Electron. J. Differential Equations, Vol. 2023 (2023), No. 47, pp. 1-16.

Existence of at least four solutions for Schrodinger equations with magnetic potential involving and sign-changing weight function

Francisco Odair de Paiva, Sandra Machado de Souza Lima, Olimpio Hiroshi Miyagaki

Abstract:
We consider the elliptic problem $$ - \Delta_A u + u = a_{\lambda}(x) |u|^{q-2}u+b_{\mu}(x) |u|^{p-2}u , $$ for \(x \in \mathbb{R}^N\), \( 1 < q < 2 < p < 2^*= 2N/(N-2)\), \(a_{\lambda}(x)\) is a sign-changing weight function, \(b_{\mu}(x)\) satisfies some additional conditions, \(u \in H^1_A(\mathbb{R}^N)\) and \(A:\mathbb{R}^N \to \mathbb{R}^N\) is a magnetic potential. Exploring the Bahri-Li argument and some preliminary results we will discuss the existence of a four nontrivial solutions to the problem in question.

Submitted January 13, 2022. Published July 11, 2023.
Math Subject Classifications: 35J20, 35Q60, 35Q55, 35B38.
Key Words: Magnetic potential; Nehari method; sign-changing function; variational method.
DOI: https://doi.org/10.58997/ejde.2023.47

Show me the PDF file (387 KB), TEX file for this article.

Francisco Odair de Paiva
Departamento de Matemática
Universidade Federal de São Carlos (UFSCar)
São Carlos - SP, CEP 13565-905, Brazil
email: odair@dm.ufscar.br
Sandra Machado de Souza Lima
Departamento de Ciências Exatas, Biológicas e da Terra
INFES-UFF, Santo Antônio de Pádua - RJ, Brazil
email: sandra.msouzalima@gmail.com
Ol&icute;mpio Hiroshi Miyagaki
Departamento de Matemática
Universidade Federal de São Carlos (UFSCar)
São Carlos - SP, CEP 13565-905, Brazil
email: olimpio@ufscar.br

Return to the EJDE web page