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OSCILLATION CRITERIA FOR NON-CANONICAL

SECOND-ORDER NONLINEAR DELAY DIFFERENCE

EQUATIONS WITH A SUPERLINEAR NEUTRAL TERM

KUMAR S. VIDHYAA, ETHIRAJU THANDAPANI,

JEHAD ALZABUT, ABDULLAH ÖZBEKLER

Abstract. We obtain oscillation conditions for non-canonical second-order

nonlinear delay difference equations with a superlinear neutral term. To cope

with non-canonical types of equations, we propose new oscillation criteria for
the main equation when the neutral coefficient does not satisfy any of the

conditions that call it to either converge to 0 or ∞. Our approach differs from

others in that we first turn into the non-canonical equation to a canonical
form and as a result, we only require one condition to weed out non-oscillatory

solutions in order to induce oscillation. The conclusions made here are new and

have been condensed significantly from those found in the literature. For the
sake of confirmation, we provide examples that cannot be included in earlier

works.

1. Introduction

The article concerns the oscillation of the nonlinear delay difference equation
with a superlinear neutral term,

∆(δ(ι)∆φ(ι)) + θ(ι)ηβ(ι− σ) = 0; ι ≥ ι0, (1.1)

where φ(ι) = η(ι) + ρ(ι)ηα(ι− τ) and ι0 is a positive integer.
We use the following assumptions:

(A1) α (≥ 1) and β are the ratios of odd positive integers;
(A2) {δ(ι)}, {ρ(ι)} and {θ(ι)} are positive real-valued sequences with 0 < ρ(ι) <

ρ < 1 for all ι ≥ ι0;
(A3) τ, σ ∈ Z+;
(A4) equation (1.1) is in non-canonical form, that is,

Ψ(ι) =

∞∑
s=ι

1

δ(s)
with Ψ(ι0) <∞;

(A5) lim infι→∞Ψ(ι+ 1)θ(ι) > 0.
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Let ν = max{τ, σ}. A solution {η(ι)} of (1.1) is a nontrivial real-valued sequence
defined for all ι ≥ ι0−ν satisfying (1.1) for all ι ≥ ι0. Identically vanishing solutions
in a neighborhood of infinity will not be considered in the paper. A solution of (1.1)
is called oscillatory if it has arbitrarily large generalized zeros; otherwise it is called
nonoscillatory. If all solutions of (1.1) are (non)oscillatory, then equation (1.1) is
said to be (non)oscillatory.

Oscillation theory has expanded and developed greatly since this phenomena take
part in different models from real world applications, see, e.g., the papers [9, 23]
dealing with biological mechanisms (for models from mathematical biology where
oscillation and or delay actions may be formulated by means of cross-diffusion
terms). Moreover, the study of neutral functional differential equations received
significant attention because it arise in many fields such as control theory, com-
munication, mechanical engineering, biodynamics, physics, economics and so on,
see, [15, 28, 30] and the references therein. In view of the above observations, the
researchers paid attention to the oscillation area for various classes of second-order
difference, differential and dynamic equations, see [2, 6, 7, 8, 10, 12, 13, 14, 15,
17, 18, 21, 24, 25, 26, 29, 31] and the references cited therein. As far as second-
order difference equations with positive superlinear neutral terms are considered,
not many results are known about the oscillation, see [3, 4, 11, 16, 19, 27, 32, 33].
A close look at these papers reveals that the neutral coefficient {ρ(ι)} must rectify
explicitly or implicitly either ρ(ι)→ 0 or ρ(ι)→∞ as ι→∞. Further, they dealt
with the non-canonical type of equations without changing its form and therefore
required two conditions to eliminate all nonoscillatory solutions of these equations
to get oscillatory solutions.

The purpose of the article is to study the oscillation of equation (1.1) when {ρ(ι)}
fails to satisfy any of the above mentioned conditions. Our approach is different in
the sense that; first we require one condition to eliminate nonoscillatory solutions of
(1.1) to achieve oscillation via transforming the non-canonical equation (1.1) into
canonical form. Next, we obtain oscillation of (1.1) by using comparison technique
with first-order delay difference equations and Riccati transformation. Finally,
we emphasize the practicality of the main results obtained via some particular
examples, which cannot be discussed using any of the previously known results.

