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VISCOSITY SOLUTIONS TO THE INFINITY LAPLACIAN

EQUATION WITH LOWER TERMS

CUICUI LI, FANG LIU

Abstract. We establish the existence and uniqueness of viscosity solutions
to the Dirichlet problem

∆h
∞u = f(x, u), in Ω,

u = q, on ∂Ω,

where q ∈ C(∂Ω), h > 1, ∆h
∞u = |Du|h−3∆∞u. The operator ∆∞u =

〈D2uDu,Du〉 is the infinity Laplacian which is strongly degenerate, quasilinear
and it is associated with the absolutely minimizing Lipschitz extension. When

the nonhomogeneous term f(x, t) is non-decreasing in t, we prove the existence

of the viscosity solution via Perron’s method. We also establish a uniqueness
result based on the perturbation analysis of the viscosity solutions. If the

function f(x, t) is nonpositive (nonnegative) and non-increasing in t, we also

give the existence of viscosity solutions by an iteration technique under the
condition that the domain has small diameter. Furthermore, we investigate the

existence and uniqueness of viscosity solutions to the boundary-value problem
with singularity

∆h
∞u = −b(x)g(u), in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

when the domain satisfies some regular condition. We analyze asymptotic

estimates for the viscosity solution near the boundary.

1. Introduction

In this manuscript, we investigate the following inhomogeneous problem for q ∈
C(∂Ω),

∆h
∞u = f(x, u), in Ω,

u = q, on ∂Ω,
(1.1)

where ∆h
∞ is strongly degenerate and is defined as

∆h
∞u := |Du|h−3〈D2uDu,Du〉 = |Du|h−3

n∑
i,j=1

uxiuxjuxixj , h > 1.

2020 Mathematics Subject Classification. 35J60, 35J70, 35K55, 35P30.
Key words and phrases. Infinity Laplacian; existence; uniqueness; asymptotic estimate;

viscosity solution.
©2023. This work is licensed under a CC BY 4.0 license.

Submitted January 21, 2023. Published June 25, 2023.

1



2 C. LI, F. LIU EJDE-2023/42

Throughout this article, Ω is assumed to be a bounded domain of Rn, n ≥ 2.
Note that the operator ∆h

∞ is not in divergence form. Hence, the solution is usu-
ally understood in the viscosity frame introduced by Crandall and Lions [23], and
Crandall, Evans and Lions [20].

For the special case h = 3, the operator ∆h
∞ is the infinity Laplacian which is

often denoted by ∆∞u =
∑n
i,j=1 uxiuxjuxixj . The operator ∆∞ was motivated in

studying the absolutely minimizing Lipschitz extension (AMLE) by Aronsson [2, 3,
4, 5] in 1960’s. Jensen [25] showed the uniqueness of AMLE and the equivalence
of the AMLE and infinity harmonic functions(viscosity solutions to ∆∞u = 0).
Crandall, Gunnarsson and Wang [21] studied the uniqueness of infinity harmonic
functions in an unbounded domain. Crandall, Evans and Gariepy[19] showed that
infinity harmonic functions enjoy comparison property with linear cones. Aronsson,
Crandall and Juutinen [6] gave a systematic treatment of the theory of AMLEs.
For more results of AMLEs, see for example Armstrong and Smart [1], Barron,
Jensen and Wang [1, 9], Barles and Busca [7], Barron, Evans and Jensen [8], Evans
[24], Yu [44] and the references therein.

For h = 1, ∆h
∞u is the 1-homogeneous normalized ∞-Laplacian operator,

∆N
∞u := |Du|−2〈D2uDu,Du〉.

There is a “tug-of-war” game when approaching the normalized infinity Laplacian
Dirichlet problem which was first introduced by Peres et al. [40] based on a proba-
bility view,

∆N
∞u(x) = H(x), in Ω,

u(x) = q(x), on ∂Ω.
(1.2)

The continuum value function of the game is proven to satisfy (1.2) and ∆N
∞ is also

called game infinity Laplacian (denoted also by ∆G
∞). Lu and Wang [34] studied

the well-posedness of (1.2) from the partial differential equation perspective. Note
that the uniqueness is valid if the nonlinear source term H(x) > 0(< 0). A counter-
example was shown in [37, 40] that the uniqueness does not hold if H(x) changes its
sign. One can see [36] for more uniqueness results of infinity Laplacian equations.
We direct the reader to [27, 28, 29, 30, 31, 33, 36, 37, 39, 42, 44] and the references
therein for the ∞-Laplacian operator.

Lu and Wang [35] proved that the inhomogeneous Dirichlet problem

∆∞u = H(x), in Ω,

u = q, on ∂Ω

has a unique viscosity solution u ∈ C(Ω) under the assumptions that the continuous
function H has one sign. They also proved the comparison property with special
functions for the viscosity solutions which extended the result of Crandall, Evans
and Gariepy [19]. Bhattacharya and Mohammed [10] studied the existence and
nonexistence of viscosity solutions to the Dirichlet problem

∆∞u = f(x, u), in Ω,

u = g, on ∂Ω
(1.3)

for f with the sign and the monotonicity restrictions and g ∈ C(∂Ω). In [11], they
further removed the sign and the monotonicity restrictions and gave the existence
result from the general structure condition on f . Bhattacharya and Mohammed [10]
also investigated the bounds and boundary behavior of viscosity solutions to the
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problem (1.3). For the general boundary behavior of the viscosity solution to (1.3),
one can see [38]. In [32], the existence of the viscosity solutions of the following
inhomogeneous problem was obtained,

∆h
∞u = f(x), in Ω,

u = g, on ∂Ω.

And for 1 ≤ h ≤ 3, under suitable conditions on α and f , Biswas and Vo [14]
studied the existence, nonexistence and uniqueness of positive viscosity solutions
to the Dirichlet problem of the equation

∆h
∞u+ α(x) · ∇u|∇u|h−1 + f(x, u) = 0.

Bhattacharya and Mohammed [10] otained bounds and boundary behavior of
viscosity solutions to the problem

−∆∞u = f(u), in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

when f ∈ C1((0,∞), (0,∞)), limt→0+ f(t) =∞ and f is decreasing on (0,∞). By
Karamata regular variation theory, Mi [38] gave the boundary asymptotic estimate
of solutions to the problem

−∆∞u = b(x)f(u), in Ω,

u > 0, in Ω,

u = 0, on ∂Ω

for a wide range of the functions b(x). Biset and Mohammed [13] established the
existence of ground state solutions to the problem

−∆∞u = λf(x, u), in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

in a bounded domain and in the whole Euclidean space. The study is based on
the subsolution/supersolution method and the existence of the principal Dirichlet
eigenfunctions.

Inspired by the previous work, we study the Dirichlet problem (1.1). The h-
degree operators ∆h

∞, besides their wide applications, are not only degenerate,
singular for 1 < h < 3, but also not in divergence form and have no variational
structure. They constitute a class of operators with particular properties. Our
main results are summarized as follows.

Theorem 1.1. Let q ∈ C(∂Ω). Suppose that f(x, t) ∈ C(Ω × R) is non-negative
and non-decreasing in t and supx∈Ω f(x, t) <∞ for each t ∈ R. Then (1.1) admits
a viscosity solution. Furthermore, if f is positive, the solution is unique.

Remark 1.2. Similar results are still valid if the conditions of f are replaced by
f non-positive and infx∈Ω f(x, t) > −∞ for each t ∈ R.

