

∫
Γ1

|u(t)− u0|2 dΓ− εC2E0(t)− 2εC3

∫
Γ1

g′ ◦ u(t) dΓ

+ εC3g(t)

∫
Γ1

|u(t)− u0|2 dΓ + ε
(M

2
+ C4

) ∫
Γ1

u2
t dΓ

≤ βC1E(t)− c1
∫

Γ1

u2
t dΓ +

ζ2
2

∫
Γ1

g′ ◦ u(t) dΓ

− ζ1
2
g(t)

∫
Γ1

|u(t)− u0|2 dΓ− εC2E(t)− εC2

2

∫
Γ1

g′ ◦ u(t) dΓ

+
εC2

2
g(t)

∫
Γ1

|u(t)− u0|2 dΓ− 2εC3

∫
Γ1

g′ ◦ u(t) dΓ

+ εC3g(t)

∫
Γ1

|u(t)− u0|2 dΓ + ε
(M

2
+ C4

) ∫
Γ1

u2
t dΓ

≤ −(εC2 − βC1)E(t)−
[
c1 − ε

(M
2

+ C4

)] ∫
Γ1

u2
t dΓ

+
[ζ2

2
− ε

(
C2

2
+ 2C3

)]∫
Γ1

g′ ◦ u(t) dΓ

−
[ζ1

2
− ε
(C2

2
+ C3

)]
g(t)

∫
Γ1

|u(t)− u0|2 dΓ,

where the positive constants ζ1, ζ2 are given in (2.12) and (2.13). From (2.10)

and (3.18), we know that εC2 − βC1, c1 − ε(M2 + C4), ζ2
2 − ε(C2

2 + 2C3), and
ζ1
2 −ε(

C2

2 +C3) > 0. Then, recalling that g is a positive and non-increasing function,
and noting the equivalence of Eε(t) and E(t), we can find a positive constant ω
such that

d

dt
E(t) ≤ −ωE(t). (3.19)

Hence, we obtain the desired inequality (2.17) and complete the proof. �
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