2. Main results

In this section, several oscillation criteria for (1.1) are presented. Without loss of
generality, we study the nonoscillatory solutions of (1.1) by restricting our attention
to eventually positive solutions. Let equation (1.1) have a positive solution {η(ι)}.
Then it is well known that the corresponding sequence {φ(ι)} has the following
structure:

(I) φ(ι) > 0, ∆φ(ι) > 0, and ∆(δ(ι)∆φ(ι)) < 0;
(II) φ(ι) > 0, ∆φ(ι) < 0, and ∆(δ(ι)∆φ(ι)) < 0.

We transform (1.1) into the canonical form that essentially simplifies the exam-
ination of (1.1). For ι ≥ ι∗ and some ι∗ ≥ ι0, we set

w(ι) = δ(ι)Ψ(ι)Ψ(ι+ 1), y(ι) =
φ(ι)

Ψ(ι)
, q(ι) = Ψ(ι+ 1)θ(ι);

m(ι) =
(

1− p(ι)Ψ(ι− τ)

Ψ(ι)

)
> 0, Γ(ι) =

ι−1∑
s=ι0

1

w(s)
,
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Ω(ι) = q(ι)Ψβ(ι− σ)mB(ι− σ),

Q(ι) = q(ι)ΨB(ι− σ)mβ(ι− σ)Γ(ι− σ)Γ(ι)w(ι).

The following lemma is crucial to prove the main results.

Lemma 2.1. Let (A1)–(A4) be satisfied. Then

∆(δ(ι)∆φ(ι)) =
1

Ψ(ι+ 1)

(
δ(ι)Ψ(ι)Ψ(ι+ 1)∆

( φ(ι)

Ψ(ι)

))
. (2.1)

Proof. By a direct computation, we can easily show that (2.1) holds for any se-
quence φ(ι). Indeed,

1

Ψ(ι+ 1)
∆
(
δ(ι)Ψ(ι)Ψ(ι+ 1)∆

( φ(ι)

Ψ(ι)

))
=

1

Ψ(ι+ 1)
∆
(
δ(ι)Ψ(ι)Ψ(ι+ 1)

Ψ(ι)δ(ι)∆φ(ι) + φ(ι)

δ(ι)Ψ(ι)Ψ(ι+ 1)

)
=

1

Ψ(ι+ 1)
∆(Ψ(ι)δ(ι)∆φ(ι) + φ(ι))

=
1

Ψ(ι+ 1)
[Ψ(ι)∆(δ(ι)∆φ(ι))−∆φ(ι) + ∆φ(ι)]

= ∆(δ(ι)∆φ(ι)).

Further,
∞∑
ι=ι0

1

δ(ι)Ψ(ι)Ψ(ι+ 1)
= lim
ι→∞

1

Ψ(ι)
− 1

Ψ(ι0)
=∞,

that is, the operator on the right-hand side of (2.1) is canonical. This proves the
lemma. �

As a result of Lemma 2.1, we see that the non-canonical equation (1.1) can be
equivalently written as

∆(w(ι)∆y(ι)) + q(ι)ηβ(ι− σ) = 0 (2.2)

which is in canonical form. The next result directly follows from the above discus-
sion.

Theorem 2.2. {η(ι)} is a solution of the non-canonical difference equation (1.1)
if and only if it is a solution of the canonical equation (2.2) with the companion
sequence y(ι) = η(ι)/Ψ(ι).

Corollary 2.3. Both the non-canonical difference equation (1.1) and the canonical
equation (2.2) have an eventually positive solution.

Corollary 2.3 makes easy to study (1.1) significantly since using (2.2), the com-
panion sequence {y(ι)} satisfies only one class, namely,

y(ι) > 0, ∆y(ι) > 0 and ∆(w(ι)∆y(ι)) < 0. (2.3)

This follows similarly from [22, Lemma 2.1].

