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MULTIPLICITY OF SOLUTIONS FOR A GENERALIZED
KADOMTSEV-PETVIASHVILI EQUATION
WITH POTENTIAL IN R?

ZHENG XIE, JING CHEN

ABSTRACT. In this article, we study the generalized Kadomtsev-Petviashvili
equation with a potential
(—uze + D;2uyy + V(ex,ey)u — f(u))z =0 in R2

where D 2h(z,y) = IZ fioo h(s,y)dsdt, f is a nonlinearity, € is a small
positive parameter, and the potential V satisfies a local condition. We prove
the existence of nontrivial solitary waves for the modified problem by apply-
ing penalization techniques. The relationship between the number of positive
solutions and the topology of the set where V' attains its minimum is obtained
by using Ljusternik-Schnirelmann theory. With the help of Moser’s iteration
method, we verify that the solutions of the modified problem are indeed solu-
tions of the original problem for € > 0 small enough.

1. INTRODUCTION

This article is devoted to studying solitary waves for the generalized Kadomtsev-
Petviashvili equation with a potential

v+ 0 + (F(0) = V(2,9)0)e = Dy vy, (1.1)
where v = v(t, z,y) with (¢,z,y) € R" xRxR, V is a potential function, parameter
e>0and Dy h(z,y) = [* h(s,y)ds.

A solitary wave is a solution of the form u(z —ct,y), with ¢ > 0. Hence, inserting
this into (1.1]), we obtain

—CUg + 52uaca:9c + (f(u) = V(z,y)u). = Dgluyy in R27
or equivalently,

(*52Uzr + D;2uyy + V(Iay)u - f(u)) = 07 iIl Rz?

€T

where V =V + ¢, and by a simple scaling calculus, it is easy to see that the above
equation becomes

(—Use + Dy %uyy + V(ex,ey)u — f(u))aC =0 inR% (1.2)

2020 Mathematics Subject Classification. 35A15, 35A18, 35Q53, 58E05, 76B25.
Key words and phrases. Kadomtsev-Petviashvili equation; variational methods;
penalization techniques; Ljusternik-Schnirelmann theory.

(©2023. This work is licensed under a CC BY 4.0 license.

Submitted May 4, 2023. Published July 17, 2023.

1
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Let 7 > 0 be a constant, if V(ex,ex) = 7, then problem (|1.2)) becomes
(—tge + D uyy + Tu — f(u))x =0 inR% (1.3)

If we choose f(t) = t? in , then above equation becomes a well-known two-
dimensional Korteweg-de Vries type equation, which models long dispersive waves,
essentially unidimensional, but having small transverse effects, see [14]. In the
pioneering work, De Bouard and Saut [7, [8] used the concentration compactness
principle from [I5] [16] to show the existence of solitary waves for in the
plane, with f(t) = |[t[Pt and p = ™, where m and n are relatively prime numbers
and n is odd. Willem [25] extended the above results to the case N = 2 and
f € C(R,R) via the mountain pass theorem. Thereafter, Wang and Willem [26]
proved multiple solutions for problem by the Lyusternik-Schnirelman category
theory. Liang and Su [I7] obtained the existence of solutions for equation with
f(z,y,u) = Q(x,y)|ulP"2uand N > 2, where Q € C(R x RN~ R), satisfying some
structural conditions and 2 < p < p = 2(2215,\]:31). Combining the variational method
and linking theorems were appeared in [24], He and Zou [I2] studied the existence
of nontrivial solutions for the above equation in multi-dimensional spaces. Similar
techniques were used in [30]. For further works about nontrivial solitary waves for
the generalized Kadomtsev-Petviashvili equation, we refer to [2] 22] 27 28] 29] [31]
and the references therein.

Recently, Alves and Miyagaki [3] obtained the existence, regularity and concen-
tration phenomenon of nontrivial solitary waves for a class of generalized variable
coefficient Kadomtsev-Petviashvili equation in R2. Lately, inspired by the simi-
lar method of researching concentration in [3], Li, Wei and Yang [19] also studied
concentration of solitary waves for problem in R? under the assumption of
f(u) = |ulP~2u, where 2 < p < 6 and potential V satisfies a global condition. With
the help of variational methods, the authors obtained that the existence of the least
energy solution for all € > 0 small enough and these solutions concentrate to the
minimum point of the potential V as € — 0.