The existence of viscosity solutions is proved via Perron’s method. The key is
to construct a suitable viscosity subsolution. Thanks to the “good” structure of
the operator ∆h

∞, we can use the cone functions to construct the subsolution. The
uniqueness can be derived from the comparison principle. We remark that the
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uniqueness is still open when the function f(x, t) is nonpositive or nonnegative.
In fact, when f(x, t) does not depend on the second variable t and h = 1, Peres,
Schramm, Sheffield and Wilson [40] construct a counterexample to show that the
uniqueness does not hold if f changes its sign. For h = 3, Lu and Wang [35] gave
a counterexample to show the uniqueness is invalid if the function f(x) changes its
sign.

With Theorem 1.1 in hand, when f(x, t) is non-increasing in the variable t, we
can also prove the existence of the viscosity solution to the Dirichlet problem (1.1)
if the domain is of small diameter. Note that the small diameter condition (1.4)
guarantees the existence of a viscosity subsolution and then we can use an iteration
technique to establish the following existence result.

Theorem 1.3. Let q ∈ C(∂Ω) and `1 := inf∂Ω q. Suppose that f(x, t) ∈ C(Ω×R)
is positive, non-increasing in t and supx∈Ω f(x, t) <∞ for each t ∈ R. If Ω satisfies
the condition

diam(Ω) ≤
(`1 − λ0

γC

)h/(h+1)

, (1.4)

where γ = 1
h+1h

(h+1)/h, C ≥ (supΩ f(x, λ0))1/h > 0, and λ0 < `1, then (1.1) has a

viscosity solution u ∈ C(Ω).

Remark 1.4. Similarly, let `2 = sup∂Ω q and suppose that f(x, t) ∈ C(Ω × R) is
negative, non-increasing in t and infx∈Ω f(x, t) > −∞ for each t ∈ R. If Ω satisfies

diam(Ω) ≤
(
− `2 + λ0

γC

)h/(h+1)

,

where γ = 1
h+1h

(h+1)/h, C > 0 and λ0 < −`2, then (1.1) has a viscosity solution

u ∈ C(Ω).

For h = 3, Bhattacharya and Mohammed [10] constructed a counter-example
in the appendix to show that the uniqueness of the viscosity solution does not
generally hold when f(x, t) is non-increasing in t.

To establish the existence of viscosity solutions to (1.1), a difficulty with respect
to the degenerate operators is the lack of existence of barriers. Thanks to the
particular structure of ∆h

∞, we can construct ‘good’ barriers and use the standard
Perron’s method to get the existence of the approximate solutions. Due to the
strong degeneracy of the operator ∆h

∞, we combine the iteration method, Theorem
1.1 and stability method to establish Theorem 1.3. The key idea is that the existence
of an appropriate viscosity subsolution leads to the existence of a viscosity solution.

Furthermore, we investigate the singular Dirichlet problem

∆h
∞u = −b(x)g(u), in Ω,

u > 0, in Ω,

u = 0, on ∂Ω.

(1.5)

We first construct a viscosity supersolution of (1.5) and then prove the existence
of viscosity solutions to (1.5) using the comparison principle and the stability of
viscosity solutions.

Theorem 1.5. Let b ∈ C(Ω) be a positive function such that supx∈Ω b(x) <∞. If
g ∈ C1((0,∞), (0,∞)) is non-increasing with limt→0+ g(t) = ∞, then the problem
(1.5) has a unique viscosity solution.
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When the bounded domain Ω has smooth boundary, we also investigate the
boundary behavior of viscosity solutions to (1.5). The functions b(·) and g(·) satisfy
the following conditions:

(H1) b ∈ C(Ω) is positive in Ω.
(H2) For some δ0 > 0, there exist a function k ∈ Λ and a positive constant ` ∈ R

such that

lim
d(x)→0

b(x)

kh+1(d(x))
= `, (1.6)

where Λ is the set of all positive, non-decreasing functions k ∈ C1(0, δ0)
satisfying

lim
t→0+

(K(t)

k(t)

)′
= τ, where K(t) =

∫ t

0

k(s)ds, (1.7)

and τ is a positive constant.
(H3) g ∈ C1((0,∞), (0,∞)), limt→0+ g(t) =∞ and g is decreasing on (0,∞).
(H4) There exists γ > 1 such that

lim
t→0+

g′(t)t

g(t)
= −γ. (1.8)

Theorem 1.6. Let Ω ⊂ Rn be a bounded domain with smooth boundary. Suppose
(H1)–(H4) are satisfied, and φ is the solution to the problem∫ φ(t)

0

ds

(g(s))1/h
= t, ∀t > 0.

If τ(γ + h) > h+ 1, then for the unique viscosity solution u to (1.5), then it holds

lim
d(x)→0

u(x)

φ(K(h+1)/h(d(x)))
= ξ0,

with

ξ0 =
( hh`(h+ γ)

(h+ 1)h(h+ γ)τ − h− 1

)1/(h+γ)

.

To obtain the existence of the viscosity solutions of the singular problem (1.5), we
adopt the truncation method to deal with the singularity of the equation and then
use the stability and compactness methods. Based on the comparison principle, the
uniqueness result of the viscosity solution follows immediately.

One should notice that the distance function is a solution of ∆h
∞v = 0 near the

boundary. Therefore, we can perturb the distance function to analyze the asymp-
totic behavior near the boundary of viscosity solutions to the singular boundary
value problem (1.5). The idea is based on Karamata regular variation theory which
was first introduced by Ĉırstea and Rǎdulescu in stochastic process to study the
boundary behavior and uniqueness of solutions to boundary blow-up elliptic prob-
lems. And a series of rich and significant information about the boundary behavior
of solutions was obtained based on such theory [15, 16, 17]. Note that, unlike
the case h = 1, the operator ∆h

∞ is quasi-linear even in one-dimension for h > 1.
Therefore, we must make subtle analysis.

This article is organized in the following way. In Section 2, we prove the compar-
ison principle to ∆h

∞u = f(x, u), based on the double variables method. In Section
3, by Perron’s method and the comparison principle, we prove the existence and
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uniqueness of viscosity solutions to (1.1) when f(x, t) is non-decreasing in t. In Sec-
tion 4, when f(x, t) is non-increasing in t, we use an iteration technique to obtain
the existence of the viscosity solution to (1.1) in domains with small diameter. In
Section 5, we establish the existence and boundary behavior of viscosity solutions
to (1.5).

2. Comparison principles

In this section, we give the comparison principles via the perturbation method
for the equation

∆h
∞u = f(x, u), in Ω. (2.1)

Since ∆h
∞ has no divergence structure, we define the viscosity solution by the semi-

continuous extension. See for example [22, 30, 32, 34]. For Fh : S× (Rn\{0})→ R
and Fh(M,p) := |p|h−3(Mp) · p, where S denotes the set of n × n real symmetric
matrices, (2.1) can be rewritten as

Fh(D2u,Du) = f(x, u), x ∈ Ω.

Since h > 1, we have limp→0 Fh(M,p) = 0 for all M ∈ S. Therefore, we define the
following continuous extension of Fh,

Fh(M,p) :=

{
Fh(M,p), if p 6= 0,

0, if p = 0.

Now we state the definition of viscosity solutions to the equation (2.1).