Lemma 2.4. Assume that y(ι) satisfies (2.3) for ι ∈ [ι0,∞). Then there exists an
integer ι∗0 ≥ ι0 such that

y(ι) ≥ Γ(ι)w(ι)∆y(ι), (2.4)
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and
y(ι)

Γ(ι)
is decreasing. (2.5)

for ι ≥ ι∗0.

Proof. From the monotonicity of y(ι), we have

y(ι) = y(ι∗0) +

ι−1∑
s=ι∗0

w(s)∆y(s)

w(s)
≥ Γ(ι)w(ι)∆y(ι)

which proves (2.4). Moreover

∆
( y(ι)

Γ(ι)

)
=

Γ(ι)w(ι)∆y(ι)− y(ι)

w(ι)Γ(ι+ 1)Γ(ι)
≤ 0

by (2.4). This implies that y(ι)/Γ(ι) is decreasing which completes the proof of the
lemma. �

Lemma 2.5. Let y(ι) be defined for ι ≥ ι0 and satisfy (2.3) for all ι ≥ ι0. Then
yβ−1(ι) ≥ D(ι), where D(ι) is given by

D(ι) =


1 if β = 1

d1 if β > 1

d2Γβ−1(ι) if β < 1

for all large ι ≥ ι∗0 ≥ ι0, where d1 and d2 are positive constants.

Proof. The proof is similar to those of [2, Lemma 2.2] and [22, Lemma 2.2], and
hence is omitted. �

Theorem 2.6. Assume that (A1)–(A5) hold. If the difference equation

∆µ(ι) + Ω(ι)D(ι− σ)Γ(ι− σ)µ(ι− σ) = 0 (2.6)

is oscillatory for all large ι ≥ ι∗0, then (1.1) is oscillatory.

Proof. Without loss of generality we may assume that {η(ι)} is an eventually pos-
itive solution of (1.1), i.e., η(ι − ν) > 0 for all ι ≥ ι1 for some ι1 ≥ ι0. Then by
Corollary 2.3, equation (2.2) has a positive solution η(ι) with the corresponding
fraction y(ι) satisfying (2.3). From the definition of y(ι), we have

Ψ(ι)y(ι) = η(ι) + ρ(ι)ηα(ι− τ) and Ψ(ι)y(ι) ≥ η(ι) (2.7)

for all ι ≥ ι1.
Now, we claim that limι→∞ η(ι) = 0. Summing (2.2) from ι1 to ∞, we obtain

∞∑
ι=ι1

q(ι)ηβ(ι− τ) < w(ι1)∆y(ι1)−M,

where
0 ≤M = lim

ι→∞
w(ι)∆y(ι) <∞.

Since
∞∑
ι=ι1

q(ι)ηβ(ι− τ) <∞,

we see that
lim
ι→∞

q(ι)ηβ(ι− τ) = 0.
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But, in view of (A5) we obtain that limι→∞ η(ι) = 0. Therefore, there exists a
ι2 ≥ ι1 such that 0 ≤ ηα(ι) ≤ η(ι) for ι ≤ ι2, or

0 ≤ ηα−1(ι) ≤ 1, ι ≥ ι2. (2.8)

Since y(ι) is increasing, taking into account (2.8), (2.7) turns out to be

Ψ(ι)y(ι) = η(ι) + ρ(ι)ηβ(ι− τ)− ρ(ι)η(ι− τ) + ρ(ι)η(ι− τ)

≤ η(ι) + ρ(ι)η(ι− τ)(ηα−1(ι− τ)− 1) + ρ(ι)η(ι− τ)

≤ η(ι) + ρ(ι)Ψ(ι− τ)y(ι− τ)

≤ η(ι) + ρ(ι)Ψ(ι− τ)y(ι),

or (
1− ρ(ι)

Ψ(ι− τ)

Ψ(ι)

)
Ψ(ι)y(ι) ≤ η(ι). (2.9)