We notice that potentials V' in [3, [19] satisfy global conditions. However, the
problem becomes more complicated when potential V' satisfies the local condi-
tion. Alves and Ji [I] proved the existence and concentration of nontrivial solitary
waves for in R? by using penalization method in [2I]. Looking at their con-
ditions, potential V' and nonlinearity f required that V € C?(R? R) N L>(R?,R)
and f: R — Ris C? with |f”(¢)| < C|t|P~! for all ¢ € R, which are so strong to ob-
tain more regularity. Furthermore, by analyzing the regularity of the solutions, the
authors obtained the concentration and estimation of the solutions. To the best of
our knowledge, these analyses are crucial to prove that the solutions of the modified
problem are indeed solutions of the original problem for £ > 0 small enough.

As we know, there are only a few works about the multiple solutions for problem
, Figueiredo and Montenegro [10] investigated the multiple solitary waves for
problem . In their work, they assumed that both global potential V' and
nonlinearity f belong to C! and the following conditions hold:

(A1) There is a constant V > 0 such that Vj := inf cge V(2).

(AZ) Voo = hm\(z,y)|%oo V(l‘,y) > V.

(A3) V7X({Vo}) = {a1,az,...,an} C R?* with a1 = 0 and a; # a, if j # s.
(A4) f e CYR,R) with f(0) = f/(0) = 0.
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(A5) There exist constants g, € (2,6),Co > 0 such that
t
lim /(t)

t—oo t0—1

flit)y > Cot?~t, forallt>0, and =0.

(A6) There is 6 € (2,6) such that
t
0 < OF(t) = 9/ Fr)dr < tf(t) forall > 0.
0

(A7) f(t) >0forall t >0, and f(¢t) =0 for all t < 0.
(A8) The function ¢t — f(t)/t is increasing for ¢ > 0.

By using the variational method and the concentration-compactness principle,
the authors obtained that the number of solitary waves corresponds to the number
of global minimum points of the potential V' when positive parameter € is small
enough. Notice that different from the works in [3, [19], the use of special condition
(A3) further ensures that the exact number of solutions can be secured in [10].

Motivated by the ideas developed in [T} 13, 18], we study problem by
considering a local assumption on V', the penalization scheme, and the Ljusternik-
Schnirelmann theory. We aim to investigate the existence of multiple solutions
for problem without assuming (A2), (A3), (A6), and (A8). Furthermore,
we assume additionally that V € C(R%,R) f € C'(R% R) satisfy the following
conditions:

(A9) There exists an open and bounded set  C R? satisfying Vy < mingg V and

M={zeQ:V(z)=Vo} #0.
(A10) There exists a positive number « € (1,400) such that
t— %j) is nondecreasing on (0, c0).

Throughout this article, without loss of generality, we assume that V(0,0) =

Vo = mingegrz V(z). A typical example of function f which satisfying assumptions

(A4), (A5), (A7), (A10) is

f(t) = ATl with A > 0,2 < ¢<6, fort>0,
~]o for t <0

Comparing this article with [I0], we not only improve the above conditions of V' and
f, but also adopt different methods from [I0]. In the proof of Theorem we adopt
the penalization method to restore the modified functional compactness. But in our
equation , we notice that the local condition of potential V' make the modified
problem more complicated, thus we use the truncation trick from [2I] to overcome
this difficulties. It consists in making a suitable modification on the nonlinearity f,
solving a modified problem and then check that for £ small enough, the solutions
of the modified problem are indeed solutions of the original one. Moreover, we
apply the method introduced by Benci and Cerami [4] to describe the multiplicity
result. By considering the relationship between the category of some sublevel sets
of the modified functional and the category of set M, we prove the existence of
multiple solutions for the modified problem. Specifically, the main ingredient is
to make precisely comparisons between the category of some sublevel sets of the
modified functional and the category of the set M given in (A9). Remarkably,
unlike the method in [I], we don’t analyze the regularity and concentration of
solutions, and we obtain the existence of estimates involving the L°°-norm of the
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modified problem by using Moser’s iteration method [I1]. To this end, we believe
that the idea of combining penalization scheme with topological arguments to get
the multiple solutions can be widely applied in different equations or systems to
cope with local conditions on the potential V.

Finally, by Chang’s definition of category in [J], we remark that the category
catx(A) of a subset A of a topological space X is defined as the minimal k¥ € N
such that A is covered by k closed subsets of X which are contractible in X, namely

catx (A) = inf {k € NU {400} : 3k contractible closed subsets of
X :Fy,Fy,..., Fysuch that A C U F;}.
where set F is called contractible (in X) if there exists & : [0, 1] x X — X such that
k(0,F) =1idx and &(1,F) is a one-point set.
Our main results can be stated as follows.