Definition 2.1. Suppose that u : Ω→ R is an upper semi-continuous function. If,
for any x0 ∈ Ω and ϕ ∈ C2(Ω) such that u(x0) = ϕ(x0) and u(x) ≤ ϕ(x) for all
x ∈ Ω near x0, it holds

Fh
(
D2ϕ(x0), Dϕ(x0)

)
≥ f(x0, ϕ(x0)),

then we say that u is a viscosity subsolution to (2.1) in Ω.
Similarly, suppose that u : Ω → R is a lower semi-continuous function. If, for

any x0 ∈ Ω and ϕ ∈ C2(Ω) such that u(x0) = ϕ(x0) and u(x) ≥ ϕ(x) for all x ∈ Ω
near x0, it holds

Fh
(
D2ϕ(x0), Dϕ(x0)

)
≤ f(x0, ϕ(x0)),

then we say that u is a viscosity supersolution to (2.1) in Ω.
A function u ∈ C(Ω) is called a viscosity solution to (2.1) in Ω if it is both a

viscosity subsolution and viscosity supersolution of (2.1).

Next, we state the strong maximum principle for infinity subharmonic functions
(see for example [6, 18]).

Lemma 2.2. Assume u ∈ C(Ω) is infinity subharmonic (∆∞u ≥ 0). Then u
attains its maximum only on the boundary ∂Ω unless u is a constant.

We also need the comparison principle which was established by Li and Liu [26].

Lemma 2.3. Suppose that f(x, t) ∈ C(Ω × R) is positive (negative) and non-
decreasing in t. Assume that u ∈ C(Ω) and v ∈ C(Ω) satisfy

∆h
∞u ≥ f(x, u), x ∈ Ω,

∆h
∞v ≤ f(x, v), x ∈ Ω

respectively, in the viscosity sense. If u ≤ v on ∂Ω, then u ≤ v in Ω.
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Now we present a comparison result applicable to singular problems and prove
it by a truncating function.

Theorem 2.4. Suppose that f(x, t) ∈ C(Ω×(0,∞)) is negative and non-decreasing
in t with limt→0+ f(x, t) = −∞. If u, v ∈ C(Ω) are positive functions satisfying
∆h
∞u ≥ f(x, u) and ∆h

∞v ≤ f(x, v) in Ω, respectively, then u ≤ v on ∂Ω implies
u ≤ v in Ω.

Proof. We set
vε := v + ε, ε > 0.

We claim that u ≤ vε in Ω for each ε > 0. We assume to the contrary. Set

Ω0 := {x ∈ Ω : u(x) > vε(x)}.
Since u ≤ vε on ∂Ω, we see that Ω0 is compactly contained in Ω and u = vε on
∂Ω0. Moreover,

∆h
∞vε = ∆h

∞v ≤ f(x, v) ≤ f(x, vε) in Ω0,

where we have used that f(x, t) is non-decreasing in t.
We define

ϑ(x, t) =

{
f(x, t), t ≥ ε,
f(x, ε), t < ε.

Since u > vε ≥ ε in Ω0, we have

∆h
∞u ≥ ϑ(x, u) and ∆h

∞vε ≤ ϑ(x, vε), in Ω0.

Since u = vε on ∂Ω0, by Lemma 2.3, we have u ≤ vε in Ω0, which is a contradiction.
�

3. Existence when f(x, t) non-decreasing in t

We first construct the viscosity subsolution to the problem (1.1), and then es-
tablish the existence result using Perron’s method and the Lipschitz continuity of
infinity harmonic functions.

Lemma 3.1. Let q ∈ C(∂Ω). Suppose that f(x, t) ∈ C(Ω×R,R) is non-decreasing
in t. If f satisfies the condition

sup
x∈Ω

f(x, t) <∞, for each t ∈ R, (3.1)

then (1.1) has a viscosity subsolution u ∈ C(Ω).

Proof. Let
`1 := inf

x∈∂Ω
q(x). (3.2)

Choose a positive constant M1 such that Mh
1 ≥ supx∈Ω f(x, `1) and then a constant

d1 such that

d1 ≤
`1
M1
− γ(diam(Ω))(h+1)/h, where γ =

1

h+ 1
h(h+1)/h.

We define
u(x) := M1(γ|x− z|(h+1)/h + d1), z ∈ ∂Ω.

Obviously, u ∈ C(Ω). One can verify that ∆h
∞u = Mh

1 ≥ f(x, `1) and u ≤ `1 in Ω
due to the choice of M1 and d1. Since f(x, t) is non-decreasing in t, we obtain

∆h
∞u ≥ f(x, u), in Ω,
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u ≤ q, on ∂Ω.

That is, u is a desired viscosity subsolution to (1.1). �

We denote

ℵ+ := {ũ ∈ C(Ω) : ∆h
∞ũ ≥ f(x, ũ) in Ω, and ũ ≤ q on ∂Ω}.

Lemma 3.1 shows that the set ℵ+ is non-empty. We define the function

u(x) := sup
α∈ℵ+

ũ(x), x ∈ Ω. (3.3)

Remark 3.2. If f is non-negative and `2 := supx∈∂Ω q(x), the comparison princi-
ple, Lemma 2.2, implies ũ ≤ `2 for all ũ ∈ ℵ+. Then the function defined in (3.3)
satisfies ũ ≤ u ≤ `2 in Ω.

Remark 3.3. If f is non-negative and ũ is a viscosity subsolution of (2.1), then ũ
is locally Lipschitz continuous in Ω (see for example [18, Lemma 4.1]). Hence, we
have the function u defined in (3.3) is locally Lipschitz continuous.

Proof of Theorem 1.1. The existence is an application of standard Perron’s method.
Since f is non-negative and supx∈Ω f(x, t) < ∞, Lemma 3.1 implies that problem

(1.1) has a viscosity subsolution u ∈ C(Ω).
Indeed, the function u defined in (3.3) is a viscosity solution of (1.1).

Step 1. We first claim that u is a viscosity subsolution of (1.1). Indeed, we
have u is locally Lipschitz continuous in Ω by Remark 3.3. For every x0 ∈ Ω and
ϕ ∈ C2(Ω), if u− ϕ has a local maximum at x0, i.e. for some small 1 > ρ > 0,

u(x)− ϕ(x) ≤ u(x0)− ϕ(x0), x ∈ Bρ(x0) ⊆ Ω,

we want to show that
∆h
∞ϕ(x0) ≥ f(x0, u(x0)).

Since u(x0) = supũ∈ℵ+ ũ(x0), we take a sequence {ũk} in ℵ+ such that

u(x0)− ũk(x0) < δ/k,

for each positive integer k and 0 < δ < ρ2(h+1). Then

ũk(x)− ϕ(x) ≤ u(x)− ϕ(x) ≤ u(x0)− ϕ(x0) ≤ ũk(x0)− ϕ(x0) + δ/k, (3.4)

for x ∈ Bρ(x0). Therefore,

ũk(x)− ϕ(x)− δ/k ≤ ũk(x0)− ϕ(x0), x ∈ Bρ(x0),

which yields

ũk(x)− [ϕ(x) + |x− x0|2(h+1)] < ũk(x)− ϕ(x)− δ/k ≤ ũk(x0)− ϕ(x0), (3.5)

for x ∈ Bρ(x0) \B(ρ/k)1/[2(h+1)](x0). Let

ϕ0(x) := ϕ(x) + |x− x0|2(h+1).

