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EXISTENCE AND UNIQUENESS RESULTS FOR

FOURTH-ORDER FOUR-POINT BVP ARISING IN BRIDGE

DESIGN IN THE PRESENCE OF REVERSE ORDERED UPPER

AND LOWER SOLUTIONS

NAZIA URUS, AMIT K. VERMA

Abstract. In this article, we establish the existence of solutions for a fourth-
order four-point non-linear boundary value problem (BVP) which arises in

bridge design,

−y(4)(s)− λy′′(s) = F(s, y(s)), s ∈ (0, 1),

y(0) = 0, y(1) = δ1y(η1) + δ2y(η2),

y′′(0) = 0, y′′(1) = δ1y
′′(η1) + δ2y

′′(η2),

where F ∈ C([0, 1] × R,R), δ1, δ2 > 0, 0 < η1 ≤ η2 < 1, λ = ζ1 + ζ2, where
ζ1 and ζ2 are the real constants. We have explored all gathered 0 < ζ1 < ζ2,

ζ1 < 0 < ζ2, and ζ1 < ζ2 < 0. We extend the monotone iterative technique and

establish the existence results with reverse ordered upper and lower solutions
to fourth-order four-point non-linear BVPs.

1. Introduction

Higher order boundary value problems (BVP) play a vital role in studying various
branches of science and engineering, e.g., suspension bridge [18, 13]. The suspension
bridge is identified as a beam of length lb with fixed ends which are supported in
equilibrium position and is given as the solution of the steady state equation

EIy(4) + ζy+ = W (s), (1.1)

y(0) = y(lb) = y′′(0) = y′′(lb) = 0, (1.2)

where, E is Youngs’ modulus, I is moment of inertia, ζ is spring constant, W (s) is
weight per unit length, and y(s) denotes downward deflection. y+ denotes the y, if
y is positive, and zero if y is negative.

There have been extensive studies on fourth-order BVP via different techniques
such as fixed point theorem [2, 6, 14, 19, 21], upper and lower solutions (UL so-
lutions) method [12, 29], monotone iterative (MI) method [20, 22], etc. The fact
of sign-constancy of Green’s function for these class of BVPs can be used in the
frame of Azbelev W-transform [1, 4, 5] for equation of the forth order (1.1). The

2020 Mathematics Subject Classification. 34B10, 34B15, 34B16, 34B27, 34B60.
Key words and phrases. Monotone iterative technique; upper solutions; lower solutions;

fourth-order; non-linear; four-point; Green’s function.
©2023. This work is licensed under a CC BY 4.0 license.

Submitted March 17, 2023. Published August 4, 2023.

1



2 N. URUS, A. K. VERMA EJDE-2023/51

functional differential equation of second order can be obtained and then analysis
of positivity of Green’s function of obtained functional differential equation can be
achieved. For an alternative approach one can refer to [3].

The idea and realizations of the monotone iterative technique appeared first in
the classical work by Chaplygin [11]. Adventures of monotone iterative technique
were explained then by Luzin [24]. For the existence of solutions, method of UL
solutions is extensively used to develop MI technique on the second order BVP
[16, 17, 30, 33, 35, 36, 37, 38, 39]. There are also several research articles available
on higher order two-point BVP with MI technique [7, 8, 26, 32, 34, 42]. To the
best of our knowledge only few works are there on fourth-order four-point BVP
with monotone iterative technique [12, 25, 31, 43]. By using monotone iterative
technique Chen et al. [12] studied the existence of solution of fourth-order four-
point BVP with derivative independent non-linear function. The fourth-ordered
four-point BVP with derivative dependent non-linear function is also studied in
[25, 31, 43].

In this article, we develop MI technique to obtain existence of solution for the
four-point non-linear BVP

Ly ≡
(
− d(4)

ds(4)
− λ d

(2)

ds(2)

)
y = F(s, y(s)), 0 < s < 1,

B0(y) ≡ (y(0), y′′(0)) = (0, 0),

B1(y) ≡ y(1)− δ1y(η1)− δ2y(η2) = 0,

B2(y) ≡ y′′(1)− δ1y′′(η1)− δ2y′′(η2) = 0,

(1.3)

where f ∈ C([0, 1] × R,R), δ1, δ2 > 0, and 0 < η1 ≤ η2 < 1 are constants. The
parameter λ = ζ1 + ζ2, where ζ1, ζ2 are any real constants. A function y is said to
be a solution of (1.3), if y ∈ C4[0, 1], and satisfies (1.3) for all s ∈ [0, 1]. The above
ODE represents the model of the stationary state of the deflection of an elastic
beam [15, 10, 23].

To establish the existence of solution we use method of UL solutions and develop
MI technique in reverse order case. For this purpose, we obtain Green’s function,
solution of corresponding linear problem and its sign. Finding Green’s function and
its sign for fourth-order four-point BVP is a very difficult task. To accomplish this,
we introduce a linear operator and make this task less difficult. Since the existence
of UL solutions ensure the existence of a solution between them. However, even
for simple boundary conditions in higher order BVP, the usage of UL solutions is
significantly dependent on the sign of the corresponding linear operators [9].

Vrabel [40] considered the following fourth-order two-point BVP

y(4)(s) + λy(2)(s) + ζy(s) = F(s, y(s)), 0 < s < 1, (1.4)

y(0) = y′′(0) = y(1) = y′′(1) = 0, (1.5)

where λ = ζ1 + ζ2 and ζ = ζ1ζ2; ζ1, ζ2 ∈ R such that ζ1 < ζ2 < 0 and F is
a continuous and monotone decreasing with respect to y. To establish existence
results he formulated method of UL solution. Ma et al. [28] extended this theory for
the problem (1.4)-(1.5), where ζ1 < 0 < ζ2 < π2. They established method of UL
solution by introducing linear operator. Ma et al. [27] further generalized method
of UL solution for fourth-order BVP (1.4)-(1.5), where ζ1, ζ2 ∈ (0, π2). In the above
articles Vrabel [40] and Ma et al. [27, 28] have only focused on positivity of Green’s



EJDE-2023/51 FOURTH-ORDER FOUR-POINT BVP 3

function. Wang et al. [41] considered BVP (1.4) with the boundary conditions

y′(0) = y′′′(0) = y′(1) = y′′′(1) = 0, (1.6)

where the non-linear function F(s, y(s)) = βg(s, y(s)), with β > 0. They discussed
the existence of positive solutions for more general condition than imposed by
Vrabel [40] and Ma et al. [28, 27]. Here, Wang et al. [41] established their result in
three gathered, where 0 < ζ1 < ζ2, ζ1 < 0 < ζ2 and ζ1 < ζ2 < 0.