Using (2.9) in (2.2), we obtain

∆(w(ι)∆y(ι)) + q(ι)Ψβ(ι− σ)mβ(ι− σ)yβ(ι− σ) ≤ 0 (2.10)

for ι ≤ ι2. Now, using Lemma 2.5, inequality (2.10) turns that

∆(w(ι)∆y(ι)) + Ω(ι)D(ι− σ)y(ι− σ) ≤ 0. (2.11)

Now using (2.4) and (2.11) and letting µ(ι) = w(ι)∆y(ι), it is shown that µ(ι) > 0
satisfies the inequality

∆µ(ι) + Ω(ι)D(ι− σ)Γ(ι− σ)µ(ι− σ) ≤ 0 (2.12)

for ι ≤ ι2. Summing (2.12) from ι (≥ ι2) to j and letting j →∞, we obtain

µ(ι) ≥
∞∑
s=ι

Ω(s)D(s− σ)Γ(s− σ), ι ≤ ι2.

The function µ(ι), is strictly decreasing for ι ≤ ι2. On the other hand [2, Lemma
2.1] implies that the corresponding difference equation (2.6) has also a positive
solution which contradicts the assumption of the theorem. �

By summing equation (2.6) from ι− σ to ι− 1 we obtain the following results.

Corollary 2.7. Assume (A1)–(A5) hold. If

lim inf
ι→∞

ι−1∑
s=ι−σ

Ω(s)Γβ(s− σ) =∞, ι ≥ ι∗0 (0 < β < 1) (2.13)

then equation (1.1) is oscillatory.

Corollary 2.8. Assume (A1)–(A5) hold. If β = 1 and

lim inf
ι→∞

ι−1∑
s=ι−σ

Ω(s)Γ(s− σ) >
( σ

σ + 1

)σ+1

, (2.14)

then equation (1.1) is oscillatory.

Proof. In view of (2.14) and [1, Theorem 7.6.1], clearly (2.6) is oscillatory, and
hence equation (1.1) is oscillatory too by Theorem 2.6. �
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Theorem 2.9. Assume (A1)–(A5) hold. If there exists a positive nondecreasing
real sequence {ρ(ι)} such that for any ι ≥ ι0

lim sup
ι→∞

ι∑
s=ι0

[
ρ(s)Ω(s)D(s− σ)− w(s− σ)(∆ρ(s))2

4ρ(s)

]
=∞, (2.15)

then (1.1) is oscillatory.

Proof. Assume (1.1) is a nonoscillatory equation having an eventually positive so-
lution η(ι), i.e., η(ι − ν) > 0 for all ι ≥ ι1 for some ι1 ≥ ι0. Then following the
similar steps as in the proof of Theorem 2.6, we obtain (2.11);

∆(w(ι)∆y(ι)) + Ω(ι)D(ι− σ)y(ι− σ) ≤ 0, ι ≥ ι1. (2.16)

We define

F (ι) := ρ(ι)
w(ι)∆y(ι)

y(ι− σ)
, ι ≥ ι1. (2.17)

Then F (ι) > 0 for ι ≥ ι1. Now using (2.16) and (2.17), we obtain

∆F (ι)

= ρ(ι)
∆(w(ι)∆y(ι))

y(ι− σ)
+

∆ρ(ι)

ρ(ι+ 1)
F (ι+ 1)− ρ(ι)

ρ(ι+ 1)
F (ι+ 1)

∆y(ι− σ)

y(ι− σ)

≤ −ρ(ι)Ω(ι)D(ι− σ) +
∆ρ(ι)

ρ(ι+ 1)
F (ι+ 1)− ρ(ι)

ρ(ι+ 1)

F 2(ι+ 1)

w(ι− σ)
,

(2.18)

where we have used that w(ι− σ)∆y(ι− σ) is positive and decreasing. Completing
the square the latter inequality in (2.18), we obtain

∆F (ι) ≤ −ρ(ι)Ω(ι)D(ι− σ) +
(∆ρ(ι))2w(ι− σ)

4ρ(ι)
, ι ≥ ι1. (2.19)

Summing the both sides of inequality (2.19) from ι1 to ι, we obtain

ι∑
s=ι1

[
ρ(s)Ω(s)D(s− σ)− w(s− σ)(∆ρ(s))2

4ρ(s)

]
<∞.