Then inequality (3.5) implies that the maximum of the function ũk(x) − ϕ0(x) in
Bρ(x0), occurs at some xk ∈ B(ρ/k)1/[2(h+1)](x0). In particular,

ũk(x0)− ϕ(x0) = ũk(x0)− ϕ0(x0) ≤ ũk(xk)− ϕ0(xk). (3.6)

Since xk 6= x0, a direct calculation yields

Dϕ0(xk) = Dϕ(xk) + 2(h+ 1)|xk − x0|2h+1 xk − x0

|xk − x0|
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and

D2ϕ0(xk) = D2ϕ(xk) + 2(h+ 1)(2h+ 1)|xk − x0|2h
xk − x0

|xk − x0|
⊗ xk − x0

|xk − x0|

+ 2(h+ 1)|xk − x0|2h+1
( I

|xk − x0|
− (xk − x0)⊗ (xk − x0)

|xk − x0|3
)
,

and one can check that

∆h
∞ϕ0(xk) = ∆h

∞ϕ(xk) +O((δ/k)1/(2h)) ≥ f(xk, ũ(xk)). (3.7)

Combining (3.4) and (3.6), we have

ũk(x0)− ϕ(x0) ≤ ũk(xk)− [ϕ(xk) + |xk − x0|2(h+1)]

≤ u(x0)− ϕ(x0)− |xk − x0|2(h+1).
(3.8)

Inequality (3.8) shows that limk→∞ ũk(xk) = u(x0). Letting k → ∞ in (3.7), we
have

∆h
∞ϕ(x0) ≥ f(x0, u(x0)).

Step 2. Next we show that u ∈ C(Ω) and u = q on ∂Ω. We first prove that u = q
on ∂Ω. By the definition of u, we have u ≤ q on ∂Ω. Then we just have to prove
u ≥ q on ∂Ω. Let z ∈ ∂Ω and ε > 0 be arbitrary. Since q ∈ C(∂Ω), there exists
some r > 0 such that

|q(x)− q(z)| < ε, x ∈ ∂Ω ∩Br(z).
Set

U(x) := q(z)− ε− C

h+ 1
[M (h+1)/h − (M − h|x− z|)(h+1)/h],

where M > h(diam(Ω)), ` := sup∂Ω |q|, and C > 0 is chosen large enough such that

C

h+ 1
[M (h+1)/h − (M − hr)(h+1)/h] ≥ 2` and Ch ≥ sup

x∈Ω
f(x, `).

Direct computations show that

∆h
∞U(x) = Ch ≥ f(x, `), in Ω,

U(x) ≤ q(z)− ε, in Bdiam(Ω)(z).

Hence
U(x) ≤ q(z)− ε ≤ q(x), in ∂Ω ∩Br(z).

On ∂Ω \Br(z), we have

U(x) ≤ q(z)− ε− C

h+ 1
[M (h+1)/h − (M − hr)(h+1)/h] ≤ q(z)− 2` ≤ −` ≤ q(x).

Then, U ≤ q on ∂Ω. In particular, U ≤ ` in Ω. Since f is non-decreasing,

∆h
∞U(x) ≥ f(x, `) ≥ f(x, U), in Ω.

Therefore, U ∈ ℵ+. Consequently, we have U ≤ u in Ω. In particular, U(z) =
q(z) − ε ≤ u(z). Since ε > 0 is arbitrary, we obtain q(z) ≤ u(z). Hence, we have
u = q on ∂Ω.

Now we show that u ∈ C(Ω). Let z ∈ ∂Ω and Br(z) be as above, and {xk} a
sequence in Ω such that limk→∞ xk = z. Since the lower semi-continuity of u, we
have

lim inf
k→∞

u(xk) ≥ u(z) = q(z).
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Next, we show that lim supk→∞ u(xk) ≤ q(z). Let

wε(x) = q(z) + ε+ [`1 − q(z)]
|x− z|
r

, in Br(z) ∩ Ω,

where `1 is as in (3.2). Clearly, wε ∈ C(Br(z)) and wε(x) = `1 + ε on ∂Br(z) ∩ Ω.
By the selection of Br(z), we have

wε(x) ≥ q(z) + ε > q(x), ∀x ∈ ∂Ω ∩Br(z).

Direct computations show that

∆h
∞wε(x) = 0, in Ω ∩Br(z).

For any ũ ∈ ℵ+, we obtain ũ ≤ wε on ∂(Ω∩Br(z)). Since ∆h
∞ũ ≥ 0 in the viscosity

sense, by the comparison principle of infinity harmonic functions [7, 21], we have
ũ ≤ wε in Ω ∩ Br(z). Then u ≤ wε in Ω ∩ Br(z). If xk ∈ Ω ∩ Br(z) and xk → z,
then

u(z) ≤ lim inf
k→∞

u(xk) ≤ lim sup
k→∞

u(xk) ≤ lim
k→∞

wε(xk) = q(z) + ε = u(z) + ε.

Since ε > 0 is arbitrary, we have u ∈ C(Ω). Moreover, we obtain u ∈ ℵ+.

Step 3. Next, we will prove that u is a viscosity supersolution. We assume to the
contrary. Then there exist x0 ∈ Ω and ϕ ∈ C2(Ω) such that

ϕ(x0) = u(x0), u(x)− ϕ(x) ≥ 0, x ∈ Bρ(x0) ⊆ Ω,

for some ρ > 0, but

∆h
∞ϕ(x0) > f(x0, u(x0)).

Let d(x) := dist(x, ∂Ω). Since the continuity of f(x, t), we can choose 0 < ε0 <
min{1, ρ, (d(x0)/2)4(h+1)} such that

∆h
∞ϕ(x0) > f(x0, ϕ(x0) + ε), ∀0 < ε ≤ ε0. (3.9)

For 0 < ε ≤ ε0, we define

ϕε(x) := ϕ(x)−
√
ε|x− x0|2(h+1) + ε.

For x 6= x0, a direct calculation yields

Dϕε(x) = Dϕ(x)− 2(h+ 1)
√
ε|x− x0|2h+1 x− x0

|x− x0|
and

D2ϕε(x) =D2ϕ(x)− 2(h+ 1)(2h+ 1)
√
ε|x− x0|2h

x− x0

|x− x0|
⊗ x− x0

|x− x0|

− 2(h+ 1)
√
ε|x− x0|2h+1

( I

|x− x0|
− (x− x0)⊗ (x− x0)

|x− x0|3
)
.

Hence, we obtain

∆h
∞ϕε(x) = ∆h

∞ϕ(x) +O(
√
ε|x− x0|2h), as x→ x0.

Then, by (3.9), we have

∆h
∞ϕε(x0) = ∆h

∞ϕ(x0) > f(x0, ϕ(x0) + ε) = f(x0, ϕε(x0)).

We claim that there exists an ε1, with 0 < ε1 ≤ ε0, such that

∆h
∞ϕε1(x) > f(x, ϕε1(x)), ∀x ∈ Bε11/[4(h+1)](x0).
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We argue by contradiction. Then, for each ε > 0 with ε small enough, there exists
an xε ∈ Bε11/[4(h+1)](x0) such that ∆h

∞ϕε(xε) ≤ f(xε, ϕε(xε)). Since xε → x0, we
observe that

lim
ε→0

∆h
∞ϕε(xε) = ∆h

∞ϕ(x0) and lim
ε→0

f(xε, ϕε(xε)) = f(x0, ϕ(x0)).

We conclude that ∆h
∞ϕ(x0) ≤ f(x0, ϕ(x0)).

Since ϕε(x0) > u(x0), we can take 0 < s1 < ε1
1/[4(h+1)] such that u(x) < ϕε1(x)

for all x ∈ Bs1(x0). Thus, we have

u(x) < ϕε1(x), ∀x ∈ Bs1(x0),

∆h
∞ϕε1(x) > f(x, ϕε1(x)), ∀x ∈ Bε11/[4(h+1)](x0),

u(x) > ϕε1(x), ∀x ∈ Bρ(x0) \Bε11/[4(h+1)](x0).

