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PARAMETER-DEPENDENT PERIODIC PROBLEMS FOR

NON-AUTONOMOUS DUFFING EQUATIONS WITH

SIGN-CHANGING FORCING TERM

JIŘÍ ŠREMR

Abstract. We study the existence, exact multiplicity, and structure of the

set of positive solutions to the periodic problem

u′′ = p(t)u+ h(t)|u|λ sgnu+ µf(t); u(0) = u(ω), u′(0) = u′(ω),

where µ ∈ R is a parameter. We assume that p, h, f ∈ L([0, ω]), λ > 1, and

the function h is non-negative. The results obtained extend the results known

in the existing literature. We do not require that the Green’s function of the
corresponding linear problem be positive and we allow the forcing term f to

change its sign.

1. Statement of the problem

We consider the periodic problem

u′′ = p(t)u+ h(t)|u|λ sgnu+ µf(t); u(0) = u(ω), u′(0) = u′(ω), (1.1)

where p, h, f ∈ L([0, ω]), h ≥ 0 a.e. on [0, ω], λ > 1, and µ ∈ R is a parameter.
By a solution to problem (1.1), as usual, we understand a function u : [0, ω] → R
which is absolutely continuous together with its first derivative, satisfies the given
equation almost everywhere, and meets the periodic conditions.

In [11], we considered problem (1.1) with µ = 0 and we showed, among other
things, that for the existence of a positive solution it is necessary that p 6∈ V−(ω)∪
V0(ω). Using a technique developed in [11], we provided in [15] effective conditions
for the existence and exact multiplicity of positive solutions to the periodic problem
for a non-autonomous Duffing equation with a sign-changing forcing term, i.e.,
problem (1.1) with µ = 1. In the present paper, we conclude our studies and show,
in the case of p 6∈ V−(ω) ∪ V0(ω), the existence/non-existence as well as the exact
multiplicity of sign-constant solutions to problem (1.1) depending on the choice of
the parameter µ. The results obtained are compared with the results known for
the autonomous case and the results available in the existing literature.

For the results covering the multiplicity and local/global bifurcations of periodic
solutions to super-linear equations (and their systems), we refer the readers, for
instance, to [1, 2, 3, 4, 6, 8, 12, 13] (see also the references therein). We studied
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a bifurcation of positive solutions to problem (1.1), with the non-positive function
h, in [14].

In [2], the authors study the parameter-dependent problem

x′′ + cx′ + a(t)x− b(t)x3 = λd(t); x(0) = x(T ), x′(0) = x′(T ), (1.2)

where c > 0, λ ∈ R is a parameter, and a, b, d : [0, T ]→ R are continuous functions
such that

a(t) ≤ π2

T 2
+
c2

4
for t ∈ [0, T ],

∫ T

0

a(s) ds > 0, (1.3)

and
b(t) > 0, d(t) > 0 for t ∈ [0, T ]. (1.4)

Theorem 1.1 ([2, Theorem 1.1]). Assume that (1.3) and (1.4) hold. Then, all
solutions to (1.2) are of one sign and there is λ0 > 0 such that

(1) problem (1.2) has a unique solution which is negative (positive) and unstable
for λ > λ0 (λ < −λ0),

(2) problem (1.2) has exactly three ordered solutions for |λ| < |λ0|. Moreover,
the middle solution is asymptotically stable and the remaining two are un-
stable. When −λ0 < λ < 0, the maximal solution is positive and the other
two are negative. When λ = 0, problem (1.2) has one positive, one 0, and
one negative solution. When 0 < λ < λ0, the minimal solution is negative
and the other two are positive.

(3) problem (1.2) has exactly two one-signed solutions for λ = ±λ0; both of
them are unstable.

Recently, Liang [8] proved the conclusion of Theorem 1.1 under the positivity
of a, b, d and the hypothesis ‖a‖p ≤ (1 + c2)K(2p∗) with some p ≥ 1. It seems
from the proof of Theorem 1.1 that its conclusions, which concern the existence
and multiplicity of solutions, remain true even in the case of c = 0.

