Oumarou Asso, Mabel Cuesta, Jonas Tele Doumate, Liamidi Leadi:
Abstract:
Let \(\Omega\) be a bounded regular domain of \( \mathbb{R}^N\), \(N\geqslant 1\),
\(p\in (1,+\infty)\), and \( s\in (0,1) \). We consider the eigenvalue problem
$$\displaylines{
(-\Delta_p)^s u + V|u|^{p-2}u= \lambda m(x)|u|^{p-2}u \quad\hbox{in } \Omega \cr
u=0 \quad \hbox{in } \mathbb{R}^N \setminus \Omega,
}$$
where the potential V and the weight m are possibly unbounded and are
sign-changing. After establishing the boundedness and regularity of
weak solutions, we prove that this problem admits principal eigenvalues under
certain conditions. We also show that when such eigenvalues exist,
they are simple and isolated in the spectrum of the operator.
Submitted July 20, 2022. Published June 19, 2023.
Math Subject Classifications: 35J70, 35P30.
Key Words: Fractional p-Laplacian; fractional Sobolev space; indefinite weight;
principal eigenvalues.
DOI: https://doi.org/10.58997/ejde.2023.38
Show me the PDF file (472 KB), TEX file for this article.
Oumarou Asso Institut de Mathématiques et de Sciences Physiques Université d'Abomey-Calavi, 613 Porto-Novo, Bénin email: oumarou.asso@imsp-uac.org | |
Mabel Cuesta Université du Littoral Côte d'Opale (ULCO), LMPA 50 rue F. Buisson 62220 Calais, France email: mabel.cuesta@univ-littoral.fr | |
Jonas Têlé Doumatè Département de Mathématiques Faculté des Sciences et Techniques Institut de Mathématiques et de Sciences Physiques Université d'Abomey-Calavi, Benin email: jonas.doumate@fast.uac.bj | |
Liamidi Leadi Département de Mathématiques Faculté des Sciences et Techniques Institut de Mathématiques et de Sciences Physiques Université d'Abomey-Calavi, Benin email: leadiare@imsp-uac.org |
Return to the EJDE web page