(3.10)

We define

u∗(x) =

{
u(x), x ∈ Ω \Bε11/[4(h+1)](x0),

sup{ϕε1(x), u(x)}, x ∈ Bε11/[4(h+1)](x0).
(3.11)

It is obvious that u∗ ∈ C(Ω) is in ℵ+. However, by (3.10), we see that

u∗(x) = ϕε1(x) > u(x), x ∈ Bs1(x0),

which is impossible due to the definition of u. Thus, u is a viscosity supersolution,
and this completes the proof that u is a viscosity solution to (1.1) in Ω.

The uniqueness follows by the comparison principle, Theorem 2.4. �

Remark 3.4. If f is non-positive and infx∈Ω f(x, t) > −∞ for each t ∈ R as in

Remark 1.2, we consider f̂(x, t) := −f(x,−t). Then f̂ ∈ C(Ω × R, [0,∞)) is non-

decreasing and supx∈Ω f̂(x, t) < ∞ for each t. Therefore, the Dirichlet problem

(1.1) has a viscosity solution u with the right-hand side f̂ and boundary data −q
by Theorem (1.1).

4. Existence when f(x, t) non-increasing in t

In this section, we investigate the existence of viscosity solutions to the problem
(1.1), when f(x, t) is non-increasing in t. We first prove a stability result of the
viscosity solutions. Then under the assumption that the problem (1.1) has a vis-
cosity subsolution with f replaced by f + ε, ε > 0, we prove the existence of the
viscosity solution to (1.1). Finally, we use the iteration method and Theorem 1.1
to establish the existence of the viscosity solution to (1.1).

Lemma 4.1. Let {ξk}∞k=1 be a sequence of non-negative functions in C(Ω) such
that ξk → ξ locally uniformly in Ω for some ξ ∈ C(Ω). For each positive integer k,
let uk ∈ C(Ω) be a viscosity solution to the problem

∆h
∞uk = ξk, in Ω,

uk = q, on ∂Ω

such that u0 ≤ uk ≤ u∞ in Ω, for some functions u0 and u∞ in C(Ω), with
u0 = u∞ = q on ∂Ω. Then {uk} has a subsequence that converges locally uniformly
in Ω to a viscosity solution u ∈ C(Ω) to the problem

∆h
∞u = ξ, in Ω,

u = q, on ∂Ω.
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Proof. Set M := supΩ u∞ − infΩ u0. Clearly, we have supΩ uk − infΩ uk ≤ M , for
every k = 1, 2, · · · . Let K be any compact subset of Ω and d := dist(K, ∂Ω). We
take R > 0 such that 4R < d. Since ∆h

∞uk ≥ 0 in Ω, by [6, Lemma 2.9], we obtain

|uk(x)− uk(y)| ≤M |x− y|
R

, ∀z ∈ K, x, y ∈ BR/2(z).

By compactness, we obtain {uk} are equicontinuous in K. On taking an exhaustion
of Ω by subdomains compactly contained in Ω, we apply the standard method of
Cantor diagonalization to extract a subsequence of {uk} that converge uniformly on
compact subsets of Ω. For simplicity we will continue to denote such subsequence
by {uk}. Set

u(x) := lim
k→∞

uk(x), x ∈ Ω.

We extend this definition to the closure Ω by defining u = q on ∂Ω. By the
assumption, we have u0 ≤ u ≤ u∞ in Ω. This means that u ∈ C(Ω).

Next, we show that ∆h
∞u = ξ in the viscosity sense. Suppose that ϕ ∈ C2(Ω)

and u− ϕ has a local maximum at some x0 ∈ Ω, i.e.

u(x)− ϕ(x) ≤ u(x0)− ϕ(x0), x ∈ Br(x0) ⊆ Ω

for some r > 0. Suppose that xk is a point of maximum of

uk(x)−
(
ϕ(x) +

ε

2
|x− x0|2

)
, ε > 0, x ∈ Br(x0).

Particularly,

uk(xk)−
(
ϕ(xk) +

ε

2
|xk − x0|2

)
≥ uk(x0)− ϕ(x0). (4.1)

Since xk ∈ Br(x0), by passing to a subsequence, xk → x̂, for some x̂ ∈ Br(x0),
letting k →∞ in (4.1), we have

u(x̂)−
(
ϕ(x̂) +

ε

2
|x̂− x0|2

)
≥ u(x0)− ϕ(x0),

i.e.
ε

2
|x̂− x0|2 ≤ u(x̂)− ϕ(x̂)− (u(x0)− ϕ(x0)) ≤ 0.

Then we have x̂ = x0. Thus, xk ∈ Br/2(x0) for sufficiently large k. Since uk is a vis-

cosity subsolution and xk is a point of local maximum of uk(x)−
(
ϕ(x) + ε

2 |x− x0|2
)

in Br(x0), we have

∆h
∞ϕ(xk) +O(ε) ≥ ξk(xk). (4.2)

Taking the limit in (4.2) and recalling that ξk → ξ locally uniformly in Ω, we obtain

∆h
∞ϕ(x0) +O(ε) ≥ ξ(x0).

Letting ε → 0, we have ∆h
∞u ≥ ξ in the viscosity sense. Similarly, we can prove

that u is a viscosity supersolution. �

Now we first give an existence result under the condition that problem (1.1) has
a viscosity subsolution with f replaced by f + ε. Then we combine the iteration
method and Theorem 1.1 to establish the existence result. The idea is that the
existence of an appropriate viscosity subsolution leads to the existence of a viscosity
solution.
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Theorem 4.2. Let f(x, t) ∈ C(Ω×R) be positive, non-increasing in t, and satisfy
the condition

sup
x∈Ω

f(x, t) <∞, for each t ∈ R.

If the problem (1.1) has a viscosity subsolution with f replaced by f + ε, for some
ε > 0, then there exists a viscosity solution u ∈ C(Ω) to (1.1).

Proof. By the assumption, let η0 ∈ C(Ω) satisfy

∆h
∞η0 ≥ f(x, η0) + ε, in Ω,

η0 ≤ q, on ∂Ω.

Then we define a sequence {ηk}∞k=1 satisfying

∆h
∞ηk = f(x, ηk−1) + ε/k, in Ω,

ηk = q, on ∂Ω.

The existence of ηk is ensured by Theorem 1.1. Since ∆h
∞η1 = f(x, η0) + ε and

∆h
∞η0 ≥ f(x, η0) + ε with η0 ≤ η1 on ∂Ω, by Lemma 2.3, we have η0 ≤ η1 in Ω.

Suppose ηk−1 ≤ ηk in Ω for k ≥ 2. Then

∆h
∞ηk = f(x, ηk−1) + ε/k > f(x, ηk) + ε/(k + 1) = ∆h

∞ηk+1,

and hence Lemma 2.3 implies ηk ≤ ηk+1 in Ω. Then we have ηk ≤ ηk+1 in Ω for all
k. By Theorem 1.1, we let V ∈ C(Ω) satisfy

∆h
∞V = 0, in Ω,

V = q, on ∂Ω.

By the comparison principle of infinity harmonic functions [7, 21], we have that
ηk ≤ V in Ω for all k = 0, 1, 2, · · · . Therefore, we have

η0 ≤ η1 ≤ · · · ≤ ηk ≤ ηk+1 ≤ · · · ≤ V, in Ω.

Hence, the sequence ηk converges uniformly in Ω. Let

η(x) := lim
k→∞

ηk(x), x ∈ Ω.

It is clear that η ∈ C(Ω). We take

ξk := f(x, ηk−1) + ε/k, ξ := f(x, η).

Lemma 4.1 implies that η ∈ C(Ω) is a viscosity solution to (1.1). �

Theorem 4.2 provides us with an approach to the existence problem, but it suffers
from the shortcoming that we need a viscosity subsolution for the function f + ε,
for some ε > 0. Next we impose the condition (4.3) on the domain to remove the
assumption on the existence of the viscosity subsolution.