Inspired by above articles we study the existence of solution of fourth-order
four-point non-linear BVP (1.3). This article generalizes and improves the result
of Vrabel [40], Ma et al. [27, 28], and Wang et al. [41] to a class of four-point BVP
for all three gathered, when 0 < ζ1 < ζ2, ζ1 < 0 < ζ2 and ζ1 < ζ2 < 0.

This article, is divided into 6 sections. In section 2, we develop approximating
schemes for corresponding linear BVP and give some important assumptions which
we need through out this article. In sections 3, 4, and 5, we study Green’s function,
anti-maximum principle and existence theorem for three gathered 0 < ζ1 < ζ2,
ζ1 < 0 < ζ2, and ζ1 < ζ2 < 0, respectively. In these sections, we also validate our
technique by constructing some numerical illustrations. Section 6, is devoted to
conclusions.

2. Preliminaries

In this section, we develop iterative scheme and impose conditions which we need
through out this article. To study the existence of solution we first linearize BVP
(1.3) and consider corresponding nonhomogeneous linear BVP

(L− ζ)y(s) = h(s), 0 < s < 1, (2.1)

B0(y) = (0, 0), B1(y) = c1, B2(y) = c2, (2.2)

where B0, B1, B2 are B.C. defined in (1.3), ζ = ζ1ζ2, h(s) = F(s, y(s)) − ζy(s) ∈
C[0, 1], and c1, c2 are any real constants.

Now we define two iterative sequences with initial guesses of l0(s) and u0(s) as
follows

(L− ζ)ln+1(s) = F(s, ln(s))− ζln(s), 0 < s < 1, n ∈ N,
B0(ln+1, l

′′
n+1) = (0, 0), B1(ln+1) = 0, B2(ln+1) = 0.

(2.3)

(L− ζ)un+1(s) = F(s, un(s))− ζun(s), 0 < s < 1, n ∈ N,
B0(un+1, l

′′
n+1) = (0, 0), B1(un+1) = 0, B2(un+1) = 0.

(2.4)

Assumptions: We assume the following conditions on non-linear term F
(A1) Let DF := {(s, y) ∈ [0, 1] × R : u0 ≤ y ≤ l0}, there exists a pair of UL

solutions l0(s) and u0(s) such that u0(s) ≤ l0(s).
(A2) The function F : DF → R is continuous on DF .
(A3) There exists a constant M ≥ 0 in the region DF such that for all (s, yi) ∈

DF , where i = 1, 2,

if ζ > 0, y1 ≤ y2 ⇒ F(s, y2)−F(s, y1) ≤M(y2 − y1). (2.5)

if ζ < 0, y1 ≤ y2 ⇒ F(s, y2)−F(s, y1) ≤ −M(y2 − y1). (2.6)
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3. Reverse order MI technique when 0 < ζ1 < ζ2

In this section, first we obtain Green’s function and anti-maximum principle
(AMP) for corresponding linear BVP (2.1)-(2.2). Based on AMP we discuss the
qualitative properties of linear BVP (2.1)-(2.2) and define UL solutions for non-
linear BVP (1.3) when 0 < ζ1 < ζ2. Consequently, we conclude the existence
results for the non-linear BVP (1.3).

3.1. Linear BVP. Let E = C[0, 1] be the Banach space of continuous function
defined on [0, 1], with its usual normal ‖ · ‖. Denote

ζ1 = r2 and ζ2 = m2, (3.1)

with some r,m > 0. We substitute the above values of (3.1) in the linear BVP (2.1)-
(2.2) and then to obtain Green’s function we consider a corresponding homogeneous
linear BVP

y(4)(s) + (m2 + r2)y(2)(s) + r2m2y(s) = 0, 0 < s < 1, (3.2)

B0(y) = (0, 0), B1(y) = 0, B2(y) = 0. (3.3)

We define L∗ : D(L∗)→ E, a linear operator such that

L∗y := y(4)(s) + (m2 + r2)y(2)(s) + r2m2y(s), y ∈ D(L∗), (3.4)

with domain

D(L∗) := {y ∈ C4[0, 1] : B0(y) = (0, 0), B1(y) = 0, B2(y) = 0}. (3.5)

To construct G(s, x) for the BVP (3.2)-(3.3), let us define two linear operators L1

and L2 as follows

L1y := y′′(t) + r2y(t), y ∈ D(L1), (3.6)

L2y := y′′(t) +m2y(t), y ∈ D(L2), (3.7)

where

D(L1) := {y ∈ C2[0, 1] : y(0) = 0, B1(y) = 0}, (3.8)

D(L2) := {y ∈ C2[0, 1] : y(0) = 0 B1(y) = 0}. (3.9)

Lemma 3.1. Assume that r,m ∈ (0, π/2) and that the following assumption is
fulfilled

Dl = δ1 sin(η1l) + δ2 sin(η2l)− sin(l) 6= 0, where l = m or r. (3.10)

Then G(s, x) : [0, 1]× [0, 1]→ R of linear fourth-order BVP (3.2)-(3.3) is given by

G(s, x) =

∫ 1

0

Gm(s, t)Gr(t, x)dt, (s, x) ∈ [0, 1]× [0, 1], (3.11)
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where Gr(t, x) and Gm(t, x) are Green’s function of (3.6)-(3.8) and (3.7)-(3.9),
respectively, given as

Gl(t, x) =
1

lDl



sin(lt)(δ1 sin(l(x− η1)) + δ2 sin(l(x− η2)) + sin(l − lx))

if 0 ≤ t ≤ x ≤ η1;

sin(lx)(δ1 sin(l(t− η1)) + δ2 sin(l(t− η2)) + sin l(1− t))
if 0 ≤ x ≤ t ≤ η1;

sin(lt)(δ2 sin(l(x− η2)) + sin l(1− x)) if η1 ≤ t ≤ x ≤ η2;

−δ1 sin(η1l) sin(l(x− t)) + sin(lx)(δ2 sin(l(t− η2)) + sin l(1− t))
if η1 ≤ x ≤ t ≤ η2;

sin l(1− x) sin(lt) if η2 ≤ t ≤ x ≤ 1;

sin(lt)(sin l(1− x) +Dl cos(lx))−Dl sin(lx) cos(lt)

if η2 ≤ x ≤ t ≤ 1.