Taking limsup as ι→∞, we obtain

lim sup
ι→∞

ι∑
s=ι1

[
ρ(s)Ω(s)D(s− σ)− w(s− σ)(∆ρ(s))2

4ρ(s)

]
<∞

which contradicts (2.15). �

Theorem 2.10. Assume (A1)–(A5) hold and β = 1. If

lim sup
ι→∞

{ 1

Γ(ι− σ)

ι−σ−1∑
s=ι1

Γ(s)Γ(s− σ)Ω(s) +

ι−1∑
s=ι−σ

Ω(s)Γ(s− σ)

+ Γ(ι− σ)

∞∑
s=ι

Ω(s)
}
> 1,

(2.20)

then (1.1) is oscillatory.
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Proof. Assume (1.1) is a nonoscillatory equation having an eventually positive so-
lution η(ι), i.e., η(ι − ν) > 0 for all ι ≥ ι1 for some ι1 ≥ ι0. Then following the
same steps as in the proof of Theorem 2.6, we obtain (2.10);

∆(w(ι)∆y(ι)) + Ω(ι)y(ι− σ) ≤ 0, ι ≥ ι1. (2.21)

Summing both sides of (2.21) from ι1 to ι− 1 and solving y(ι), we obtain

y(ι) ≥
ι−1∑
s=ι1

1

w(s)

∞∑
t=s

Ω(t)y(t− σ)

=

ι−1∑
s=ι1

1

w(s)

ι−1∑
t=s

Ω(t)y(t− σ) +

ι−1∑
s=ι1

1

w(s)

∞∑
t=ι

Ω(t)y(t− σ)

=

ι−1∑
s=ι1

Γ(s+ 1)Ω(s)y(s− σ) + Γ(ι)

∞∑
t=ι

Ω(t)y(t− σ).

Therefore,

y(ι− σ) ≥
ι−σ−1∑
s=ι1

Γ(s+ 1)Ω(s)y(s− σ) + Γ(ι− σ)

∞∑
t=ι−σ

Ω(t)y(t− σ)

=

ι−σ−1∑
s=ι1

Γ(s+ 1)Ω(s)y(s− σ) + Γ(ι− σ)

ι−1∑
t=ι−σ

Ω(t)y(t− σ)

+ Γ(ι− σ)

∞∑
t=ι

Ω(t)y(t− σ).

(2.22)

Since y(ι) is increasing and y(ι)/Γ(ι) is decreasing, we have

y(ι− σ) ≥ y(ι− σ)

Γ(ι− σ)

ι−σ−1∑
s=ι1

Γ(s+ 1)Ω(s)Γ(s− σ) + y(ι− σ)

ι−1∑
s=ι−σ

Ω(s)Γ(s− σ)

+ Γ(ι− σ)y(ι− σ)

∞∑
s=ι

Ω(s).

That is,

1 ≥ 1

Γ(ι− σ)

ι−σ−1∑
s=ι1

Γ(s+ 1)Γ(s− σ)Ω(s) +

ι−1∑
s=ι−σ

Γ(s)Γ(s− σ) + Γ(ι− σ)

∞∑
s=ι

Ω(s)

which contradicts (2.20). �

For the final result of this section, the following lemma from [22] is needed.

Lemma 2.11. Assume that
∞∑
ι=ι0

Ω(ι)Γβ(ι− σ) =∞, (2.23)

and there exists a constant γ ∈ (0, 1) such that

Q(ι) ≥ γ, ι ≥ ι0. (2.24)
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If {y(ι)} is a positive solution of (2.10), then

y(ι) ≥ Γ(ι− σ)w(ι)∆y(ι)

(1− γ)
, ι ≥ ι1, (2.25)

y(ι)

Γγ(ι)
is increasing. (2.26)

Theorem 2.12. Assume (A1)–(A5), (2.23) and (2.24) hold. If

lim inf
ι→∞

ι−1∑
s=ι−σ

Ω(s)D(s− σ)Γ(s− σ) > (1− γ)
( σ

σ + 1

)σ+1

, (2.27)

then (1.1) is oscillatory.