Theorem 1.1. Suppose that the conditions (Al), (A4), (A5), (A7), (A9), (A10)
hold. Then, for any 6 > 0 such that

M; = {z € R? : dist(x, M) < 0} C Q,

there exists € > 0 such that, for any e € (0,€), problem (1.2) has at least catps, (M)
solutions.

The article is organized as follows. In Section 2, we give the variational setting
and we modify the original problem. In Section 3, we study the autonomous prob-
lem associated with the modified problem. From this study, we obtain that the
modified problem has multiple solutions by means of the Ljusternik-Schnirelmann
theory. In Section 4, for £ > 0 small enough, we prove that the solutions of the mod-
ified problem are indeed solutions of the original problem by using Moser iteration
method.

Throughout the article, we use the following notation:

| - |l, denotes the norm of the Lebesgue space LP(R?).

forz € R2and r > 0, B.(x) :={y e R? : [y — x| < r}.

C1,Cs,Cs, . .. denote positive constants possibly different in different places.
ut = max{4u, 0}.

The symbols “—” and “—” denote strong and weak convergence, respec-
tively.

2. VARIATIONAL FRAMEWORK

Arguing as in [25], in the set Y = {g, : g € C§°(R?)}, we define the inner
product

(u,v), = / [uzvy + Dy tuy Dy vy, + V(ex, ey)un] dz dy, (2.1)
R2
and the corresponding norm
1/2
fulle = ( [ sl + D5 0,2+ Ve ey dady) (2.2)
R2

Now we define a working space of functions. A function v : R? — R belongs to X,
if there exists {u,} C Y such that

(i) u, — u a.e. in R?;

(ii) ||uj —uklle = 0 as j,k — oo.
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The space X, with inner product (2.1)) and norm (2.2)) is a Hilbert space. By a
solution of (1.2)) we mean a function u € X, such that

(U7¢)€_/R? fu)pdxdy =0 forall ¢ € X,

we define the Euler-Lagrange functional associated with ((1.2]) by

1
I(u) = 3 /}RQ[|um|2 + |D; tuy|? + V(ex, ey)u?| da dy — /R2 F(u)dxdy
(2.3)

1
— sl = [ Fdsdy,
]RQ

which is C! with Gateaux derivative
(I2(w), v)

= / [uzve + Dy uy Dy oy + V(ex, ey)uv] da dy — / fu)vdzdy
R2 R2 (24)

= (u,v)e —/ flwvdedy, Yu,ve X..
R2

The embedding X. < LP(R?) is continuous for 2 < p < 6 and X, — LI (R?)
is compact for 2 < p < 6 (see [8, [H]).

As in [21], to study problem by variational methods, we modify suitably
the nonlinearity f so that, for parameter £ > 0 small enough, the solutions of the
modified problem are also solutions of the original problem . To establish the
multiplicity of solutions of , we will adapt for our case an argument explored
by the penalization method introduced by Del and Felmer [21]. To this end, we
need to fix some notation.

Let k > 2 and a > 0 such that f(a) = Vpa/k with Vj given by (Al). We set

~ {f(t), i ft <a,

t:
1) i, ift<a.

Moreover, we fix tg,t; € (0,+00) such that ¢y < a < t; and w € C([to,t1]),
satisfying

w(t) < f(t) for all t € [to, t1], (2.5)
w(to) = f(to), w(tr) = F(t), (2:6)
W(to) = F'(to), '(tr) = F'(t), (2.7)

t @ is nondecreasing for t € [to, 1]. (2.8)

Using the functions w and ]?, let us consider two new functions

= JF), it [t tl,
1) = {w(t), if t € [to, t1].

and

g(x,y,1) = X(@,9) f () + (1= x(2.9) f(®),
where x(z,y) € C§°(R?) is the characteristic function of set 2, and g : R? x R — R
is the penalized nonlinearity.
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From the definition of f, it follows that f € CY(R,R), f(t) < %t for all ¢ > 0.
Hereafter, for the above § > 0, we have