(3.12)

Proof. Since L∗ is a linear operator, it can be easily proved that L∗y = L2(L1)y
and hence the Green’s function of (3.2)-(3.3) is

G(s, x) =

∫ 1

0

Gm(s, t)Gr(t, x)dt, (s, x) ∈ [0, 1]× [0, 1]. (3.13)

For brevity, we skip the proof of (3.13). For details of the proof we refer the articles
of Ma et al. [27] and to Wang et al. [41].

In equation (3.13), Gr(t, x) and Gm(t, x) are Green’s functions of (3.6)-(3.8) and
(3.7)-(3.9), respectively, given as

Gl(t, x) =



a1 sin(lt) + a2 cos(lt), 0 ≤ t ≤ x ≤ η1,
a3 sin(lt) + a4 cos(lt), 0 ≤ x ≤ t ≤ η1,
a5 sin(lt) + a6 cos(lt), η1 ≤ t ≤ x ≤ η2,
a7 sin(lt) + a8 cos(lt), η1 ≤ x ≤ t ≤ η2,
a9 sin(lt) + a10 cos(lt), η2 ≤ t ≤ x ≤ 1,

a11 sin(lt) + a12 cos(lt), η2 ≤ x ≤ t ≤ 1,

(3.14)

where

a1 = a5 = a9 = 0, a3 = a7 = a11 = − sin(lx)

l
,

a2 =
1

lDl
(δ1 sin(l(x− η1)) + δ2 sin(l(x− η2)) + sin l(1− x)),

a4 =
−1

lDl
(sin(lx)(−δ1 cos(η1l)− δ2 cos(η2l) + cos(l))),

a6 =
1

lDl
(δ2 sin(l(x− η2)) + sin l(1− x)),

a8 =
1

lDl
(δ1 sin(η1l) cos(lx) + sin(lx)(δ2 cos(η2l)− cos(l))),

a10 =
1

lDl
(sin l(1− x)),
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a12 =
1

lDl
(sin l(1− x) +Dl cos(lx)).

Substituting the above values of ai, i = 1, 2, . . . , 12 in (3.14), we obtain the Green’s
function Gl(t, x) of (3.6) and (3.8) and (3.7) and (3.9) that is given in equation
(3.12). �

Lemma 3.2. Assume that r,m ∈ (0, π2 ). Then G(s, x) of fourth-order BVP (3.2)-
(3.3) given by expression (3.11) is nonnegative on [0, 1] × [0, 1] if and only if 0 <
δ1 + δ2 < 1.

Proof. From equation (3.11) we observe that sign of G(s, x) of (3.2)-(3.3) follows
from sign of Green’s function Gm(s, t) and Gr(t, x) given by equation (3.12).

Given that δ1 + δ2 < 1, applying properties of sinx, we have

−(δ1 + δ2) sin l(x− η2) ≤ sin l(1− x),

sin l(1− x) + δ2 sin l(x− η2) ≥ 0, and Dl < 0.

Using the above inequalities in (3.12), we obtain that

Gl(t, x) ≤ 0, (t, x) ∈ [0, 1]× [0, 1].

Hence from (3.11), we have G(s, x) ≥ 0 on [0, 1]× [0, 1]. In a similar fashion we can
prove that the converse is also true. �

Lemma 3.3. Assume that r,m ∈ (0, π/2) such that m2−r2 6= 0 and Dl 6= 0. Then
the solution y ∈ C4[0, 1] of linear fourth-order non homogeneous BVP (2.1)-(2.2)
is

y(s) =
Ny(s)

(m2 − r2)DmDr
−
∫ 1

0

G(s, x)h(x)dx, (3.15)

where Ny(s) = Dr(c2 + c1r
2) sin(ms) − Dm(c2 + c1m

2) sin(rs) and the Green’s
function G : [0, 1]× [0, 1]→ R is given by equation (3.13).

Proof. Let ỹ1(s) ∈ C2[0, 1] be the solution of BVP (2.1)-(2.2), where h(s) = 0 and
c1, c2 6= 0. Hence, we have

ỹ1(s) =
Ny(s)

(m2 − r2)DmDr
, (3.16)

where m2 − r2, Dl 6= 0. Again, let ỹ2(s) ∈ C2[0, 1] be the solution of BVP (2.1)-
(2.2), where h(s) 6= 0 and c1 = c2 = 0. Hence, we have

ỹ2(s) = −
∫ 1

0

G(s, x)h(x)dx. (3.17)

Now, the solution y ∈ C4[0, 1] of linear fourth-order non homogeneous BVP (2.1)-
(2.2) can be written as

y(s) = ỹ1(s) + ỹ2(s).

Substituting the values of ỹ1(s) and ỹ2(s) in the above expression we obtain the
final result. �
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Anti-maximum principle.

Proposition 3.4. Let r,m ∈ (0, π2 ) such that m2 − r2 > 0, Dl 6= 0, and 0 <
δ1 + δ2 < 1. Further let h(s) ≥ 0 on s ∈ [0, 1], and the constants c1, c2 ≤ 0, then
the solution y ∈ C4[0, 1] of linear fourth-order non homogeneous BVP (2.1)-(2.2)
given by (3.15) is nonpositive for all s ∈ [0, 1].

Proof. Given that h(s) ≥ 0, from Lemma 3.2, we have G(s, x) ≥ 0. Now to prove
that y(s) ≤ 0, it remains to prove that ỹ1(s) ≤ 0, defined by equation (3.16).