Lemma 4.3. Let q ∈ C(∂Ω), f be a non-increasing function that satisfies condition

sup
x∈Ω

f(x, t) <∞, for each t ∈ R.

If a bounded domain Ω satisfies

diam(Ω) ≤
(`1 − λ0

γC

)h/(h+1)

, (4.3)

where γ = 1
h+1h

(h+1)/h, λ0 < `1 := inf∂Ω q, and C ≥
(

supΩ f(x, λ0)
)1/h

, then

(1.1) has a viscosity subsolution in C(Ω).
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Proof. If f(x, t) ≡ g(x), the existence follows immediately by Theorem 1.1. Thus
we consider the inhomogeneous term depending on the variable t. We choose d
satisfying

λ0

C
≤ d ≤ `1

C
− γ(diam(Ω))(h+1)/h. (4.4)

We define

W (x) := C
(
γ|x− z|(h+1)/h + d

)
, z ∈ ∂Ω. (4.5)

Clearly W ∈ C∞(Ω) and one can verify that

∆h
∞W = Ch ≥ sup

Ω
f(x, λ0) ≥ f(x, λ0), in Ω.

With the choice of d as in (4.4), we have λ0 ≤ W ≤ `1 in Ω. Since f(x, t) is
non-increasing in t, we obtain that W satisfies

∆h
∞W ≥ f(x,W ), in Ω.

Recalling that W ≤ q on ∂Ω, we conclude that W is a viscosity subsolution of (1.1)
in Ω. �

Note that the existence of viscosity subsolution depends on the size of the domain
when f is non-increasing. Based on this point, we are ready to prove the existence
result with the iteration method and Theorem 1.1.

Proof of Theorem 1.3. Since C ≥ (supΩ f(x, λ0))1/h > 0 and Ω satisfies the condi-
tion (4.3), Theorem 4.2 implies the existence of a viscosity subsolution w defined
in (4.5) satisfying

∆h
∞W = Ch ≥ sup

Ω
f(x, λ0) > 0, in Ω,

W ≤ q, on ∂Ω,

and λ0 ≤W ≤ `1. Then we have f(x,W ) ≤ supΩ f(x, λ0) ≤ Ch. Denote u0 := W ,
and we recursively define a sequence {uk} in C(Ω) as follows for k ≥ 1. By Theorem
1.1, we let uk satisfy

∆h
∞uk = f(x, uk−1), in Ω,

uk = q, on ∂Ω.
(4.6)

By induction, we show that W ≤ uk in Ω for all k ≥ 1. Note that

∆h
∞u1 = f(x, u0) = f(x,W ) ≤ f(x, λ0) ≤ Ch.

Thus,

∆h
∞u1 ≤ Ch, in Ω,

u1 = q, on ∂Ω,

while

∆h
∞W = Ch, in Ω,

W ≤ q, on ∂Ω.

Therefore, by Lemma 2.3, we have W ≤ u1 in Ω. Suppose W ≤ uk in Ω for some
k ≥ 1. Then

∆h
∞uk+1 = f(x, uk) ≤ f(x,W ) ≤ f(x, λ0) ≤ Ch, in Ω,

uk = q, on ∂Ω.
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Lemma 2.3 again implies W ≤ uk+1 in Ω. This proves the claim.
Since λ0 ≤W ≤ uk in Ω for all k, we have

∆h
∞uk = f(x, uk−1) ≤ f(x, λ0) ≤ Ch, in Ω,

uk = q, on ∂Ω.

Let v1 ∈ C(Ω) be the viscosity solution to the problem

∆h
∞v1 = Ch, in Ω,

v1 = q, on ∂Ω.

By Lemma 2.3, we obtain uk ≥ v1 in Ω. Finally, let v2 ∈ C(Ω) satisfy

∆h
∞v2 = 0, in Ω,

v2 = q, on ∂Ω.

Since ∆h
∞uk ≥ 0 in Ω, by the comparison principle in [7, 21], we see that uk ≤ v2 in

Ω for all k. In summary, we have constructed a sequence {uk} of viscosity solutions
to (4.6) such that

v1 ≤ uk ≤ v2, in Ω,

v1 = uk = v2 = q, on ∂Ω.

Therefore, by Lemma 4.1, we can get the existence of the viscosity solution to
(1.1). �

5. Singular boundary value problem

In this section, we show the existence and the uniqueness of the viscosity so-
lution to the singular problem (1.5). Moreover, when the domain satisfies some
regular condition, we analyze the asymptotic behavior near the boundary of the
viscosity solution. We now prove that the singular problem (1.5) has a viscosity
supersolution.

Lemma 5.1. Let b ∈ C(Ω) be positive and supx∈Ω b(x) < ∞. If g belongs to
C1((0,∞), (0,∞)) is non-increasing with limt→0+ g(t) = ∞, then problem (1.5)
has a viscosity supersolution.

Proof. By Theorem 1.1, the following problem has a viscosity solution w ∈ C(Ω),

∆h
∞w = −b(x), in Ω,

w = 0, on ∂Ω.
(5.1)

We define v = η−1(w) ∈ C(Ω), where

η(t) =

∫ t

0

1
h
√
g(s)

ds, t > 0. (5.2)

Because w ∈ C(Ω), we have v ∈ C(Ω). Suppose that ϕ ∈ C2(Ω) and v − ϕ has a
local minimum at z ∈ Ω, i.e. for some small δ > 0,

v(z) = ϕ(z), v(x) ≥ ϕ(x), x ∈ Bδ(z) ⊆ Ω.

By Lemma 2.2, we have w > 0 in Ω, and then v > 0 in Ω. In particular, v(z) > 0
and we can assume that δ is small enough such that ϕ > 0 in Bδ(z). Since η is
increasing, we have

w(z) = η(ϕ(z)), w(x) ≥ η(ϕ(x)), x ∈ Bδ(z).
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Let ψ(x) := η(ϕ(x)) ∈ C2(Ω) such that w − ψ has a local minimum at z. Since w
is a viscosity solution to (5.1), we have

∆h
∞ψ(z) ≤ −b(z), (5.3)

in the viscosity sense. In Bδ(z), by a simple calculation,

∆h
∞ψ = |η′(ϕ)Dϕ|h−1

η′′(ϕ)|Dϕ|2 + |η′(ϕ)|h ∆h
∞ϕ

= − g′(ϕ)

hg(ϕ)2
|Dϕ|h+1 +

1

g(ϕ)
∆h
∞ϕ,

where we have used

η′(t) =
1

h
√
g(t)

and η′′(t) = − g′(t)

hg(t)1+1/h
.

Since g is non-increasing, we obtain

∆h
∞ψ ≥

1

g(ϕ)
∆h
∞ϕ, x ∈ Bδ(z).

From (5.3), we see that

−b(z) ≥ ∆h
∞ψ(z) ≥ 1

g(ϕ(z))
∆h
∞ϕ(z),

and then

∆h
∞ϕ(z) ≤ −b(z)g(ϕ(z)) = −b(z)g(v(z)).

Thus, problem (1.5) has a viscosity supersolution v. �

Now, we prove the existence of a solution to (1.5) though the truncation method
and the stability theory.

Proof of Theorem 1.5. For some µ > 0, let

ĝ(t) =

{
g(µ+ t), t ≥ 0,

g(µ), t < 0.

By Theorem 1.1, the problem

∆h
∞u = −b(x)ĝ(u), in Ω,

u = 0, on ∂Ω,

has a viscosity solution u. By Lemma 2.2, we have u ≥ 0. And then we actually
have

∆h
∞u = −b(x)g(u+ µ), in Ω,

u = 0, on ∂Ω.

