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LOCAL WELL-POSEDNESS AND STANDING WAVES WITH

PRESCRIBED MASS FOR SCHRÖDINGER-POISSON SYSTEMS

WITH A LOGARITHMIC POTENTIAL IN R2

XUECHAO DOU, JUNTAO SUN

Abstract. In this article, we consider planar Schrödinger-Poisson systems
with a logarithmic external potential W (x) = ln(1 + |x|2) and a general non-

linear term f . We obtain conditions for the local well-posedness of the Cauchy

problem in the energy space. By introducing some suitable assumptions on f ,
we prove the existence of the global minimizer. In addition, with the help of

the local well-posedness, we show that the set of ground state standing waves

is orbitally stable.

1. Introduction

We consider the planar Schrödinger-Poisson system

iψt −∆ψ +W (x)ψ + γωψ = f(ψ), ∀(t, x) ∈ R1+2,

∆ω = |ψ|2,
ψ(0, x) = ψ0(x),

(1.1)

where ψ : R2 × R → C is the (time-dependent) wave function, x 7→ W (x) is a
real external potential and γ ∈ R. The function ω represents an internal potential
for a nonlocal self-interaction of the wave function ψ, and the nonlinear term f is
used to model the interaction among particles. Such a system arises from quantum
mechanics [3, 5, 16] and in semiconductor theory [18, 19]. We refer the reader to
[2, 13] for more details on its physical aspects.

An important topic is to establish conditions for the well-posedness of Cauchy
problem (1.1). From a mathematical point of view, the second equation in the
system determines ω : R2 → R up to harmonic functions, it is natural to choose ω
as the Newton potential of |ψ|2, i.e. the convolution of |ψ|2 with the fundamental
solution Φ(x) = 1

2π ln |x| of the Laplacian. Thus the Newtonian potential ω is given
by

ω =
1

2π
(ln |x| ∗ |ψ|2).

We note that the Newtonian potential ω diverges at the spatial infinity no matter
how fast ψ decays. In view of this, Masaki [20, 21] proposed a new approach
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to deal with such a nonlocal term, which can be decomposed into a sum of the
linear logarithmic potential and a good remainder. By using the perturbation
method, the global well-posedness for the Cauchy problem (1.1) with W (x) ≡ 0
and f(ψ) = |ψ|p−2ψ(p > 2) is established in the space B given by

B :=
{
ψ ∈ H1(R2) :

∫
R2

ln
(√

1 + |x|2
)
|ψ(x)|2dx <∞

}
.

Another interesting topic on (1.1) is to study the standing wave solution of the
form

ψ(x, t) = eiλtu(x),

where λ ∈ R and u : R2 → R. Then (1.1) is reduced to the system

−∆u+ (W (x)− λ)u+ γωu = f(u) in R2,

−∆ω = u2 in R2,
(1.2)

which can be further written as the integro-differential equation

−∆u+ (W (x)− λ)u+ γ(Φ ∗ |u2|)u = f(u), ∀x ∈ R2. (1.3)

At least formally, the energy functional associated with (1.3) is

E(u) =
1

2

∫
R2

(
|∇u|2 + (W (x)− λ)u2

)
dx

+
γ

8π

∫
R2

∫
R2

ln(|x− y|2)|u(x)|2|u(y)|2 dx dy −
∫
R2

F (u) dx,

where F (t) =
∫ t

0
f(s)ds. Obviously, if u is a critical point of E, then the pair

(u,Φ ∗ |u|2) is a weak solution of (1.2). However, the energy functional E is not
well-defined on the natural Sobolev space H1(R2), since the logarithm term changes
sign and is neither bounded from above nor from below. Inspired by [24], Cingolani
and Weth [11] developed a variational framework of ((1.3) with W (x) ≡ 0 in the
smaller Hilbert space

X :=
{
u ∈ H1(R2) :

∫
R2

ln(1 + |x|)u2dx <∞
}
,

endowed with the norm

‖u‖2X :=

∫
R2

(|∇u|2 + u2(1 + ln(1 + |x|2))) dx.