Vo + 0 < min V(x,y)
Qs

where
Qs = {2z € R? : dist(x, Q) < 5}
Now, we illustrate the properties of g. First, it follows from (A4) and (A10) that
0<2F(t) < (a+1)F(t) < f(t)t forallt > 0. (2.9)
In view of (A4), (A5), (A7), and (A10), it is easy to deduce that g is a Carathéodory
function and satisfying the following properties:
(A11) g(z,y,t) < ot + f(t) for any t > 0 and § > 0;
(A12) limy o q(m’y’t) = 0 uniformly in (z,y) € R?;
(A13) 0 < 2G(x,y,t) = Zfo x,y,r)dr < g(x,y,t)t < Vot?/k for all (z,y) €
Rz\ﬂandallt>0
(A14) For each (z,y) € Q, a > 1, the function ¢ — g(m’y’t) is increasing on (0, o),
and for each (z,y) € R?\ €, the function t Q( ’”’t) is increasing on (0, a).
Now we study the modified problem
(—uge + D 2uyy + V(ez, ex)u — g(ez, ex, u)), =0 in R2. (2.10)

Notice that solutions of ([2.10]) with |u(z,y)| < a for each (z,y) € R?\ Q. are also
the solutions of (1.2)), where Q. = {(z,y) € R? : g(x,y) € Q}.
The energy functional associated with problem (2.10) is

1
petw) = lull2 = | Glev.cy.u)dady. (2.11)
R?

It is standard to prove that ¢. € C'(X.,R) and its critical points are the weak
solutions of the modified problem ([2.10). Next, we define the Nehari manifold
associated with . given by
Ne ={u € X\ {0} : (¢l (u),u) = 0}. (2.12)

The first lemma is related to the fact that ¢, satisfies the mountain pass geome-
try(see [25]).
Lemma 2.1. The functional p. satisfies the following properties.

(i) There exist r,p > 0 such that . (u) > p with ||ull. = r.

(ii) There exists |le]|c > 7 satisfying g (e) < 0.

Proof. (i) For any u € X, \ {0} and ¢ > 0 small, it follows from (A5), (A1l), and
(A12) that there exists C5 > such that

lg(ex,ey,t)| < 6lt| + Cs|t|”~!,  for all (z,y) € R*, t €R,
5, C

Glew.ey.t)| < 5t + =247, for all (z,y) € R%, t € R.
g

Now by the Sobolev continuous embedding X. < LP(R?) for p € [2, 6], we have

1
pe(u) = 5/ (Jug|® + |Dy M uy|® + V(ew, ey)u®) dady — / G(ex, ey, u)dx dy
R? R?

1 ] C
>l - = | wPdrdy— 2w drdy
€ 2 R2 0 JRr2
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< 1+C
- 4
Hence, we can choose some r,p > 0 such that ¢.(u) > p with ||ullc = 7 small
enough.
(ii) For each u € X \ {0} with supp(u) C Qc, and ¢ > 0, we obtain that

t2
petu) = & lull2 - / Glex, ey, tu) d dy
2 -

2.

= Slulz =~ [ Few)dedy
Q

€

t2
< 5||u\\§—t(a+1>ﬁ W@t g dy.

€

Here we have used property (A10), which implies that ¢, (tu) — —oco as t — 400,
and conclusion (ii) follows. O

Now, let ¢, denote the mountain pass level associated with ¢., that is

. = inf «(n(t)),
ce = Inf max ¢=(n(t))

where I' = {n € C([0,1], X:) : n(0) = 0 and ¢.(n(1)) < 0}.
Lemma 2.2. If the conditions (A1), (A9), (A11)-(A14) hold, then, for each u € X,

with w # 0, there exists a unique te = t-(u) > 0 such that t-u € N and @, (teu) =
max;>o e (tu). Moreover,

e — i f 5 t =i f e 2.1
== o e = e 219

Proof. For a fixed w € X, \ {0}, let I(t) = ¢.(tw) for all ¢ > 0. By the proof of
Lemma we observe that [(0) = 0,1(t) > 0 for ¢ small enough and () > 0 for ¢
sufficiently large. Thus, there exists t. > 0 such that

[(te) = pe(tew) = maxpe(tw) and  I(te) =0.

Therefore, t,w € N.. Then we will prove the uniqueness of ¢., and we have

]2 =t~ / 9(er ey tew) | (@r1) g gy
R2 (tew)a

Hence, we define a function ¢q : RT — [0, +-00] by

— (a) [ 9(Em ey tw) o)
q(t) =t /]1{2 o) w dz dy.

By calculation and condition (A14), we prove that the function ¢ is increasing on
(0, +00). Therefore, t. is unique. The conclusion

= inf t
T pex\(oy 20 e(tw)

is obvious and the proof is complete. (Il

Lemma 2.3 ([I]). For any fized € > 0, the functional . satisfies the (PS). con-
dition.

Lemma 2.4. The functional p. has a nontrivial critical point u. € X, such that

e(uc) =c. and ¢.(u:)=0.
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Lemmas [2.1] and [2.3] permit us to apply the Mountain Pass Lemma due to Am-
brosetti and Rabinowitz [25] to conclude that ¢, is a critical value for ¢..