Proof. Assume that η(ι) is an eventually positive solution of (1.1), i.e., η(ι−ν) > 0
for all ι ≥ ι1 for some ι1 ≥ ι0. Then following the same steps as in the proof of
Theorem 2.6, we obtain (2.11); y(ι) > 0 is an increasing solution of

∆(w(ι)∆y(ι)) + Ω(ι)D(ι− σ)y(ι− σ) ≤ 0, ι ≥ ι1. (2.28)

Let G(ι) = w(ι)∆y(ι). Using (2.25) in (2.28), we obtain

∆G(ι) +
Ω(ι)D(ι− σ)Γ(ι− σ)

(1− γ)
G(ι− σ) ≤ 0. (2.29)

This shows that G(ι) is a positive solution of (2.29) by [1, Theorem 7.6.1] which
contradicts (2.27). �

Theorem 2.13. Assume (A1)–(A5), (2.23) and (2.24) hold. If

lim sup
ι→∞

{ 1

Γ(ι− σ)

ι−σ−1∑
s=ι1

Ω(s)D(ι− σ)Γ(s)Γ(s− σ) +

ι−1∑
s=ι−σ

Ω(s)D(s− σ)Γ(s− σ)

+ Γ1−γ(ι− σ)

∞∑
s=ι

Ω(s)D(s− σ)Γγ(s− σ)
}
> 1,

(2.30)
then (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.6, we arrive at (2.11), that is,

∆(w(ι)∆y(ι)) + Ω(ι)D(ι− σ)y(ι− σ) ≤ 0, ι ≥ ι1. (2.31)

Now arguing as in the proof of Theorem 2.10, we obtain

y(ι− σ) ≥
ι−σ−1∑
s=ι1

Γ(s+ 1)Ω(s)D(s− σ)y(s− σ)

+ Γ(ι− σ)

ι−1∑
s=ι−σ

Ω(s)D(s− σ)y(s− σ)

+ Γ(ι− σ)

∞∑
s=ι

Ω(s)D(s− σ)y(s− σ).
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Using the fact that y(ι)/Γ(ι) is decreasing and y(ι)/Γγ(ι) is increasing, the latter
inequality gives

y(ι− σ) ≥ y(ι− σ)

Γ(ι− σ)

ι−σ−1∑
s=ι1

Ω(s)D(s− σ)Γ(s+ 1)Γ(s− σ)

+ y(ι− σ)

ι−1∑
s=ι−σ

Ω(s)D(s− σ)Γ(s− σ)

+
Γ(ι− σ)y(ι− σ)

Γγ(ι− σ)

∞∑
s=ι

Ω(s)D(s− σ)Γγ(s− σ).

After simplification, we obtain

1

Γ(ι− σ)

ι−σ−1∑
s=ι1

Ω(s)D(s− σ)Γ(s+ 1)Γ(s− ι)

+

ι−1∑
s=ι−σ

Ω(s)D(s− σ)Γ(s− σ)

+ Γ1−γ(ι− σ)

∞∑
s=ι

Ω(s)D(s− σ)Γγ(s− σ) ≤ 1

which contradicts (2.30). �

3. Applications

In this section, we present three examples to illustrate the emphasize of the main
results.

Example 3.1. If we take φ(ι) = η(ι) + η3(ι− 1)/2 in equation (1.1) together with
that δ(ι) = ι(ι+ 1), ρ(ι) = 1/2, θ(ι) = (ι+ 1)3, τ = 1, σ = 2, α = 3 and β = 3, then
it takes the second-order nonlinear neutral difference equation of the form

∆(ι(ι+ 1)∆φ(ι)) + (ι+ 1)3η3(ι− 2) = 0, ι ≥ 4. (3.1)

Elementary calculations give Ψ(ι) = 1/ι, w(ι) = 1, q(ι) = (ι + 1)2, Γ(ι) ≈ ι,
D(ι) = d1 > 0, and that

m(ι) =
(

1− ι

2(ι− 1)

)
≥ 1

6
and Ω(ι) ' (ι+ 1)2

216(ι− 2)3
.