If the frequency λ is a fixed and assigned parameter, then solutions of (1.3) can
be obtained as critical points of the functional E in X. Under various types of
potentials W and nonlinearities f , there has been much study on this case in recent
years, see, for example [1, 8, 9, 14]. For other nonlocal problems, we refer the reader
to [22, 25, 26, 27, 29].

If we would like to find solutions of (1.3) with the frequency λ unknown, then λ
appears as a Lagrange multiplier, and L2-norms of solutions are prescribed, i.e.∫

R2

|u|2dx = c for a given c > 0,

which are usually called normalized solutions. This study seems particularly mean-
ingful from the physical point of view, since solutions of (1.1) conserve their mass
along time. When W (x) ≡ 0, Cingolani and Jeanjean [10] proved the existence and
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multiplicity of normalized solutions for 1.3 with f(u) = |u|p−2u(p > 2). When the
logarithmic external potential

W (x) = ln(1 + |x|2) (1.4)

is considered in (1.3), Dolbeault, Frank and Jeanjean [12] studied the existence of
normalized solutions for (1.3) with f(u) = ln |u|2u, and recently Guo, Liang and
Li [15] proved the existence and uniqueness of L2-critical constraint minimization
problem, i.e. f(u) = |u|p−2u with p = 4.

Inspired by the analysis mentioned above, in this paper we are concerned with
a class of planar Schrödinger-Poisson systems with a logarithmic external potential
(1.4) and a general nonlinearity f . First of all, we shall establish conditions of the
local well-posedness for the Cauchy problem (1.1). Secondly, we shall focused on
the existence of global minimizer when f satisfies some suitable assumptions. In
addition, with the help of the local well-posedness of the Cauchy problem (1.1), the
orbital stability of the set of ground states is explored as well.

To find normalized solutions of (1.3), we consider the associated energy func-
tional

J(u) :=
1

2

∫
R2

(
|∇u|2 + ln(1 + |x|2)u2

)
dx

+
γ

8π

∫
R2

∫
R2

ln(|x− y|)u2(x)u2(y) dx dy −
∫
R2

F (u) dx.

(1.5)

under the constraint

S(c) :=
{
u ∈ H :

∫
R2

u2dx = c
}
,

where

H :=
{
u ∈ H1(R2) :

∫
R2

ln(1 + |x|2)u2dx <∞
}
,

endowed with the norm ‖u‖H := ‖u‖H1 + ‖u‖∗, here

‖u‖2∗ =

∫
R2

ln(1 + |x|2)u2dx.

We now summarize our main results.

Theorem 1.1. Assume that f satisfies

(A1) f ∈ C(R,R) and f(0) = 0,
(A2) f(eiθz) = eiθf(z),
(A3) there exist z1, z2 and a constant L > 0 such that

|f(z1)− f(z2)| ≤ L|z1 − z2|(1 + |z1|+ |z2|)2.

Then the Cauchy problem (1.1) is local well-posed in H. That is, for any ψ0 ∈
H, there exists an existence time T = T (‖ψ0‖H) and a unique solution ψ ∈
C((−T, T );H) ∩ Lq0((−T, T );Lr0) ∩ C1((−T, T );H′) of (1.1), where (q0, r0) be an
admissible pair with r0 > 2.

Theorem 1.2. Assume that condition (A1) holds. In addition, we assume that f
satisfies

(A4) limt→0
f(t)
t = 0;

(A5) lim supt→∞
f(t)t
|t|4 = 0.



4 X. DOU, J. SUN EJDE-2023/64

Then there exists a constant c∗ > 0 such that for 0 < c < c∗, the infimum

Jc := inf
u∈S(c)

J(u)

is achieved by some uc ∈ S(c), i.e. J(uc) = Jc.

It is easy to find some examples on the nonlinearity f satisfying conditions (A1),
(A4), and (A5), such as

f(t) = |t|p−2t+ |t|q−2t with 2 < q < p < 4.