Then for each positive integer k, the perturbed Dirichlet problem

∆h
∞λk = −b(x)g(λk + k−1), in Ω,

λk = 0, on ∂Ω,

has a viscosity solution λk. And by Lemma 2.2, we see that λk > 0 for all k in Ω.
Let w be a viscosity solution of (5.1) and v := η−1(w), where η is as in (5.2).

By Lemma 5.1, we have

∆h
∞v ≤ −b(x)g(v + k−1),
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for every k. Theorem 2.4 shows that λk ≤ v in Ω. Note that

∆h
∞λk = −b(x)g(λk + k−1),

∆h
∞λk+1 = −b(x)g(λk+1 + (k + 1)−1) ≤ −b(x)g(λk+1 + k−1),

where we have used that g is non-increasing. Theorem 2.4 implies λk ≤ λk+1 for
all k. Then one has

0 < λ1 ≤ · · ·λk ≤ λk+1 ≤ · · · ≤ v, in Ω.

Then {λk} are locally uniformly Lipschitz continuous and locally uniformly bounded.
And the limit limk→∞ λk = λ is also locally Lipschitz continuous in Ω. In Lemma
4.1, let

ξk := b(x)g(λk + k−1), ξ := b(x)g(λ), and uk := −λk.
Since λ ∈ C(Ω), we also have

lim
k→∞

ξk = b(x)g(λ),

locally uniformly, and the limit function is continuous in Ω. We set

u0 = −v, u∞ = 0, in Ω,

u0 = u∞ = 0, on ∂Ω.

Obviously, u0, u∞ ∈ C(Ω). From Lemma 4.1, we see that the problem (1.5) has a
viscosity solution λ. Finally, the uniqueness can be obtained by Theorem 2.4. �

Next, we give some definitions and properties of Karamata’s regular variation
theory which was first introduced by Karamata in 1930’s (see [15, 16, 17] and
the references therein), and then based on Karamata’s regular variation theory,
we proceed to discuss the boundary behavior of viscosity solutions to the singular
boundary value problem (1.5).

Now we recall some definitions and properties of regularly varying functions (see
[12, 41, 43]).

Definition 5.2. A positive measurable function f defined on (0, a), for some a > 0,
is called regularly varying at zero with index ρ ∈ R, written f ∈ RV Zρ, if for each
ξ > 0,

lim
s→0+

f(ξs)

f(s)
= ξ ρ. (5.4)

In particular, when ρ = 0, f is called slowly varying at zero.

Clearly, if f ∈ RV Zρ, then L(s) := f(s)/s ρ is slowly varying at zero.

Proposition 5.3 (Representation theorem). A function L is slowly varying at zero
if and only if it may be written in the form

L(s) = c(s) exp
(∫ a1

s

y(t)

t
dt
)
, s ∈ (0, a1),

for some a1 ∈ (0, a), where the functions c and y are measurable and for s → 0+,
y(s)→ 0 and c(s)→ c0, with c0 > 0.

We say that

L̂(s) = c0 exp
(∫ a1

s

y(t)

t
dt
)
, s ∈ (0, a1),
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is normalized slowly varying at zero and

f(s) = sρL̂(s), s ∈ (0, a1),

is normalized regularly varying at zero with index ρ and written f ∈ NRV Zρ.
Recall that a function f ∈ RV Zρ belongs to NRV Zρ if and only if f ∈ C1(0, a1)

for some a1 > 0 and lims→0+
sf ′(s)
f(s) = ρ.

Proposition 5.4. If functions L1, L2 are slowly varying at zero, then

(i) Lρ1 (for every ρ ∈ R), a1L1 +a2L2 (a1 ≥ 0, a2 ≥ 0 with a1 +a2 > 0), L1◦L2

(if L2(s)→∞ as s→ 0+), are also slowly varying at zero.
(ii) For every ρ > 0 and s→ 0+, sρL1(s)→ 0, s−ρL1(s)→∞.
(iii) For ρ ∈ R and s → 0+, log(L1(s))/ log s → 0, and log(sρL1(s))/ log(s) →

ρ.

Proposition 5.5 (Asymptotic behavior). If a function L is slowly varying at zero,
then for a > 0 and s→ 0+,∫ s

0

tρL(t)dt ∼= (ρ+ 1)−1s1+ρL(s), for ρ > −1,∫ a

s

tρL(t)dt ∼= (−ρ− 1)−1s1+ρL(s), for ρ < −1.

Proposition 5.6. (i) If f1 ∈ RV Zρ1 , f2 ∈ RV Zρ2 with limt→0+ f2(t) = 0,
then f1 ◦ f2 ∈ RV Zρ1ρ2 .

(ii) If f ∈ RV Zρ, then fα ∈ RV Zρα for every α ∈ R.

Now we state some important results that we can use to prove Theorem 1.6.

Lemma 5.7. Let g satisfy (H3), (H4) and φ be the solution to the problem∫ φ(t)

0

ds

(g(s))1/h
= t, ∀t > 0.

Then

(i) φ ∈ NRV Zh/(h+γ) and φ′ ∈ NRV Z−γ/(h+γ);

(ii) limt→0+
t

φ(K(h+1)/h(t))
= 0, if k ∈ Λ and τ(γ + h) > h+ 1.

Proof. By the definition of φ, we have

φ′(t) = (g ◦ φ(t))1/h, φ(t) > 0, t > 0, φ(0) = 0, (5.5)

φ′′(t) =
1

h
(g ◦ φ(t))(2−h)/h(g′ ◦ φ(t)), t > 0. (5.6)

(i) By (H4), we have g ∈ RV Z−γ . Proposition 5.6 implies g−1/h ∈ RV Zγ/h. We
define

L1(t) :=
g−1/h(t)

tγ/h
.

Then L1 is slowly varying at zero. From γ > 1 and Proposition 5.5, we see that

lim
t→0+

tg−1/h(t)∫ t
0
g−1/h(s)ds

= lim
t→0+

tL1(t)tγ/h∫ t
0
L1(s)sγ/hds

=
h+ γ

h
. (5.7)

Then

lim
t→0+

tφ′(t)

φ(t)
= lim
t→0+

t(g(φ(t)))1/h

φ(t)
= lim
s→0+

(g(s))1/h
∫ s

0
dν

(g(ν))1/h

s
=

h

h+ γ
,
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that is, φ ∈ NRV Z h
h+γ

.

From (5.5), (5.6), and (5.7), it follows that

lim
t→0+

tφ′′(t)

φ′(t)
=

1

h
lim
t→0+

(g′ ◦ φ(t))
∫ φ(t)

0
(g(u))−1/hdu

(g ◦ φ(t))(h−1)/h

=
1

h
lim
s→0+

g′(s)
∫ s

0
(g(ν))−1/hdν

(g(s))(h−1)/h

=
1

h
lim
s→0+

sg′(s)

g(s)

∫ s
0

(g(ν))−1/hdν

s(g(s))−1/h
= − γ

h+ γ
.

(ii) Since k ∈ Λ, we have

lim
t→0+

K(t)

tk(t)
= lim
t→0+

d

dt

(K(t)

k(t)

)
= τ.

And then

lim
t→0+

tk(t)

K(t)
=

1

τ
,

i.e., K ∈ NRV Z1/τ . By Proposition 5.6 (i), we have

φ ◦K(h+1)/h ∈ NRV Z h+1
τ(γ+h)

and
t

φ(K(h+1)/h(t))
∈ NRV Z τ(γ+h)−h−1

τ(γ+h)

.