Clearly,m2 − r2 > 0 and Dm, Dr < 0, if 0 < δ1 + δ2 < 1, hence it is sufficient to
prove that Ny(s) ≤ 0. Using properties of sin s, we deduce that

Ny(s) ≤ sin(rs)(c2(Dr −Dm) + c1(r2Dr −m2Dm)).

Applying r < m, we obtain (Dr−Dm) ≥ 0, r2Dr−m2Dm ≥ 0, and since c1, c2 ≤ 0,
we obtain the desired result, i.e., y(s) ≤ 0. �

3.2. Non-linear BVP. In this subsection, we establish MI technique in RO case to
solve the four-point fourth-order non-linear BVP (1.3). To do so, we first introduce
the concepts of UL solutions u(s) and l(s), respectively for the BVP (1.3) such that
u(s) ≤ l(s).

Definition 3.5. A function l(s) ∈ C4[0, 1] is called lower solution of fourth-order
non-linear BVP (1.3), if it satisfies

Ll(s) ≤ F(s, l(s)), 0 < s < 1,

B0(l) = (0, 0), B1(l) ≥ 0, B2(l) ≥ 0.
(3.18)

Definition 3.6. A function u(s) ∈ C4[0, 1] is called upper solution of fourth-order
non-linear BVP (1.3), if it satisfies

Lu(s) ≥ F(s, u(s)), 0 < s < 1,

B0(u) = (0, 0), B1(u) ≤ 0, B2(u) ≤ 0.
(3.19)

Theorem 3.7. Assume 0 < ζ1 < ζ2 and 0 < δ1 + δ2 < 1. Let l0(s) and u0(s) ∈
C4[0, 1] exist such that u0(s) ≤ l0(s) satisfy (3.18) and (3.19), respectively. If the
non-linear function F is such that it satisfies (A1)–(A3), then (2.1)-(2.2) has at
least one solution in the region DF . Further, if there exist a constant ζ > 0 such that
ζ −M1 ≥ 0, then the sequences un(s) generated by (2.4), with initial iterate u0(s)
converge monotonically non-decreasing and uniformly towards a solution w2(s) of
fourth-order BVP (2.1)-(2.2).

Similarly, using l0(s) as an initial iterates leads to a non increasing sequence
ln(s) generated by (2.3) converging monotonically decreasing and uniformly towards
a solution w1(s) of fourth-order BVP (2.1)-(2.2). Every solution y(s) in DF must
satisfy

w2(s) ≤ y(s) ≤ w1(s).

Proof. We prove this theorem in three steps by using the principle of mathematical
induction.

Step 1: For n = 0, we have that u(s) = u0(s) satisfies inequality (3.19) and from
equation (2.4), we have

(L− ζ)(u0 − u1)(s) ≥ 0,

B0(u0 − u1) = (0, 0), B1(u0 − u1) ≤ 0, B2(u0 − u1) ≤ 0.
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From the anti-maximum principle 3.4, we obtain u0 ≤ u1.

Step 2: Let us assume that un ≤ un+1. Since F(s, y) satisfies (2.5), we have

F(s, un+1)−F(s, un) ≤M(un+1 − un).

Now from (2.4), in view of ζ −M ≥ 0, we arrive at

Lun+1(s) ≥ (ζ −M)(un+1 − un) + F(s, un+1) ≥ F(s, un+1),

B0(un+1 − un) = (0, 0),

B1(un+1 − un) = 0, B2(un+1 − un) = 0.

(3.20)

Using (3.20) with n = 0, in (2.4) for n = 1, we obtain

(L− ζ)(u1 − u2)(s) ≥ 0,

B0(u1 − u2) = (0, 0), B1(u1 − u2) = 0, B2(u1 − u2) = 0.

From anti-maximum principle 3.4, we obtain u1 ≤ u2.

Step 3: To prove u1 ≤ lo, we use (3.18) and (2.4) for n = 0. Also, in view of
u0 ≤ l0 using inequality (2.5) we have

(L− ζ)(u1 − l0)(s) ≥ 0,

B0(u1 − l0) = (0, 0), B1(u1 − l0) ≤ 0, B2(u1 − l0) ≤ 0.

Hence, u1 ≤ l0.

Step 4: Now by assuming un+1 ≥ un and un+1 ≤ l0, we show that un+2 ≥ un+1

and un+2 ≤ l0. Using inequality (3.20) in (2.4) for n = n+1 we can easily prove that
un+2 ≥ un+1. Now in view of ζ −M ≥ 0, applying inequality (2.5) for un+1 ≤ l0,
we have

F(s, l0)− ζl0 ≤ F(s, un+1)− ζun+1. (3.21)

Using (3.21) in equation (2.4) for n = n+ 1, we obtain

(L− ζ)(un+2 − l0)(s) ≥ 0,

B0(un+2 − l0) = (0, 0), B1(un+2 − l0) ≤ 0, B2(un+2 − l0) ≤ 0.

From the anti-maximum principle 3.4, we obtain un+2 ≤ l0. Hence

u(s) = u0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ · · · ≤ l0, (3.22)

Step 5: Similarly, we deduce that

u0 ≤ · · · ≤ ln+1 ≤ ln ≤ · · · ≤ l1 ≤ l0 = l(s). (3.23)

Step 6: Finally, by assuming that un ≤ ln we show that un+1 ≤ ln+1. Subtracting
equation (2.3) and (2.4) and applying Lipschitz condition we obtain,

(L− ζ)(un+1 − ln+1)(s) ≥ (ζ −M)(un − ln)(s) ≥ 0,

B0(un+1 − ln+1) = (0, 0),

B1(un+1 − ln+1) = 0, B2(un+1 − ln+1) = 0.

Hence, un+1 ≤ ln+1.
Thus we arrive at, the sequences ln and un such that

u0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ · · · ≤ ln+1 ≤ ln ≤ · · · ≤ l1 ≤ l0. (3.24)
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Using Dini’s theorem we prove that the sequences of UL solutions are uniformly
convergent. Let

w1(s) = lim
n→∞

ln(s), and w2(s) = lim
n→∞

un(s). (3.25)

Taking limit as n→∞ on both sides of solution of (2.3), we obtain

lim
n→∞

ln(s) = lim
n→∞

(
ỹ1(s)−

∫ 1

0

G(s, x)(F(x, ln(x))− ζln(x))dx
)
.