By Theorem 1.2, we know that the set of ground states

Mc := {eiλtu(x) : u ∈ S(c) and J(u) = Jc}
is not empty. Then we have the following stability result.

Theorem 1.3. Under the assumptions of Theorems 1.1 and 1.2, the set of ground
states Mc is orbitally stable. That is, for any ε > 0, there exists δ > 0 such that
for any ψ0 = ψ(0, x) ∈ H satisfying infu∈Mc

‖ψ0 − u‖H < δ, the solution ψ(t, x) of
system (1.1) satisfies

sup
t∈[0,T )

inf
u∈Mc

‖ψ(t, x)− u‖H < ε

where T is the maximal existence time for ψ(t, x).

2. Preliminary results

For sake of convenience, we set

A(u) :=

∫
R2

|∇u|2dx and V (u) :=

∫
R2

∫
R2

ln(|x− y|)u2(x)u2(y) dx dy.

Then the energy functional J defined in (1.5) can be rewritten as

J(u) :=
1

2
A(u) +

1

2

∫
R2

ln(1 + |x|2)u2(x) dx+
γ

8π
V (u)−

∫
R2

F (u) dx.

Definition 2.1. We say that a pair (q, r) is Strichartz admissible if 2 ≤ r < ∞
and 2

q = 1− 2
r .

Lemma 2.2 (Strichartz estimates [6]). For any T > 0, the following properties
hold:

(i) let ϕ ∈ L2(R2). For any admissible pair (q, r), we have

‖eit∆ϕ‖Lq((−T,T );Lr) . ‖ϕ‖L2 ;

(ii) let I ⊂ (−T, T ) be an interval and t0 ∈ I. For any admissible pairs (q, r)
and (γ, ρ), we have

‖
∫ t

t0

ei(t−s)∆F (s)ds‖Lq(I;Lr) . ‖F‖Lγ′ (I;Lρ′ )

for every F ∈ Lγ′(I;Lρ
′
).

Lemma 2.3 ([21, Lemma 2.2]). Let P be an arbitrary weight function satisfying
∇P,∆P ∈ L∞(R2). Then for all T > 0 and admissible pair (q, r), we have

‖[∇, eitA]ϕ‖Lq((−T,T );Lr) . |T |‖ϕ‖L2 ,

‖[P, eitA]ϕ‖Lq((−T,T );Lr) . |T |‖(1 +∇)ϕ‖L2 ,
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where

A := −∆ +m ln(1 + |x|2) (2.1)

with m := γ
2π‖ψ0‖2L2 + 1.

Lemma 2.4 ([21, Lemma 2.3]). Let

K(x, y) =
ln
( |x−y|
〈x〉

)
1 + ln〈y〉

for x, y ∈ R2.

For any p ∈ [1,∞) and ε > 0, there exist a function H(x, y) ≥ 0 with ‖H‖L∞y Lpx ≤ ε
and a constant C0 > 0 such that

|K(x, y)| ≤ C0 +H(x, y)

for all (x, y) ∈ R2+2.

Lemma 2.5 (Gagliardo-Nirenberg Inequality [17]). (i). Let r > 2. Then there
exists a sharp constant KGN > 0 such that

‖u‖r ≤ K1/r
GN‖∇u‖

r−2
r

2 ‖u‖2/r2 .

(ii) (Hardy-Littlewood-Sobolev inequality [30]). Let t, r > 1 and 0 < α < N with
1
t + N−α

N + 1
r = 2. For f ∈ Lt(RN ) and h ∈ Lr(RN ), there exists a sharp constant

C(t,N, α, r), independent of u and v, such that∫
R2

∫
R2

f(x)h(x)

|x− y|N−α
dx dy ≤ C(t,N, α, r)‖f‖t‖h‖r.