Clearly conditions (A1)–(A5) are satisfied. Choosing ρ(ι) = 1, then condition (2.15)
becomes

lim sup
ι→∞

ι∑
s=4

d1(s+ 1)2

216(s− 2)3
=∞,

that is, condition (2.15) holds. Therefore by Theorem 2.9, equation (3.1) is oscilla-
tory.

Example 3.2. Consider the second-order neutral difference equation

∆(2ι∆φ(ι)) + 2ιη(ι− 2) = 0, ι ≥ 1, (3.2)

for which the case φ(ι) = η(ι) + η3(ι − 1)/3 in equation (1.1) together with that
δ(ι) = 2ι, ρ(ι) = 1/3, θ(ι) = 2ι,, τ = 1, σ = 2, α = 3 and β = 1. Some
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simple computations yield that Ψ(ι) = w(ι) = 21−ι, m(ι) = 1/3, q(ι) = a > 0,
Γ(ι) ≈ 2ι−1 − 1 and Ω(ι) = 23−5ιa.

Clearly the conditions (A1)–(A5) are satisfied. Condition (2.14) becomes

lim sup
ι→∞

ι−1∑
s=ι−2

23−5ι
(
2ι−1 − 1

)
a =

8a

3
>

8

27
,

that is, (2.14) holds if a > 1/9. Thus by Corollary 2.7, equation (3.2) is oscillatory
for a > 1/9.

Example 3.3. Equation (1.1) turns out to be the second-order neutral difference
equation

∆(ι(ι+ 1)∆φ(ι)) + (ι+ 1)η(ι− 2) = 0, ι ≥ 4, (3.3)

if φ(ι) = η(ι) + η3(ι− 1)/2 with that δ(ι) = ι(ι+ 1), ρ(ι) = 1/2, θ(ι) = ι+ 1, τ = 1,
σ = 2, α = 3 and β = 1. A simple calculation shows that Ψ(ι) = 1/ι, w(ι) = 1,
q(ι) = 1, Γ(ι) ≈ ι, Q(ι) = ι/6 ≥ 2/3 = γ, and that

m(ι) =
(

1− ι

2(ι− 1)

)
≥ 1

6
and Ω(ι) ' 1

6(ι− 2)
.

Clearly (A1)–(A5) hold. The condition (2.23) becomes

∞∑
ι=4

ι− 2

6(ι− 2)
=

∞∑
ι=4

1

6
=∞,

that is, (2.23) holds. The condition (2.24) holds with γ = 2/3.
Condition (2.27) becomes

lim inf
ι→∞

ι−1∑
s=ι−2

s− 2

6(s− 2)
=

2

3
>
(1

3

)( 8

27

)
,

that is, condition (2.27) holds. Therefore equation (3.3) is oscillatory by Theorem
2.12.

We remark that Corollary 2.8 does not yield this conclusion since condition (2.14)
is not satisfied. Therefore, Theorem 2.12 improves Corollary 2.8.

4. Conclusions

By putting the equation in canonical form, we offer oscillation conditions for (1.1)
in this work, which makes it easier to examine (1.1). Furthermore, the oscillation
criteria developed here are novel and add to the findings previously reported in the
literature. The neutral coefficient ρ(t) ∈ (0, 1) prevents the results presented in
[3, 4, 11, 16, 19, 27, 32, 33] from being applicable to our equations (3.1)–(3.3). As
a result, our findings constitute a highly valuable addition to the oscillation theory
of second-order neutral difference equations with superlinear neutral terms. When
−1 < ρ(ι) < 0 or {ρ(ι)} is oscillatory, it is also intriguing to extend the findings of
this paper.
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