Then

w1(s) = ỹ1(s)−
∫ 1

0

G(s, x)(F(x, l(x))− ζl(x))dx.

Similarly, we deduce that

w2(s) = ỹ1(s)−
∫ 1

0

G(s, x)(F(x, u(x))− ζu(x))dx,

where ỹ1(s) is given by (3.16). These are the solutions of fourth-order linear BVP
(2.1)-(2.2). Any solution y(s) in DF can play the role of l0(s) and u0(s), hence we
obtain

w2(s) ≤ y(s) ≤ w1(s).

�

Theorem 3.8 (Uniqueness). Let ζ > 0. Suppose that F(s, y) satisfies conditions
(A1), (A2) and there is a constant 0 < M3 < π2/4 such that

F(s, y1)−F(s, y2) ≥M3(y1 − y2). (3.26)

Then the non-linear BVP (1.3) has unique solution.

Proof. Let y = y1 − y2. Then y satisfies

L(y1 − y2)−M3(y1 − y2) ≥ 0.

Applying anti-maximum principle 3.4, we obtain y1 ≤ y2. Similarly we can prove
y1 ≥ y2 by taking y = y2−y1. Hence we have the required result as y2 = y1. Hence
we obtain unique solution y of non-linear BVP (1.3). �

3.3. Numerical illustrations.

Example 3.9 (Reverse order case). Consider the four-point non-linear BVP

−y(4)(s)− λy(2)(s)− ζy(s) =
es − 1

15
y3 + sin(2s),

y(0) = 0, y(1) = 0.5y(0.2) + 0.4y(0.5),

y′′(0) = 0, y′′(1) = 0.5y′′(0.2) + 0.4y′′(0.5),

(3.27)

where λ = ζ1 + ζ2 = 3/2.
We define initial lower solution

l0(s) =
s

2
(1 +

1

3
s3)

and initial upper solution

u0(s) = −s(2 +
1

2
s2)

such that u0(s) ≤ l0(s). With the help of (P3) we obtain Lipschitz constant M =
0.23865. Now using ζ−M ≥ 0 we obtain, ζ ≥ 0.23865, the range for the convergence
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of iterative sequences of UL solution of non-linear BVP (3.27). In Figure 1, we can
see that for ζ = 1/2, where ζ1 = 1/2, ζ2 = 1 such that ζ1 + ζ2 = 3/2, the sequences
of UL solution ln(s) and un(s), n = 0, 1, 2, are monotonically converging to the
solution of non-linear BVP (3.27) for suitable choices of ζ1, ζ2.

l1(s)

l2(s)

u1(s)

u2(s)

l0(s)

u0(s)

0.2 0.4 0.6 0.8 1.0
s

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

(ln,un)

Figure 1. Plots of sequences of UL solution ζ = 1/2, n = 3.

4. Reverse order MI technique when ζ1 < 0 < ζ2

In this section, we construct solution of BVP (2.1)-(2.2) and AMP. Further, we
establish MI technique in reverse order case to solve the four-point fourth-order
non-linear BVP (1.3).

Let

ζ1 = −r2 and ζ2 = m2, (4.1)

with some r,m > 0. We put the above values of (4.1) in the linear BVP (2.1)-(2.2)
and then to obtain Green’s function let us consider a corresponding homogeneous
linear BVP

y(4)(s) + (m2 − r2)y(2)(s)− r2m2y(s) = 0, 0 < s < 1,

B0(y) = (0, 0), B1(y) = 0, B2(y) = 0.
(4.2)

Define L∗ : D(L∗)→ E, such that

L∗y := y(4)(s) + (m2 − r2)y(2)(s)− r2m2y(s), y ∈ D(L), (4.3)

with domain

D(L∗) := {y ∈ C4[0, 1] : B0(y) = (0, 0), B1(y) = 0, B2(y) = 0}. (4.4)

To construct G(s, x) for the BVP (4.2) let us first define

L1y := y′′(t)− r2y(t), y ∈ D(L1), (4.5)

L2y := y′′(t) +m2y(t), y ∈ D(L2), (4.6)

where L1, L2 are linear operators and

D(L1) := {y ∈ C2[0, 1] : y(0) = 0, B1(y) = 0}, (4.7)

D(L2) := {y ∈ C2[0, 1] : y(0) = 0, B1(y) = 0}. (4.8)



EJDE-2023/51 FOURTH-ORDER FOUR-POINT BVP 11

Lemma 4.1. Assume that m ∈ (0, π/2) and r ∈ (0,∞). Also assume that

D′r = δ1 sinh(η1r) + δ2 sinh(η2r)− sinh(r) 6= 0, and Dm 6= 0, (4.9)

where Dm is given by (3.10). Then the G(s, x) : [0, 1]× [0, 1]→ R of linear fourth-
order BVP (4.2) is expressed as

G(s, x) =

∫ 1

0

Gm(s, t)G′r(t, x)dt, (s, x) ∈ [0, 1]× [0, 1], (4.10)

where G′r(t, x) and Gm(t, x) are Green’s functions of (4.5), (4.7) and (4.6), (4.8),
respectively. The Green’s function Gm(t, x) is given by (3.12) and G′r(t, x) is

G′r(t, x) =
1

rD′r



sinh(rt)(δ1 sinh(r(x− η1)) + δ2 sinh(r(x− η2)) + sinh r(1− x))

quadif 0 ≤ t ≤ x ≤ η1
sinh(rx)(δ1 sinh(r(t− η1)) + δ2 sinh(r(t− η2)) + sinh r(1− t))

if 0 ≤ x ≤ t ≤ η1,

sinh(rt)(δ2 sinh(r(x− η2)) + sinh r(1− x)) if η1 ≤ t ≤ x ≤ η2,

−δ1 sinh(η1r) sinh(r(x− t)) + sinh(rx)(δ2 sinh(r(t− η2))

+ sinh r(1− t)) if η1 ≤ x ≤ t ≤ η2,

sinh r(1− x) sinh(rt) if η2 ≤ t ≤ x ≤ 1,

sinh r(1− x) sinh(rt)−Dr sinh(r(x− t)) if η2 ≤ x ≤ t ≤ 1.