As in [15], we introduce the symmetric bilinear forms

B1(u, v) =

∫
R2

∫
R2

ln(1 + |x− y|2)u(x)v(y) dx dy,

B2(u, v) =

∫
R2

∫
R2

ln
(

1 +
1

|x− y|2
)
u(x)v(y) dx dy,

B0(u, v) =
1

2
[B1(u, v)−B2(u, v)] =

∫
R2

∫
R2

ln(|x− y|)u(x)v(y) dx dy.

Clearly, V (u) = B0(u2, u2) =
∫
R2

∫
R2 ln(|x−y|)u2(x)u2(y) dx dy. By the continuous

embedding from H into Ls(R2) for s ∈ [2,∞), the functionals Bi(u
2, v2) are well-

defined on H×H for i = 0, 1, 2. Moreover, we define the associated functionals on
H as follows

V1(u) = B1(u2, u2) =

∫
R2

∫
R2

ln(1 + |x− y|2)u2(x)u2(y) dx dy,

V2(u) = B2(u2, u2) =

∫
R2

∫
R2

ln
(

1 +
1

|x− y|2
)
u2(x)u2(y) dx dy.

Lemma 2.6 ([15, Lemma 2.1]). The following statements are valid:

(i) the space H is compactly embedded in Ls(R2) for all s ∈ [2,∞);
(ii) the functionals V, V1, V2 and J are of class C1 on H. Moreover, V ′i (u)v =

4Bi(u
2, uv) for u, v ∈ H and i = 1, 2;

(iii) V2 is continuous (in fact continuously differentiable) on L8/3(R2);
(iv) V1 is weakly lower semi-continuous on H1(R2);
(v) V is weakly lower semi-continuous on H.
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3. Local well-posedness of the Cauchy problem

Following the ideas in [21], the following decomposition holds

γωψ =
γ

2π
‖ψ‖2L2(ln〈x〉)ψ +

γ

2π
ψ

∫
R2

ln
( |x− y|
〈x〉

)
|ψ(y)|2dy,

where 〈x〉 := (1 + |x|2). According to the conservation of mass ‖ψ‖L2 = ‖ψ0‖L2 ,
we have

m =
γ

2π
‖ψ0‖2L2 + 1 > 0.

Then, (1.1) is rewritten as

i∂tψ + (−∆ +m ln〈x〉)ψ = − γ

2π
ψ

∫
R2

ln
( |x− y|
〈x〉

)
|ψ(y)|2dy + f(ψ), ∀(t, x) ∈ R1+2,

ψ(0, x) = ψ0(x).

We note that A defined as (2.1) is essentially self-adjoint on C∞0 (R2) (see [23]).
Since |∂α(ln〈x〉)| → 0 as |x| → ∞ for |α| = 2 and ∂α(ln〈x〉) ∈ L∞(R2) for |α| ≥ 3,
the potential is subquadratic. Then for any t ∈ [−T, T ], we have

‖eitAϕ‖L∞ . |t|−1‖ϕ‖L1 ,

(see [28]). Once we know this type of estimate, the Strichartz estimates follow by
interpolation.

We are ready to prove Theorem 1.1. We write Lp((−T, T );H) = LpTH for short.
We define the Banach space

HT,M := {ψ ∈ L∞T H ‖ψ‖HT ≤M}
with the norm

‖ψ‖HT := ‖ψ‖L∞T H + ‖ψ‖Lq0T W 1,r0 + ‖
√

ln〈x〉ψ‖Lq0T Lr0 .

Now we show that if r0 > 2, then there exist M = M(‖ψ0‖H) and T = T (‖ψ0‖H)
such that

Q[ψ] := eitAψ0 + i

∫ t

0

ei(t−s)A
(γψ

2π

∫
R2

ln
( |x− y|
〈x〉

)
|ψ(y)|2dy − f(ψ)

)
ds

becomes a contraction map from HT,M to itself. Set

K(x, y) :=
ln
( |x−y|
〈x〉

)
1 + ln〈y〉

.

By Lemma 2.4, there exist a nonnegative function H ∈ L∞y L
r′0
y and a constant

C0 > 0 such that

|K(x, y)| ≤ C0 +H(x, y).