In Section 3, we extend the conclusions of Theorem 1.1 for the case of undamped
Duffing equation (i.e., for c = 0). Moreover, we weaken hypotheses (1.3) and
(1.4). In particular, (1.3) is replaced by a weaker assumption −a ∈ V+(T ) (see
Definition 2.1), b may be equal to zero on a set of positive measure, and d may
change its sign so that (−a, d) ∈ U(T ) (see Definition 2.7). Furthermore, we prove
the existence/non-existence of solutions to problem (1.2), with c = 0, depending on

the choice of the parameter λ in the case of a(t) > π2

T 2 on a set of positive measure.
At the end of this section, we show, as a motivation, what happens in the au-

tonomous case of (1.1). If p(t) := −a, then p 6∈ V−(ω) ∪ V0(ω) if and only if a > 0
(see Remark 2.4). Therefore, we consider the equation

x′′ = −ax+ b|x|λ sgnx+ µ, (1.5)

where a > 0 and b, µ ∈ R. In this paper, we are interested in the equation in
(1.1) with a non-negative h and, thus, we assume that b > 0 in (1.5). By direct
calculation, the phase portraits of this equation can be elaborated depending on
the choice of the parameter µ and, thus, one can prove the following proposition
concerning periodic solutions to equation (1.5).

Proposition 1.2. Let λ > 1 and a, b > 0. Then, the following conclusions hold:

(i) If µ > (λ−1)a
λ

(
a
λb

) 1
λ−1 , then equation (1.5) has a unique negative equilib-

rium (saddle) and no other periodic solutions occur.
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(ii) If µ = (λ−1)a
λ

(
a
λb

) 1
λ−1 , then equation (1.5) has a unique positive equilib-

rium (cusp), a unique negative equilibrium (saddle), and no other periodic
solutions occur.

(iii) If 0 < µ < (λ−1)a
λ

(
a
λb

) 1
λ−1 , then equation (1.5) possesses exactly two posi-

tive equilibria x1 > x2 (x1 is a saddle and x2 is a center), a unique negative
equilibrium x3 (saddle), and non-constant (both positive and sign-changing)
periodic solutions with different periods. Moreover, all non-constant peri-
odic solutions oscillate around x2 between x3 and x1.

(iv) If µ = 0, then equation (1.5) possesses a unique positive equilibrium x0

(saddle), a trivial equilibrium (center), a unique negative equilibrium −x0,
and non-constant sign-changing periodic solutions with different periods.
Moreover, all non-constant periodic solutions oscillate around 0 between
−x0 and x0.

(v) If − (λ−1)a
λ

(
a
λb

) 1
λ−1 < µ < 0, then equation (1.5) possesses exactly two neg-

ative equilibria x1 < x2 (x1 is a saddle and x2 is a center), a unique positive
equilibrium x3 (saddle), and non-constant (both positive and sign-changing)
periodic solutions with different periods. Moreover, all non-constant peri-
odic solutions oscillate around x2 between x1 and x3.

(vi) If µ = − (λ−1)a
λ

(
a
λb

) 1
λ−1 , then equation (1.5) has a unique negative equilib-

rium (cusp), a unique positive equilibrium (saddle), and no other periodic
solutions occur.

(vii) If µ < − (λ−1)a
λ

(
a
λb

) 1
λ−1 , then equation (1.5) has a unique positive equilib-

rium (saddle) and no other periodic solutions occur.

2. Notation and definitions

The following notation is used throughout this article:

• R is the set of real numbers. For x ∈ R, we put [x]+ = 1
2 (|x| + x) and

[x]− = 1
2 (|x| − x).

• C(I) denotes the set of continuous real functions defined on the interval
I ⊆ R. For u ∈ C([a, b]), we put ‖u‖C = max{|u(t)| : t ∈ [a, b]}.
• AC 1([a, b]) is the set of functions u : [a, b] → R which are absolutely con-

tinuous together with their first derivatives.
• AC `([a, b]) (resp. AC u([a, b])) is the set of absolutely continuous functions
u : [a, b]→ R such that u′ admits the representation u′(t) = γ(t) + σ(t) for
a. e. t ∈ [a, b], where γ : [a, b]→ R is absolutely continuous and σ : [a, b]→ R
is a non-decreasing (resp. non-increasing) function whose derivative is equal
to zero almost everywhere on [a, b].
• L([a, b]) is the Banach space of Lebesgue integrable functions p : [a, b]→ R

equipped with the norm ‖p‖L =
∫ b
a
|p(s)|ds. The symbol IntA stands for

the interior of the set A ⊂ L([a, b]).

Definition 2.1 ([10, Definition 0.1]). We say that a function p ∈ L([0, ω]) belongs
to the set V+(ω) (resp. V−(ω)) if, for any function u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a.e. t ∈ [0, ω], u(0) = u(ω), u′(0) = u′(ω),

the inequality

u(t) ≥ 0 for t ∈ [0, ω]
(
resp. u(t) ≤ 0 for t ∈ [0, ω]

)



4 J. ŠREMR EJDE-2023/65

holds.