(4.11)

For a proof of the above lemma, see the proof of lemma 3.1.

Lemma 4.2. Assume that m ∈ (0, π2 ) and r ∈ (0,∞). Then G(s, x) of BVP (4.2)
given by expression (4.10) is nonnegative on [0, 1]× [0, 1] if and only if 0 < δ1+δ2 <
1.

The proof of the above lemma is similar to the proof of lemma 3.2. We omit it.

Lemma 4.3. Assume that r ∈ (0,∞) and m ∈ (0, π2 ) such that DmD
′
r 6= 0. Then

the solution y ∈ C4[0, 1] of the linear fourth-order non homogeneous BVP (2.1)-
(2.2) is

y(s) =
−1

(m2 + r2)

[ sin(ms)(c1r
2 − c2)

Dm
+

sinh(rs)(c1m
2 + c2)

D′r

]
−
∫ 1

0

G(s, x)h(x)dx,

(4.12)

where the G(s, x) is given by (4.10).

The above lemma follows from Lemma 3.3.

Proposition 4.4 (Anti-maximum principle). Let r ∈ (0,∞) and m ∈ (0, π2 ) such
that DmD

′
r 6= 0. Further, assume that h(s) ≥ 0 and the c1 ≤ 0, c2 ≥ 0, and δ1+δ2 <

1. Then the solution y ∈ C4[0, 1] of the linear fourth-order non homogeneous BVP
(2.1)-(2.2) given by (4.12) is nonpositive for all s ∈ [0, 1].

Proof. Since δ1 + δ2 < 1, we obtain that Dm and D′r < 0. Also since c1 ≤ 0 and
c2 ≥ 0, the result can be concluded easily. �

In this case the UL solutions are defined as follows.
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Definition 4.5 (Lower solution). A function l(s) is known as lower solution of
fourth-order non-linear BVP (1.3), if l(s) ∈ C4[0, 1] and it satisfies the following
conditions

Ll(s) ≤ F(s, l(s)), 0 < s < 1,

B0(l) = (0, 0), B1(l) ≥ 0, B2(l) ≤ 0.
(4.13)

Definition 4.6 (Upper solution). A function u(s) is known as upper solution of the
fourth-order non-linear BVP (1.3), if u(s) ∈ C4[0, 1] and it satisfies the following
conditions

Lu(s) ≥ F(s, u(s)), 0 < s < 1,

B0(u) = (0, 0), B1(u) ≤ 0, B2(u) ≥ 0.
(4.14)

Theorem 4.7. Assume ζ1 < 0 < ζ2 and δ1 + δ2 < 1. Also assume there exist
l0(s) and u0(s) ∈ C4[0, 1] such that u0(s) ≤ l0(s) satisfying (4.13) and (4.14),
respectively. If the non-linear function F is such that it satisfies (A1)–(A3), then
(2.1)-(2.2) has at least one solution in the region DF . Further, if there exists a
constant ζ > 0 such that ζ+M ≥ 0, then the monotonically non decreasing sequence
un(s) generated by (2.4), with initial iterate u0(s) converges uniformly towards a
solution w2(s) of the fourth-order BVP (2.1)-(2.2).

Similarly, using l0(s) as an initial iterate leads to a monotonically non-increasing
sequence ln(s) generated by (2.3) converging uniformly towards a solution w1(s) of
fourth-order BVP (2.1)-(2.2). Any solution y(s) in DF must satisfy

w2(s) ≤ y(s) ≤ w1(s).

The proof of the above theorem follows from the proof of Theorem 3.7.

Theorem 4.8 (Uniqueness). Let ζ < 0. Suppose that F(s, y) satisfies (A1), (A2)
and that there is a constant M3 > 0 such that

F(s, y1)−F(s, y2) ≥ −M3(y1 − y2), (4.15)

then the non-linear BVP (1.3) has unique solution.

The proof of the above theorem follows from proof of theorem 3.8.

4.1. Numerical illustrations.

Example 4.9 (Reverse order case). Consider the four-point non-linear BVP

−y(4)(s)− λy(2)(s)− ζy(s) = −11e+ 25e−y,

y(0) = 0, y(1) = 0.4y(0.7) + 0.4y(0.8),

y′′(0) = 0, y′′(1) = 0.4y′′(0.7) + 0.4y′′(0.8),

(4.16)

where λ = ζ1 + ζ2 = −1/2.
We define initial lower solution l0(s) = s(4− 3s2 + s3) and initial upper solution

u0(s) = s4

40 (s−2) such that u0(s) ≤ l0(s). With the help of (A3) we obtain Lipschitz
constants M = 3.126. Now using ζ + M ≥ 0 we obtain, ζ ≥ −3.126, the range for
the convergence of iterative sequences of UL solution of non-linear BVP (4.16). We
can see in figure 2, for ζ = −1/2, where ζ1 = −1, ζ2 = 1/2 such that ζ1 +ζ2 = −1/2
and n = 6 the sequences of UL solution monotonically converge to the solution for
suitable choices of ζ1 and ζ2.
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l1(s)

l2(s)

l3(s)

l4(s)

l5(s)

u1(s)

u2(s)

u3(s)

u4(s)

u5(s)

l0(s)

u0(s)
0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

(ln,un)

Figure 2. Plots of sequences of UL solution ζ = −1/2, n = 6.