Lemma 2.5. Suppose that (A1), (A4), (A5), (AT), (A9) hold. Then, for e > 0
small, the functional . restricted to N. satisfies the (PS) condition. And the
critical points of the functional p. on N are critical points of p. in X..

Proof. Let {w,} C N be such that ¢.(w,) — ¢ and ¢.(wy)|n. — 0. Then there
exists {n} C R satisfying

@ls(wn) = ,Un(I’/g(wn) + On(l), (2.14)
where @, : X, — R is

®.(0) = (glw).w) =l = [ gler.cywpwds dy

From (. (wy),w,) = 0, we have
[wn |2 = / glex, ey, wp)wy, d dy. (2.15)
R2

By f € CY(R,R) and the definition of g, we see that g is of C'. Then, by calcula-
tions, we have

(B (1), wn) = 2w |2 ~ / 962, ey, wa)w? + glex, ey, wn)w,] de dy
RZ

=2 / g(ez, ey, wp)wy, dz dy
R (2.16)

- / 662, €y, wa)w? + g(ex, ey, wa)ws] dz dy
R?

— /2[9(5z,€y,wn)wn - g’(sx,ey,wn)wi} dx dy.
R

Let R? = Q; U €y, where
Q= [ U{w, <t} U[R?\ Q)N {to < w, < t1}],
Q2 = [(R?\ Q) N {w, 2 t1}].
On the one hand, for (z,y) € Oy, from (A14) we have
g(ex, ey, wp)w, + ¢ (ex, ey, wy)w?
glex, ey, wp)w, — ¢ (ex, ey, wy)w? <
One the other hand, for (z,y) € Qa, we have g(ez, ey, w,) = %wn, and then

2V
g({':zvsya wn)wn + g’(sx,sy,wn)wi = TOU/EL, V(I, y) € QQ-

Since {w,} is bounded, up to a subsequence, we may suppose that
(@ (wy,), wn) — a < 0.

If a = 0, by the Sobolev continuous embedding X, < LP(R?) for p € [2,6] and
choose some Cy < Vﬁo, we obtain

2%

(@2 (wn), wn)| = 2lwnll2 — 3

lwal3
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2V
> (2- 220 w2

2Ve
> (2= 2000 [ (w4105 @ P+ V(en,g)ul) dod.
Qe

Therefore,
w, — 0 in X,
wy, — 0 in LP(R?),
wy, — 0 in LP(£,).
Finally, by (A11)—-(A14), we have
Jwn |2 = /]R g(ex, ey, wy)wy dx dy + 0, (1) < %Hwnﬂg +on(l). (217

€

From the proof of Lemma we can easy to check that there exists a number
d > 0 such that

|wrlle >d >0 for all w, € N.. (2.18)
Thus, there is a contradiction between (2.16) and (2.17). We obtain a # 0 and
tn = 0,(1). From (2.13), we conclude that ¢.(w,) — 0, that is, {w,} is a (PS)
sequence for ¢.. This completes the proof. ([l

3. MULTIPLICITY OF SOLUTIONS FOR THE MODIFIED PROBLEM

3.1. Autonomous problem. Along all the section we shall assume that § > 0 is
small enough such that Ms C Q, where € is given in the condition (A9). We start
by considering the limit problem associated with (2.10)), namely, the problem

(fum + D;zuyy + Vou — f(u))w =0, inR? (3.1)
The solutions of (3.1)) are precisely critical points of the functional defined by

1 _
wol = [l + D P Vol dedy— [ Fydedy  (32)
R
which is C! with Gateaux derivative
(g (u),v) = / (ugvy + Dy 'uy Dy Moy, + Vouv) dady — fwovdxdy, (3.3)
R2 R2

for all u,v € Xj.
Let Ay be the Nehari manifold associated with ¢ by

No = {u € Xo\ {0} : (g (u), u) = 0}, (3.4)
where X is defined as the Hilbert space X. but endowed with the inner product
(u,v), = / (uzvy + D 'uy Dy Moy + Vouv) da dy, (3.5)
R2

and the corresponding norm

1/2
fallo = ([ | Quel? 4105 0, + Vi) dady) (36)

As in the previous section, the next lemma characterizes of the infimum of g
over Nj.
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Lemma 3.1. If the conditions (A1), (A4), (A5), (A9) hold, then, for each u € Xy
with u # 0, there exists a unique to = to(u) > 0 such that tou € Ny and po(tou) =
max;>o o (tu). Moreover, we have

0= Ry 0 = 6

where cy, is the minimaz level of Mountain Pass Theorem applied to @o, namely

— inf t
cvo = Inf max, wo(n(t)),

where T' = {n € C([0,1], Xo) : n(0) = 0 and ¢o(n(1)) < 0}.