Recall that r0 ∈ (2,∞) and so r′0 := r0/(r0 − 1) ∈ (1, 2). We hence see that

ωψ =

∫
K(x, y)(1 + ln〈y〉)|ψ(y)|2ψ(x)dy

satisfying

‖ωψ‖L2 . (‖ψ‖L2 + ‖ψ‖Lr0 )‖
√

1 + ln〈x〉ψ‖2L2 .

Taking the L1
T -norm one has

‖ωψ‖L1
TL

2 .
(
T‖ψ‖L∞T L2 + T

r0+2
2r0 ‖ψ‖Lq0T Lr0

)
‖
√

1 + ln〈x〉ψ‖2L∞T L2 . (3.1)
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Note that |f(ψ)| ≤ L(1 + |ψ|)2|ψ|. Then we have

‖f‖L2 . ‖ψ‖L2 + ‖ψ‖L2r0/(r0−2)‖ψ‖Lr0 + ‖ψ2‖L2r0/(r0−2)‖ψ‖Lr0
. ‖ψ‖L2 + (‖ψ‖L2 + ‖∇ψ‖L2 + ‖ψ‖2L2 + ‖∇ψ‖2L2)‖ψ‖Lr0 .

Similarly, taking the L1
T -norm yields

‖f‖L1
TL

2 . T
r0+2
2r0

(
‖ψ‖L∞T L2 + ‖∇ψ‖L∞T L2 + ‖ψ‖2L∞T L2

+ ‖∇ψ‖2L∞T L2

)
‖ψ‖Lq0T Lr0 + T‖ψ‖L∞T L2 .

(3.2)

By Strichartz estimates, we have

‖Q[ψ]‖L∞T L2 + ‖Q[ψ]‖Lq0T Lr0

. ‖ψ0‖L2 + T‖ψ‖HT + T
r0+2
2r0 ‖ψ‖2HT +

(
T + T

r0+2
2r0

)
‖ψ‖3HT .

(3.3)

Next, we estimate ∇Q[ψ]. It is easy to see that

∇Q[ψ] = eitA∇ψ0 + [∇, eitA]ψ0 +
iγ

2π

∫ t

0

ei(t−s)A(∇(ωψ)−∇f)(s)ds

+
iγ

2π

∫ t

0

[∇, ei(t−s)A](ωψ − f)(s)ds.

From Lemma 2.3 with (q, r) = (∞, 2), we deduce that∫ t

0

‖[∇, ei(t−s)A](ωψ)(s)‖L2ds ≤
∫ t

0

(t− s)‖ωψ(s)‖L2ds ≤ |t|‖ωψ‖L1
TL

2 .

Similarly, we have∫ t

0

‖[∇, ei(t−s)A]f(s)‖L2ds ≤
∫ t

0

(t− s)‖f(s)‖L2ds ≤ |t|‖f‖L1
TL

2 ,

‖[∇, eitA]ψ0‖L∞T L2 . |T |‖ψ0‖L2 .

Similar to (3.1), we infer that

‖ω∇ψ‖L1
TL

2 .
(
T‖∇ψ‖L∞T L2 + T

r0+2
2r0 ‖∇ψ‖Lq0T Lr0

)
‖
√

1 + ln〈x〉ψ‖2L∞T L2 . (3.4)

Now, let us estimate (∇ω)ψ. It can be written as

(∇ω(x))ψ(x) =
[ ∫

R2

( x− y
|x− y|2

− 2x

1 + x2

)
|ψ(y)|2dy

]
ψ(x).