5. Reverse order MI technique when ζ1 < ζ2 < 0

Let
ζ1 = −r2 and ζ2 = −m2, (5.1)

with some r,m > 0. Let us consider a corresponding fourth-order four-point linear
BVP with non homogeneous boundary conditions

y(4)(s)− (m2 + r2)y(2)(s) + r2m2y(s) = 0, 0 < s < 1,

B0(y) = (0, 0), B1(y) = 0, B2(y) = 0.
(5.2)

Define L∗ : D(L∗)→ E,

L∗y := y(4)(s)− (m2 + r2)y(2)(s) + r2m2y(s), y ∈ D(L), (5.3)

with domain

D(L∗) := {y ∈ C4[0, 1] : B0(y) = (0, 0), B1(y) = 0, B2(y) = 0}. (5.4)

To construct G(s, t) for the BVP (5.2) let us first define

L1y := y′′(t)− r2y(t), y ∈ D(L1), (5.5)

L2y := y′′(t)−m2y(t), y ∈ D(L2), (5.6)

where

D(L1) := {y ∈ C2[0, 1] : y(0) = 0, B1(y) = 0}, (5.7)

D(L2) := {y ∈ C2[0, 1] : y(0) = 0, B1(y) = 0}. (5.8)

Lemma 5.1. Assume that m, r ∈ (0,∞). Also assume that

D′l = δ1 sinh(η1r) + δ2 sinh(η2r)− sinh(r) 6= 0, l = m or r. (5.9)

Then the G(s, x) : [0, 1] × [0, 1] → R of linear fourth-order BVP (5.2) is expressed
as

G(s, x) =

∫ 1

0

G′m(s, t)G′r(t, x)dt, (s, x) ∈ [0, 1]× [0, 1], (5.10)

where G′l(t, x), l = m/r, is Green’s function of (5.5) and (5.6) with boundary con-
dition (5.7) and (5.8) is given by (4.11), where r = m.
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Lemma 5.2. Assume that r,m ∈ (0,∞). Then G(s, x) of BVP (5.2) given by
(5.10) is nonnegative on [0, 1]× [0, 1] if and only if 0 < δ1 + δ2 < 1.

Lemma 5.3. Assume that m, r ∈ (0,∞) such that DmD
′
r(m

2 − r2) 6= 0. Then the
solution y ∈ C4([0, 1]) of linear fourth-order non homogeneous BVP (2.1)-(2.2) is

y(s) =
1

(m2 − r2)

[ sinh(ms)(c1r
2 − c2)

D′m
+

sinh(rs)(c2 − c1m2)

D′r

]
−
∫ 1

0

G(s, x)h(x)dx,

(5.11)

where G(s, x) is given by (5.10).

Remark 5.4. Since m2 < r2 we have (m2 − r2) < 0. Also since we have D′l < 0,
for both l = m and r, we obtain that D′r < D′m.

Anti-maximum principle.

Proposition 5.5. Let m, r ∈ (0,∞) such that (m2−r2) < 0. Further h(s) ≥ 0 and
the constants c1, c2 ≥ 0 and 0 < δ1 + δ2 < 1 then the solution y ∈ C4[0, 1] of linear
fourth-order non homogeneous BVP (2.1)-(2.2) given by (5.11) is non-negative for
all s ∈ [0, 1].

Proof. Since δ1 + δ2 < 1 and m2 < r2 we deduce that (m2 − r2) < 0, D′l < 0
and D′r < D′m. Using properties of sinh s and c1, c2 ≥ 0 we obtain the desired
result. �

In this case lower solution l(s) and upper solution u(s) such that u(s) ≤ l(s) are
defined as follows

Definition 5.6 (Lower solution). A function l(s) is known as lower solution of
fourth-order non-linear BVP (1.3), if l(s) ∈ C4[0, 1] and it satisfies the following
conditions

Ll(s) ≤ F(s, l(s)), 0 < s < 1,

B0(l) = (0, 0), B1(l) ≤ 0, B2(l) ≤ 0.
(5.12)

Definition 5.7 (Upper solution). A function u(s) is known as an upper solution of
the fourth-order non-linear BVP (1.3), if u(s) ∈ C4[0, 1] and it satisfies the following
conditions

Lu(s) ≥ F(s, u(s)), 0 < s < 1,

B0(u) = (0, 0), B1(u) ≥ 0, B2(u) ≥ 0.
(5.13)

Theorem 5.8 (Reverse order). Assume ζ1 < ζ2 < 0 and δ1 + δ2 < 1. Let l0(s)
and u0(s) ∈ C4[0, 1] exist such that u0(s) ≤ l0(s) satisfying (5.12) and (5.13),
respectively. If the non-linear function F is such that it satisfies (A1)–(A3), then
(2.1)-(2.2) has at least one solution in the region DF . Further, if there exists a
constant ζ > 0 such that ζ − M ≥ 0. Then the monotonically non decreasing
sequence un(s) generated by (2.4), with initial iterate u0(s) converges uniformly
towards a solution w2(s) of the fourth-order BVP (2.1)-(2.2).

Similarly, using l0(s) as an initial iterates leads to a non increasing sequence
ln(s) generated by (2.3) converging monotonically decreasing and uniformly towards
a solution w1(s) of the fourth-order BVP (2.1)-(2.2). Every solution y(s) in DF
must satisfy

w2(s) ≤ y(s) ≤ w1(s).
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The proof of the above theorem follows from the proof of Theorem 3.7.

Theorem 5.9 (Uniqueness). Let ζ > 0. Suppose that F(s, y) satisfies (A1), (A2)
and that there is a constant M3 > 0 such that

F(s, y1)−F(s, y2) ≥M3(y1 − y2). (5.14)

Then the non-linear BVP (1.3) has unique solution.

The proof of the above theorem follows from the proof of Theorem 3.8.

5.1. Numerical illustrations.

Example 5.10 (Reverse order case). Consider the four-point non-linear BVP

−y(4)(s)− λy(2)(s)− ζy(s) =
(e− 1)

50
y2 +

1

25
sin(s),

y(0) = 0, y(1) = 0.3y(0.2) + 0.6y(0.5),

y′′(0) = 0, y′′(1) = 0.3y′′(0.2) + 0.6y′′(0.5),

(5.15)

where λ = −3.
We define initial lower solution l0(s) = 5s

4 −s
3 and initial upper solution u0(s) =

− 5s
4 + s3 such that u0(s) ≤ l0(s). With the help of (P3) we obtain Lipschitz

constant M = 0.0369. Now using ζ −M ≥ 0 we obtain, ζ ≥ 0.0369, the range
for the convergence of iterative sequences of UL solution of the non-linear BVP
(5.15). Hence, we can see in figure 3, for ζ = 2 where ζ1 = −2, ζ2 = −1 such that
ζ1 + ζ2 = −3 and n = 3, that the sequences of UL solution converges monotonically
to the solution of NLBVP (5.15) for suitable choices of ζ1 and ζ2.