The proof of the above lemma is similar to the proof of Lemma[2.2] We omit it.
The next lemma allows us to assume that the weak limit of a (PS Jev, Sequence is
nontrivial.

Lemma 3.2. If {wy,} is bounded in X. and there exist R > 0 and a sequence
(Tn,yn) € R? such that

lim sup/ lw, (z,y)|* do dy = 0.
Br((zn,yn))

n—oo
Then w,, — 0 strongly in LY(R?), for every 2 < q < 6.

Proof. First of all, we fix ¢ € (2,6). Given R > 0 and z € R? by standard
interpolation inequality and Sobolev embedding theorem, we obtain

lwnllLa(Br (=)

< Juall o N s oy
_ _ A/2
< csllwn||1Lg(*BR(z))(/B )+ D ), P+ Ve, ey drdy)
R(Z

where % + % = %.
Now, covering R? with balls of radius R, in such a way that each point of R? is

contained in at most 3 balls, we find that

(A—-XNq
/ a7 < 3Cs sup [ / w27 g | 29/2.
R2 z€R2 Br(z)

Under the assumption of the lemma, we have w,, — 0 in L9(R?). O

Lemma 3.3 ([10]). Let {w,} C Xo be a (PS)c,, sequence for o and such that
w, — 0 in Xg. Then, only one of the following alternatives holds.

(i) w, — 0 in Xy, or
(ii) there exist a sequence {(zn,yn)} C R? and constants R, 3 > 0 such that

n— oo

1iminf/ lw, | dz dy > B> 0.
Br((#n,yn))

Lemma 3.4. Let cy, > 0 and {wy} be a (PS).,, sequence for ¢o, then {wy,} is
bounded.
Proof. Assume that {w,} C Xo is a (PS)c,, sequence for ¢o. Then

wo(wy) = ey, and  @y(wy) — 0.
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Therefore, there exists Cy > 0 large enough such that

1

Ca(1+ llwnllo) 2 po(wn) = = (w0’ (wn),wn), ¥ €N (3.8)

On the other hand, by conditions (A10) and (2.9)), we have
_ !/

vo(wn) o+ 1900 (wn)wp

— G = pleali [ [ fwa)w, — Fw)]ded

= (G~ lwnllo M b Wy ) Wn, wy,)] dz dy

1 1

> (= — —— 2,

The above inequality proves that {w,} is bounded in Xj. a

Theorem 3.5. Suppose that (Al), (A4), (A5), (A7), (A9), (A10) are satisfied.
Then problem (3.1) has a positive ground-state solution.

Proof. Let {w,} C Xo be a (PS)c,, sequence for ¢g. By Lemma we know
that {w,} is bounded in Xy. Then, up to a subsequence, w, — w weakly in X,
wy, — w strongly in LY (R?),p € [2,6) and w,, — w a.e. in R?.

As in the proof of Lemma[2.1] we can easily prove that ¢ satisfies the Mountain
Pass Geometry. By the Mountain Pass Lemma (see [25]), there exists a Palais-Smale
sequence {w, } for g at the mountain pass level cy,. Moreover, w, — w in Xy and
w is a critical point of pg. From Lemma [3.2] we know that w # 0 and w € Nj.

Next we prove that w, — w strongly in Xy. From the semi-lower continuity of
norm, we have

i >
Tim fluflo > [fwll. (3.9)

Observe that we must have the above equality hold. Otherwise, by Fatou’s Lemma
we obtain

e, < olt) = ——(h(w),u)
- (5- %ﬂ) lwll? + %ﬂ [ Lfw)w— (o DF () dr dy
<timint{(5 = ) lnlld + =g [ (), — (@ + DF ()] dedy}

o (P _
= liminf (po(wn) — —— (o(wa). wa)) = cy;.

which is a contradiction. Thus, we conclude that up to a subsequence,
lim [[wylo = [[wllo- (3.10)
n—oo

So, the Brezis-Lieb Lemma [6] implies that w,, — w in Xj.