It follows from the Hardy-Littlewood-Sobolev and the Sobolev inequalities that

‖(∇ω)ψ‖L2 . ‖(|x|−1 ∗ |ψ|2) + 〈·〉−1‖ψ‖2L2‖L2r0/(r0−2)‖ψ‖Lr0
.
(
‖ψ‖2L2r0/(r0−1) + ‖ψ‖2L2

)
‖ψ‖Lr0

.
(
‖ψ‖2L2 + ‖∇ψ‖2L2

)
‖ψ‖Lr0 ,

which implies that

‖(∇ω)ψ‖L1
TL

2 . T
r0+2
2r0

(
‖ψ‖2L∞T L2 + ‖∇ψ‖2L∞T L2

)
‖ψ‖Lq0T Lr0 . (3.5)

By condition (A3) one has

‖∇f‖L1
TL

2 . T‖∇ψ‖L∞T L2 + T
r0+2
2r0

(
‖ψ‖L∞T L2 + ‖∇ψ‖L∞T L2

)
‖∇ψ‖Lq0T Lr0

+ T
r0+2
2r0

(
‖ψ‖2L∞T L2 + ‖∇ψ‖2L∞T L2

)
‖∇ψ‖Lq0T Lr0 .
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We deduce from the Strichartz estimates that

‖∇Q[ψ]‖L∞T L2 + ‖∇Q[ψ]‖Lq0T Lr0

. T‖∇ψ0‖H + T‖ψ‖HT + T
r0+2
2r0 ‖ψ‖2HT +

(
T + T

r0+2
2r0

)
‖ψ‖3HT .

(3.6)

Let us proceed to the estimate√
1 + ln〈x〉Q[ψ] = eitA

√
1 + ln〈x〉ψ0+

iγ

2π

∫ t

0

ei(t−s)A
√

1 + ln〈x〉(ωψ−f)(s)ds+R,

where

R := [
√

1 + ln〈x〉, eitA]ψ0 +
iγ

2π

∫ t

0

[
√

1 + ln〈x〉, ei(t−s)A](ωψ − f)(s)ds. (3.7)

Let G =
√

1 + ln〈x〉. It follows from Lemma 2.3 and (3.1)–(3.5) that

‖R‖L∞T L2 + ‖R‖Lq0T Lr0 . T‖ψ0‖H + T‖(1 +∇)(ωψ)‖L1
TL

2 + T‖(1 +∇)f‖L1
TL

2

. T‖ψ0‖H + T
(
T + T

r0+2
2r0

)
‖ψ‖3HT

+ T
(
T‖ψ‖HT + T

r0+2
2r0 ‖ψ‖2HT + T

r0+2
2r0 ‖ψ‖3HT

)
.

As in (3.1), we have

‖ω(Gψ)‖L1
TL

2 .
(
T‖Gψ‖L∞T L2 + T

r0+2
2r0 ‖Gψ‖Lq0T Lr0

)
‖Gψ‖2L∞T L2

.
(
T + T

r0+2
2r0

)
‖ψ‖3HT ,

and

‖fG‖L1
TL

2 . T‖Gψ‖L∞T L2 + T
r0+2
2r0

(
‖ψ‖L∞T L2 + ‖∇ψ‖L∞T L2

)
‖Gψ‖Lq0T Lr0

+ T
r0+2
2r0

(
‖ψ‖2L∞T L2 + ‖∇ψ‖2L∞T L2

)
‖ωψ‖Lq0T Lr0

. T‖ψ‖HT + T
r0+2
2r0 ‖ψ‖2HT + T

r0+2
2r0 ‖ψ‖3HT .

From the Strichartz estimates we have

‖
√

ln〈x〉Q[ψ]‖L∞T L2 + ‖
√

ln〈x〉Q[ψ]‖Lq0T Lr0

. T
[
‖ψ0‖H + (1 + T )‖ψ‖HT + T

r0+2
2r0 ‖ψ‖2HT + (T + T

r0+2
2r0 )‖ψ‖3HT

]
.

(3.8)

Thus, it follows from (3.3), (3.6), and (3.8) that

‖Q[ψ]‖HT . (1 + T )
[
‖ψ0‖H + T‖ψ‖HT + T

r0+2
2r0 ‖ψ‖2HT +

(
T + T

r0+2
2r0

)
‖ψ‖3HT

]
.