Remark 2.2. In an alternative terminology, p ∈ V−(ω) (resp. p ∈ V+(ω)) means
that the maximum principle (resp. the anti-maximum principle) holds for the linear
periodic problem

u′′ = p(t)u; u(0) = u(ω), u′(0) = u′(ω). (2.1)

Definition 2.3 ([10, Definition 0.2]). We say that a function p ∈ L([0, ω]) belongs
to the set V0(ω) if problem (2.1) has a positive solution.

Remark 2.4. Let ω > 0. If p(t) := p0 for t ∈ [0, ω], then one can show by direct
calculation that:

B p ∈ V−(ω) if and only if p0 > 0,
B p ∈ V0(ω) if and only if p0 = 0,

B p ∈ V+(ω) if and only if p0 ∈
[
− π2

ω2 , 0
[

,

B p ∈ IntV+(ω) if and only if p0 ∈
]
− π2

ω2 , 0
[

.

When the function p ∈ L([0, ω]) is not constant, efficient conditions for p to belong
to each of the sets V+(ω) and V−(ω) are provided in [10] (see also [1, 16]).

Remark 2.5. It is well known that, if the homogeneous problem (2.1) has only
the trivial solution, then, for any f ∈ L([0, ω]), the problem

u′′ = p(t)u+ f(t); u(0) = u(ω), u′(0) = u′(ω) (2.2)

possesses a unique solution u and this solution satisfies

|u(t)| ≤ ∆(p)

∫ ω

0

|f(s)|ds for t ∈ [0, ω],

where ∆(p), depending only on p, denotes a norm of the Green’s operator of problem
(2.1). Clearly, ∆(p) > 0.

Assuming that p ∈ IntV+(ω), we extend the function p periodically to the whole
real axis denoting it by the same symbol. It is proved in [10, Section 6] that, for
any a ∈ R, the problem

u′′ = p(t)u; u(a) = 1, u(a+ ω) = 1

has a unique solution ua and ua(t) > 0 for t ∈ [0, ω]. We put

Γ(p) := sup
{
‖ua‖C : a ∈ [0, ω]

}
e
∫ ω
0

[p(s)]+ ds. (2.3)

It is clear that Γ(p) ≥ 1.

Remark 2.6. If p ∈ V+(ω), then the number ∆(p) defined in Remark 2.5 can be
estimated, for example, by the a maximal value of the Green’s function of problem
(2.1) (see, e.g., [16]). On the other hand, assuming p ∈ IntV+(ω), some estimates
of the number Γ(p) are provided in [10, Section 6].

For instance, if p(t) := p0 for t ∈ [0, ω] and p0 ∈ [−π2

ω2 , 0[ , resp. p0 ∈
]
− π2

ω2 , 0
[

,
then

∆(p) ≤
(

2
√
|p0| sin

ω
√
|p0|

2

)−1

, resp. Γ(p) =
(

cos
ω
√
|p0|

2

)−1

.

Definition 2.7 ([10, Definition 16.1]). Let p, f ∈ L([0, ω]). We say that a pair
(p, f) belongs to the set U(ω), if problem (2.1) has a unique solution which is
positive.
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3. Main results

This section contains formulations of all the main results of the paper. Their
proofs are presented in detail in Section 5.

We start with the most general statement of the paper, which provides the
existence/non-existence results in the case of p 6∈ V−(ω)∪ V0(ω). This condition is
satisfied, for instance, if ∫ ω

0

p(s) ds ≤ 0, p(t) 6≡ 0

(see Lemma 4.15). Note also that, for the Duffing equation with the constant
coefficients

x′′ + ax− bx3 = µf(t),

the above-mentioned condition is satisfied if and only if a > 0.