l1(s)

l2(s)

l3(s)

u1(s)

u2(s)

u3(s)

l0(s)

u0(s)

0.2 0.4 0.6 0.8 1.0
s

-0.4

-0.2

0.2

0.4

0.6
(ln,un)

Figure 3. Plots of sequences of UL solution ζ = 2, n = 3

6. Conclusion

In this article, we developed an MI technique in the reverse order case to establish
existence of a unique solution. We have studied existence results in three gathered
when 0 < ζ1 < ζ2, ζ1 < 0 < ζ2, and ζ1 < ζ2 < 0. We need to assume one sided
Lipschitz condition on the non-linear function F to construct monotone sequences
of UL solutions. Based on anti-maximum principle, we observe that for all the
three gathered we need to define an appropriate form of UL solutions which paves
the way for the establishment of MI technique. To validate our results we have
constructed examples in each case.
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[17] Ivan Kiguradze, Bedr̆ich Půz̆a; Boundary value problems for systems of linear functional

differential equations, Folia : mathématica, Masaryk University, 2003.

[18] A. C. Lazer, P. J. McKenna; Large-amplitude periodic oscillations in suspension bridges:
Some new connections with nonlinear analysis, SIAM Review 32 (1990), no. 4, 537–578.

[19] H. Li, Y. Liu; Multiple solutions for fourth order m-point boundary value problems with sign-
changing nonlinearity, Electronic Journal of Qualitative Theory of Differential Equations
2010 (2010), no. 55, 1–10.

[20] Y. Li, Y. Gao; The method of lower and upper solutions for the cantilever beam equations

with fully nonlinear terms, Journal of Inequalities and Applications 2019 (2019), no. 1, 1–16.
[21] Yongxiang Li; Positive solutions of fourth-order boundary value problems with two parame-

ters, Journal of Mathematical Analysis and Applications 281 (2003), no. 2, 477–484.

[22] Yongxiang Li; A monotone iterative technique for solving the bending elastic beam equations,
Applied Mathematics and Computation 217 (2010), no. 5, 2200–2208.



EJDE-2023/51 FOURTH-ORDER FOUR-POINT BVP 17

[23] Y. Lu, R. Ma; Disconjugacy conditions and spectrum structure of clamped beam equations

with two parameters, Communications on Pure & Applied Analysis 19 (2020), no. 6, 3283.

[24] Nikolai Nikolaevich Luzin; On the method of approximate integration of academician sa
chaplygin, Uspekhi matematicheskikh nauk 6 (1951), no. 6, 3–27.

[25] D. Ma, X. Z. Yang; Upper and lower solution method for fourth-order four-point boundary

value problems, Journal of Computational and Applied Mathematics 223 (2009), no. 2, 543–
551.

[26] R. Ma, Z. Jihui, F. Shengmao; The method of lower and upper solutions for fourth-order

two-point boundary value problems, Journal of Mathematical Analysis and Applications 215
(1997), no. 2, 415–422.

[27] R. Ma, J. Wang, Y. Long; Lower and upper solution method for the problem of elastic beam

with hinged ends, Journal of fixed point theory and applications 20 (2018), no. 1, 1–13.
[28] R. Ma, J. Wang, D. Yan; The method of lower and upper solutions for fourth order equations

with the navier condition, Boundary value problems 2017 (2017), no. 1, 1–9.
[29] F. Minhós, T. Gyulov, A. I. Santos; Existence and location result for a fourth order bound-

ary value problem, Conference Publications, vol. 2005, American Institute of Mathematical

Sciences, 2005, p. 662.
[30] S. A. Pak; Dokl Akad. Nauk SSR 148 (1963), 265–1267.

[31] Y. Pang, Z. Bai; Upper and lower solution method for a fourth-order four-point boundary

value problem on time scales, Applied Mathematics and Computation 215 (2009), no. 6,
2243–2247.

[32] M. Pei, S. K. Chang; Monotone iterative technique and symmetric positive solutions for

a fourth-order boundary value problem, Mathematical and Computer Modelling 51 (2010),
no. 9-10, 1260–1267.

[33] M. Singh, N. Urus, A. K. Verma; A different monotone iterative technique for a class of

nonlinear three-point bvps, Computational and Applied Mathematics 40 (2021), no. 8, 1–22.
[34] Stanis law Sedziwy; Upper and lower solutions method for even order two point boundary

value problems, The Rocky Mountain journal of mathematics 31 (2001), no. 4, 1429–1434.
[35] N. Urus, A. K. Verma; Existence of solutions for a class of nonlinear neumann boundary

value problems in the presence of upper and lower solutions, Mathematical Methods in the

Applied Sciences (2022).
[36] N. Urus, A. K. Verma, M. Singh; Some new existence results for a class of four point nonlinear

boundary value problems, JNPG-The Journal of Revelations 3 (2019), 7–13.

[37] A. K. Verma, N. Urus; Well ordered monotone iterative technique for nonlinear second order
four point dirichlet bvps, Mathematical Modelling and Analysis 27 (2022), no. 1, 59–77.

[38] A. K. Verma, N. Urus, R.P. Agarwal; Region of existence of multiple solutions for a class of

robin type four-point bvps, Opuscula Mathematica 41 (2021), no. 4, 571–600.
[39] A. K. Verma, N. Urus, M. Singh; Monotone iterative technique for a class of four point bvps

with reversed ordered upper and lower solutions, International Journal of Computational

Methods 17 (2020), no. 09, 1950066.
[40] R. Vrabel; On the lower and upper solutions method for the problem of elastic beam with

hinged ends, Journal of mathematical analysis and applications 421 (2015), no. 2, 1455–1468.
[41] J. Wang, C. Gao, Y. Lu; Global structure of positive solutions for semipositone nonlinear

euler-bernoulli beam equation with neumann boundary conditions, Quaestiones Mathematicae

(2022), 1–29.
[42] S. Weng, H. Gao, D. Jiang, X. Hou; Upper and lower solutions method for fourth-order

periodic boundary value problems, Journal of Applied Analysis 14 (2008), no. 1, 53–61.
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