A similar argument shows that

‖Q[ψ1]−Q[ψ2]‖HT . (1 + T )
(
T + T

r0+2
2r0

)(
(‖ψ1‖HT + ‖ψ2‖HT )2

+ ‖ψ1‖HT + ‖ψ2‖HT
)
‖ψ1 − ψ2‖HT .

Hence if we take M ≥ 2‖ψ0‖H, then there exists T = T (M) such that Q is a
contraction map from HT,M to itself. A similar argument shows that Q has a
unique fixed point in this space.
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4. Existence of a global minimizer

Lemma 4.1. Assume that (A1), (A4), (A5) hold. Then there exists c∗ > 0 such
that the energy functional J is bounded from below on S(c) for 0 < c < c∗.

Proof. Let ε > 0 be arbitrary. By conditions (A4) and (A5), there exists Cε > 0
such that

|F (t)| ≤ ε|t|2 + Cε|t|4 for all t ∈ R.
For u ∈ S(c), it follows from Lemma 2.5 that∫

R2

|F (u)|dx ≤ ε
∫
R2

|u|2dx+ Cε

∫
R2

|u|4dx

≤ ε
∫
R2

|u|2dx+ CεKGN

∫
R2

|u|2dx
∫
R2

|∇u|2dx

= cε+ cKGNCεA(u).

(4.1)

Since 0 < ln(1 + r) < r holds for all r > 0, by the Hardy-Littlewood-Sobolev
inequality, there exists a constant C > 0 such that

1

2
|V2(u)| = 1

2

∫
R2

∫
R2

ln

(
1 +

1

|x− y|2

)
u2(x)u2(y) dx dy

≤
∫
R2

∫
R2

ln

(
1 +

1

|x− y|

)
u2(x)u2(y) dx dy

≤
∫
R2

∫
R2

1

|x− y|
u2(x)u2(y) dx dy

≤ Cc3/2A(u)1/2.

(4.2)

From this, (4.1) and (4.2), we obtain

J(u) ≥ 1

2
A(u) +

∫
R2

ln(1 + |x|2)u2(x) dx+
γ

16π
(V1(u)− V2(u))−

∫
R2

F (u) dx

≥ 1

2
A(u) +

1

2

∫
R2

ln(1 + |x|2)u2(x) dx− γ

16π
V2(u)− cε− cKGNCεA(u)

≥ 1

2
A(u) +

1

2

∫
R2

ln(1 + |x|2)u2(x) dx− γ

8π
Cc3/2A(u)1/2

− cε− cKGNCεA(u)

≥
(1

2
− cCεKGN

)
A(u) +

1

2

∫
R2

ln(1 + |x|2)u2(x) dx

− γ

8π
Cc3/2A(u)1/2 − cε,

(4.3)
which implies that J(u) is bounded from below on S(c) when c < c∗ := 1

2KGNCε
.

The proof is complete. �

Proof of Theorem 1.2. By Lemma 4.1, we know that

Jc = inf
u∈S(c)

J(u) > −∞.

Then there exists a minimizing sequence {un} ⊂ S(c) such that limn→∞ J(un) =
Jc. From (4.3) it follows that A(un) and

∫
R2 ln(1+|x|2)u2

ndx are bounded uniformly
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in n. Since {un} ∈ S(c), we can deduce that {un} is bounded uniformly in H.
According to Lemma 2.6(i), it follows from that uc ∈ S(c), and∫

R2

F (un) dx→
∫
R2

F (uc) dx as n→∞, (4.4)

where we have used the Brezis-Lieb lemma [4]. Moreover, by Lemma 2.6(v), we
have ∫

R2

∫
R2

ln(|x− y|)u2(x)u2(y) dx dy

≤ lim inf
n→∞

∫
R2

∫
R2

ln(|x− y|)u2
n(x)u2

n(y) dx dy.