Since τ(γ + h) > h+ 1, by Proposition 5.4 (ii),

lim
t→0+

t

φ(K(h+1)/h(t))
= 0. �

Proof of Theorem 1.6. We define

d(x) := dist(x, ∂Ω), Ωδ := {x ∈ Ω : d(x) < δ}.
Since Ω is a bounded domain with smooth boundary, it follows that d(x) ∈ C1(Ωδ)
for some δ > 0. Moreover, |Dd(x)| = 1 and ∆h

∞d(x) = 0 in Ωδ, in the viscosity
sense.

We set

η(t) := (ξ0 + ε)φ(K(h+1)/h(t)), t ∈ (0, δ),

u∗(x) := η(d(x)), x ∈ Ωδ.

Note thatK and φ are both increasing in their respective definition domains. There-
fore, when δ is small enough, η is increasing in (0, δ). Let ζ be the inverse of η. It
is easy to check that

ζ ′(t) =
1

η′(ζ(t))
=
(h+ 1

h
(ξ0 + ε)φ′(K(h+1)/h(ζ(t)))K1/h(ζ(t))k(ζ(t))

)−1

(5.8)

and

ζ ′′(t) = − η′′(ζ(t))

[η′(ζ(t))]3

= −
(h+ 1

h
(ξ0 + ε)φ′(K(h+1)/h(ζ(t)))K1/h(ζ(t))k(ζ(t))

)−3

ζ0,

(5.9)

where

ζ0 =
(h+ 1)2

h2
(ξ0 + ε)φ′′(K(h+1)/h(ζ(t)))K2/h(ζ(t))k2(ζ(t))
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+
h+ 1

h2
(ξ0 + ε)φ′(K(h+1)/h(ζ(t)))K(1−h)/h(ζ(t))k2(ζ(t))

+
h+ 1

h
(ξ0 + ε)φ′(K(h+1)/h(ζ(t)))K1/h(ζ(t))k′(ζ(t)).

Let ψ ∈ C2(Ωδ) and suppose u∗ − ψ has a local minimum at x0 ∈ Ωδ, i.e., u∗ ≥ ψ
in a neighborhood N of x0 and u∗(x0) = ψ(x0). Then ϕ = ζ(ψ) ∈ C2(Ωδ) and

d(x0) = ϕ(x0), d(x) ≥ ϕ(x) in N .

Since ∆h
∞d = 0 , we have ∆h

∞ϕ(x0) ≤ 0. Direct computations yield

Dϕ = ζ ′(ψ)Dψ,

D2ϕ = ζ ′′(ψ)Dψ ⊗Dψ + ζ ′(ψ)D2ψ,

∆h
∞ϕ = |Dϕ|h−3

〈
D2ϕDϕ,Dϕ

〉
= |ζ ′(ψ)|h−1|Dψ|h+1ζ ′′(ψ) + |ζ ′(ψ)|h−1ζ ′(ψ)∆h

∞ψ.

Since ∆h
∞ϕ(x0) ≤ 0 and ζ ′ > 0, we have

∆h
∞ψ(x0) ≤ −(ζ ′(ψ(x0)))−1ζ ′′(ψ(x0))|Dψ(x0)|h+1.

Noting that |Dd(x)| = 1 for all x ∈ Ωδ and d − ϕ attains a local maximum at x0,
we have

1 = |Dd(x0)| = |ζ ′(ψ(x0))Dψ(x0)|.
Then

∆h
∞ψ(x0) ≤ −|ζ ′(ψ(x0))|−h−2ζ ′′(ψ(x0)).

Combing this with (5.8) and (5.9), we obtain

∆h
∞ψ(x0)

≤
(h+ 1

h
(ξ0 + ε)

)h (
φ′(K(h+1)/h(ϕ(x0)))

)h
kh+1(ϕ(x0))

×
[h+ 1

h

φ′′(K(h+1)/h(ϕ(x0)))K(h+1)/h(ϕ(x0))

φ′(K(h+1)/h(ϕ(x0)))
+

1

h
+
K(ϕ(x0))k′(ϕ(x0))

k2(ϕ(x0))

]
.

Hence,

∆h
∞ψ(x0) + b(x0)g(u∗(x0))

≤
(h+ 1

h
(ξ0 + ε)

)h (
φ′(K(h+1)/h(d(x0)))

)h
kh+1(d(x0))A(x0),

where

A(x0) :=
h+ 1

h

φ′′
(
K(h+1)/h(d(x0))

)
K(h+1)/h(d(x0))

φ′
(
K(h+1)/h(d(x0))

) +
1

h
+
K(d(x0))k′(d(x0))

k2(d(x0))

+
(h+ 1

h
(ξ0 + ε)

)−h b(x0)

kh+1(d(x0))

g(u∗(x0))(
φ′
(
K(h+1)/h(d(x0))

))h .
Note thatK

h+1
h (d(x0))→ 0 as δ → 0. Then, by Lemma 5.7 and limt→0+

k′(t))K(t)
k2(t) =

1− τ , we have that

A(x0)→ h+ 1− (h+ γ)τ

h+ γ
+ `
( h

h+ 1

)h
(ξ0 + ε)−h−γ , δ → 0.
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Since

ξ0 =
( hh`(h+ γ)

(h+ 1)h[(h+ γ)τ − h− 1]

)1/(h+γ)

,

we have A(x0) < 0 when δ0 ∈
(
0, δ2
)

small enough. Thus

∆h
∞ψ(x0) ≤ −b(x0)g(u∗(x0)),

that is, u∗ is a viscosity supersolution of (1.5) in Ωδ0 . Similarly, we can prove that

u∗(x) = (ξ0 − ε)φ(K(h+1)/h(d(x)))

is a viscosity subsolution of (1.5) in Ωδ0 .
Let v ∈ C(Ω) be the unique viscosity solution of the problem

−∆h
∞v = 1, in Ω,

v > 0, in Ω,

v = 0, on ∂Ω.

According to [10, Theorem 7.7], there are two positive constants a and c, with
0 < a < c such that

ad(x) ≤ v(x) ≤ cd(x), d(x)→ 0. (5.10)

Let u ∈ C(Ω) be the unique viscosity solution to (1.5) and M large enough such
that

u(x) ≤ u∗(x) +Mv(x) and u∗(x) ≤ u(x) +Mv(x) on {x ∈ Ω : d(x) = δ0}.
By (H3), we see that u∗(x) +Mv(x) and u(x) +Mv(x) are also viscosity superso-
lutions of (1.5) in Ωδε . Since

u(x) = u∗(x) +Mv(x) = u(x) +Mv(x) = u∗(x) = 0, on ∂Ω,

by (H3) and Lemma 2.3, we have

u(x) ≤ u∗(x) +Mv(x), u∗(x) ≤ u(x) +Mv(x), x ∈ Ωδ0 .

Hence, for x ∈ Ωδ0 , one has

ξ0 − ε−
Mv(x)

φ(K(h+1)/h(d(x)))
≤ u(x)

φ(K(h+1)/h(d(x)))

and
u(x)

φ(K(h+1)/h(d(x)))
≤ ξ0 + ε+

Mv(x)

φ(K(h+1)/h(d(x)))
.

By Lemma 5.7 (ii) and (5.10), we have

ξ0 − ε ≤ lim inf
d(x)→0

u(x)

φ(K(h+1)/h(d(x)))
and lim sup

d(x)→0

u(x)

φ(K(h+1)/h(d(x)))
≤ ξ0 + ε.

Thus, letting ε→ 0, we obtain

lim
d(x)→0

u(x)

φ(K(h+1)/h(d(x)))
= ξ0.

�
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