Last, we prove that the solution w is nonnegative. From (A7) and using —w™
as a testing function, we have

cofw)—u) = [ (jor P+ 105wy P+ Vol ) dody = 3 = 0. (311

where w™ = max{—w,0}. This implies that w > 0 in R? is a nonnegative weak
solution of (3.1)) and the proof is complete. a
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Then we consider § > 0 such that Ms C Q and choose n € C§°(R™,0,1])
satisfying
1, if0<s<4d/2
(s) = {0, if 5 > 6.

For each z € M = {x € Q: V(x) = Vp}, let v € R?, we define
Ve, (v) = (| (ev = 2)[Jw( )

EV — Z

€
and t. > 0 satisfying

I?zaé( 906(“/)6,2) = @s(taw&z)’

where w is a solution of (3.1]) such that ¢o(w) = cys.
We define ¢, : M — N by

¢€(z) = ts¢s,z~
Lemma 3.6. The function ¢. satisfies
liH(l) 0e(pe(2)) = ey, uniformly in z € M.
e—

Proof. Arguing by contradiction, we suppose that there exist § > 0, {z,} C M,
and €, — 0, such that

lpe,, (Pe, (2n)) — cvy| 2 6. (3.12)
Notice that for each n € N and for all v € B;/., (> ) we have e,v € Bs(z,). By
using the change of variables 7 := (e,v — 2z,,) /en, one easily has

Enl + 2y € Bs(2z,) C Ms C Q. (3.13)
and
Pen (¢5n (2n)) = Pen (tEn wemzn)
t2 2
= 7||w8mzn||e _/ G(‘Enxvgny’t%wsmzn) dx dy (314)
t2
= 6" In(lentw(@)]2 - / F(te,n(lenv|)w (7)) dz dy.
Since ¢¢, (2,) € N, and g = f in Q, we have
t2 |In(lenv)w(®)|2,
_/ g (enl + 2n, te, n(len?)w (D)) te, n(|en])w(V) dz dy (3.15)

/ £ (b n(len?)w(®)) te,n(len (@) da dy.

By (A5), if t., — oo, we obtain

g(ent,eny, te, Ve, 2,)
e, |, = [ SEmmEbtabondys  dra
R2 tsnwsn,zn

> _/ CO(tsndjsn,zn)q_Q gn,zn dx dy
Bs/2(0)

(3.16)
[ et nrlu) de dy
Bs2(0)

> Cot??c| B;2(0)] — oo.
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as te, — 0o. Where ¢ = inf,ep; ,0) w(u), and ¢ € (2,6) is given in (A5). But the
left side of the above inequality is bounded as ¢t., — oo. This yields a contradiction.
Hence, t., — to with tg > 0. Form and (A4), we see that ¢y > 0. Now we
prove a claim.

Claim. ty = 1. By using Lebesgue’s theorem, we can verify that

2 = [wl3 lm / Voo = / wdrdy,
lim f('(/}e,“zn wsmz” / f wdmdy

n—oo

nh—>H;o (R

Therefore, passing to limit in equality (3.15)), we have

w@)? = tim [ ST letenz)
n—oo JRr2 En,d)en,zn
i [ gt et rllen P ()
M oo Lo ) 07)
f(tow)

= 2 Lw? d dy.
R2 tow

V2 dxdy

EnsZn

dx dy (3.17)

Since w is a positive ground state of (1.2, we have that (I’(w),w) = 0, namely

w|? = /2 fw)wdx dy. (3.18)
Combining ([3.17)) and ( , we have
t
t‘o"_l 7]0( Ow)wo‘+1 drdy = 7f(w) wt da dy. (3.19)
R2 (tow)“ R2 w

Arguing as in the proof of uniqueness in Lemma we see that tg = 1 and we
obtain the claim.

Letting n — oo in (3.14)), we obtain lim. 0 -, (¢-, (zn)) = wo(w) = ¢y, which
contradicts to (3.12). This completes the proof. O

3.2. Multiplicity of solutions for . In this subsection we will relate the
number of solutions of to the topology of the set M. For this, the next
compactness result is fundamental for showing that the solutions of the modified
problem are solutions of the original problem.

Proposition 3.7 ([1]). Let e, — 0 and {w,} C N, be such that ., (w,) — cy,.
Then there exists a sequence {Z,} C R? such that v,(z) = wp(x + Z,) has a

convergent subsequence in Xg. Moreover, up to a subsequence, z, ‘= €,Z, — 29 €
M.