(4.5)

Thus, by (4.4), (4.5) and the weakly lower semi-continuity, we obtain

Jc ≤ J(uc) ≤ lim inf
n→∞

J(un) = Jc,

which indicates that J(uc) = Jc, that is, uc is a minimizer of Jc for c < c∗.
Since J(un)→ J(uc) and V2(un)→ V2(uc) as n→∞, together with (4.4) again,

we obtain
1

2
[A(un)−A(uc)] +

1

2

∫
R2

ln(1 + |x|2)(u2
n(x)− u2

c(x)) dx

+
γ

16π
[V1(un)− V1(uc)] = o(1).

Note that

A(uc) ≤ lim inf
n→∞

A(un), V1(uc) ≤ lim inf
n→∞

V1(un),∫
R2

ln(1 + |x|2)u2
cdx ≤ lim inf

n→∞

∫
R2

ln(1 + |x|2)u2
ndx.

Then we have

A(un)→ A(uc) and V1(un)→ V1(uc) as n→∞,∫
R2

ln(1 + |x|2)u2
ndx→

∫
R2

ln(1 + |x|2)u2
cdx as n→∞.

Hence, we deduce that un → uc in H. The proof is complete. �

Proof of Theorem 1.3. Following the classical arguments of Cazenave and Lions [7].
we assume that there exist an ε0 > 0, {δn} ⊂ R+ a decreasing sequence converging
to 0, and {ψn} ⊂ H satisfying infu∈Mc

‖ψn(0, x)− u‖H < δn such that

inf
u∈Mc

‖ψn(tn, x)− u‖H ≥ ε0,

where ψ(tn, x) is the unique solution of (1.1) with the initial value ψn(0, x). We
observe that ‖ψn(0, x)‖2L2 → c as n → ∞ and that J(ψn(0, x)) → Jc by the
continuity of J . According to the conservation laws of the energy and mass, we
have

‖ψn(t, x)‖2L2 = ‖ψn(0, x)‖2L2 → c as n→∞, (4.6)

J(ψn(t, x)) = J(ψn(0, x))→ Jc as n→∞. (4.7)

Now, let φn(tn, x) =
√
cψn(t,x)

‖ψn(t,x)‖L2
. Then by (4.6) one has ‖φn(tn, x)‖2L2 = c. More-

over, it follows from (4.7) that

J(φn(tn, x))
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=
1

2

∫
R2

|∇φn(tn, x)|2dx+
1

2

∫
R2

ln(1 + |x|2)φ2
n(tn, x) dx

+
γ

8π

∫
R2

∫
R2

ln(|x− y|)|φn(tn, x)|2|φn(tn, y)|2 dx dy −
∫
R2

F (φ(tn, x)) dx

=
c

2‖ψn(t, x)‖2L2

∫
R2

|∇ψn(t, x)|2dx

+
c

2‖ψn(t, x)‖2L2

∫
R2

ln(1 + |x|2)ψ2
n(t, x) dx

+
γc2

8π‖ψn(t, x)‖4L2

∫
R2

∫
R2

ln(|x− y|)|ψn(t, x)|2|ψn(t, y)|2 dx dy

−
∫
R2

F

( √
cψn(t, x)

‖ψn(t, x)‖L2

)
dx

→ Jc as n→∞.
So, {φn(tn, x)} is a minimizing sequence to Jc. Thus, there exists ũ ∈ S(c) such
that

‖φn(tn, x)− ũ‖H → 0 as n→∞. (4.8)

Since

‖φn(tn, x)− ũ‖H

= ‖φn(tn, x)− ũ‖H1 +
(∫

R2

ln(1 + |x|2)|φn(tn, x)− ũ|2dx
)1/2

= ‖
√
cψn(t, x)

‖ψn(t, x)‖L2

− ũ‖H1

+
(∫

R2

ln(1 + |x|2)|
√
cψn(t, x)

‖ψn(t, x)‖L2

− ũ|2dx
)1/2

≥ inf
u∈Mc

‖ψn(tn, x)− u‖H ≥ ε0,

which contradicts with (4.8). The proof is complete. �
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