We now consider the following subset of the Nehari mainfold
NEOTME — fy € N - e (w) < ey + h(e)},

where h(e) = |pe(¢:(2)) — ey, is such that h(e) — 01 as e — 07. Thus, there
is a number ¢ > 0 such that for all € € (0,é), we have ¢.(z) € NEOTHE and
NECVO—HL(E) ¢®
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Let p = p(d) > 0 be such that Ms C B,(0). We define y : R* — R? as

x(x,y) = (z,y) for [(z,y)| < p and x(z,y) = p(z,y)/|(z,y)| for [(z,y)| = p. Let us
consider the barycenter map 3. : N. — R? be given by

_ Jee x(ew, ey)w? (2, y) du dy
Jpe w2 (z,y) dz dy

Since M C B,(0), by the definition of x and the Lebesgue’s theorem, we have

Be(w)

lin%) B:(¢:(2)) = z uniformly in z € M. (3.20)
e—

Lemma 3.8. For any § > 0, it holds that

lim  sup  dist(B:(w), Ms) = 0.
e—0 weN Vo e
The proof of the above lemma is similar to the proof of [13], Lemma 3.10]. We
omit its proof.

Theorem 3.9. Assume that conditions (Al), (A9), (A4), (A5), (A7), (A10) hold.
Then for each § > 0, there exists €5 > 0 such that, for any ¢ € (0,&s), problem
(2.10) have at least catpr, (M) positive solutions.

Proof. From Lemmas and and (13.20)), we see that the continuous mappings
below is well defined for ¢ € (0,8),

M 25 N0 Bs

From (3:20)), we can choose a function 6(e, z) with |0(e, z)| <  uniformly in z € M,
such that

B:(pe(2)) =2+0(,2) foralle e (0,€),z€ M.

We define H(t,z) = z+ (1 — t)0(¢,z). Then H : [0,1] x M — Mj is continuous.
Obviously, H(0,z) = Be(¢:(2)),H(1,2) = z for all z € M. That is, H(t,z) is a
homotopy between . o ¢. and the inclusion map Id : M — M;.

From the proof of [20, Theorem 1.1], it is easy to check that there exists a subset
A C N and we select suitably ¢ > ¢y, + h(e) such that

NCVO +h(€)

(i) A is not contractible in N; ,

(ii) A is contractible in NE.
The above properties imply that there exists a critical level between cy;, + h(e) and
¢. Therefore, there exists a number £5 > 0 small, then for e € (0,&5), it follows from
Lemma [2.5] that the functional ¢, restricted to N; satisfies the (PS) condition in
the interval (cy,, ¢y, + h(g)). Notice that the well known properties of the category
in [23] guarantee

cat(/\/scv°+h(5)) > catbyy, (M),

and the Ljusternik-Schnirelmann theory ensures the existence of at least cat(Nz +h(€))
critical points of ¢, in NZ"° +hle), Therefore, we conclude that ¢. admits at least

catz; (M) critical points in NV +hle), Moreover, from the proof of Theorem we
infer that these solutions of problem (2.10) are positive by a similar argument. O
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4. PROOF OF THEOREM [I.1]

In this section we shall prove our main result. The idea is to show that the
solutions obtained in Theorems and satisfy the estimate u. < a,Vx € R?\Q
for € small enough. This fact implies that these solutions are indeed solutions of
the original problem . The following lemma plays a fundamental role in the
study of behavior of the maximum points of the solutions.

Lemma 4.1. Let e, — 07 and w, € Ngc:“+h(5") be a solution of problem .
Then, up to a subsequence, there exists a sequence (T, y,) C R? such that 1, (z,y) =
W (Tr + 2,yn +y) satisfies that w,(z,y) = VYn(z,y) € L2°(R?), and there exists
Cs > 0 such that

lwn || ®2)y < Cs, for alln € N, (4.1)

where (Tp,Yn) = Zn 18 given in Proposition .

The proof of the above lemma is similar to the proof of [I3, Lemma 4.1]. We
omit it.

Proof of Theorem[I_1. At first, we fix a number 6 > 0 small such that Ms C Q.
Similar to the proof of [I3, Theorem 1.1], there exists €5 > 0 such that for any

e € (0,&5) and b > 0, then for any solution w. € N;V°+h(8) of problem ([2.10), it
holds

[we | oo (m2\02.) < b- (4.2)
Let €5 be given in Theorem and ¢ := min{&s,&5}. From Theorem F

we can know that there exists catys, (M) nontrivial solutions of problem (2.10) in

J\/';V‘)Jrh(a). If w € X, is one of these solutions, then w € N;V°+h(s), it follows from
and the definition of g that g(-,w) = f(w). Thus w is also a solution of the
original problem (L.2). Then has at least cat s, (M) nontrivial solutions. The
proof of Theorem [I.1]is complete. O
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