Theorem 3.1. Let λ > 1, p 6∈ V−(ω) ∪ V0(ω), f(t) 6≡ 0, and

h(t) > 0 for a.e. t ∈ [0, ω]. (3.1)

Then, there exist −∞ ≤ µ∗ < 0 and 0 < µ∗ ≤ +∞ such that the following conclu-
sions hold:

(1) For any µ ∈ ]µ∗, µ
∗[ , problem (1.1) has a positive solution u∗ such that

every solution u to problem (1.1) satisfies

either u(t) < u∗(t) for t ∈ [0, ω], or u(t) ≡ u∗(t). (3.2)

Moreover, for any couple of distinct positive solutions u1, u2 to (1.1) sat-
isfying

u1(t) 6≡ u∗(t), u2(t) 6≡ u∗(t), (3.3)

the conditions

min{u1(t)− u2(t) : t ∈ [0, ω]} < 0,

max{u1(t)− u2(t) : t ∈ [0, ω]} > 0
(3.4)

hold.
(2) If µ∗ < +∞, then

(a) for µ > µ∗, problem (1.1) has no positive solution,
(b) for µ = µ∗, problem (1.1) has a unique non-negative solution u∗ and

every solution u to (1.1) satisfies (3.2).
(3) If µ∗ > −∞, then

(a) for µ < µ∗, problem (1.1) has no positive solution,
(b) for µ = µ∗, problem (1.1) has a unique non-negative solution u∗ and

every solution u to (1.1) satisfies (3.2).
(4) If

∫ ω
0
f(s) ds > 0 (resp.

∫ ω
0
f(s) ds < 0), then µ∗ < +∞ (resp. µ∗ > −∞).

Corollary 3.2. Let λ > 1, p 6∈ V−(ω)∪ V0(ω), f(t) 6≡ 0, and condition (3.1) hold.
Then, there exists 0 < µ0 < +∞ such that, for any µ ∈ ] − µ0, µ0[ , problem (1.1)
has a negative solution u∗ and a positive solution u∗ such that every solution u to
problem (1.1) different from u∗, u

∗ satisfies

u∗(t) < u(t) < u∗(t) for t ∈ [0, ω]. (3.5)
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Remark 3.3. The conclusions of Theorem 3.1 and Corollary 3.2 extend the conclu-
sions of Proposition 1.2 for non-autonomous Duffing equations with a sign-changing
forcing term. Indeed, let ω > 0 and

p(t) := −a, h(t) := b, f(t) := 1 for t ∈ [0, ω],

where a, b > 0. Then, condition (3.1) holds and, by Remark 2.4, we obtain p 6∈
V−(ω)∪V0(ω). We emphasize, in particular, the conclusion of Corollary 3.2 which
claims that there exists 0 < µ0 < +∞ such that, for any µ ∈ ] − µ0, µ0[ , equation
(1.5) has a maximal (resp. a minimal) ω-periodic solution which is positive (resp.
negative); compare it with conclusions (iii), (iv), (v) of Proposition 1.2.

We now provide a lower (resp. an upper) estimate of the number µ∗ (resp. µ∗)
appearing in the conclusion of Theorem 3.1.

Proposition 3.4. Let λ > 1, p 6∈ V−(ω)∪V0(ω), f(t) 6≡ 0, h satisfy (3.1), and µ∗,
µ∗ be the numbers appearing in the conclusion of Theorem 3.1. If [f(t)]+ 6≡ 0, then

µ∗ ≥ 1∫ ω
0

[f(s)]+ ds
sup

{ r

∆
(
p+ rλ−1h

) : r > 0, p+ rλ−1h ∈ V+(ω)
}
, (3.6)

and, if [f(t)]− 6≡ 0, then

µ∗ ≤ −
1∫ ω

0
[f(s)]− ds

sup
{ r

∆
(
p+ rλ−1h

) : r > 0, p+ rλ−1h ∈ V+(ω)
}
, (3.7)

where ∆ is defined in Remark 2.5.

Remark 3.5. Let λ > 1, ω > 0, and

p(t) := −a, h(t) := b for t ∈ [0, ω], (3.8)

where a, b > 0, and

Φ(a, b, λ, ω) :=

{
2ω
π

(λ−1)a
λ ( aλb )

1
λ−1 if a < λ

λ−1

(
π
ω

)2
,

2π
ω [ 1

b (a− π2

ω2 )]
1

λ−1 if a ≥ λ
λ−1 (πω )2.

It follows from the proof of [15, Corollary 3.19] that, if [f(t)]+ 6≡ 0 and [f(t)]− 6≡ 0,
then

µ∗ ≥ Φ(a, b, λ, ω)∫ ω
0

[f(s)]+ ds
, µ∗ ≤ −

Φ(a, b, λ, ω)∫ ω
0

[f(s)]− ds
.

If
f(t) ≥ 0 for t ∈ [0, ω], f(t) 6≡ 0, (3.9)

then it follows from [15, Theorem 3.15(3)] that, for any µ > 0, problem (1.1) has a
unique negative solution. Therefore, the conclusions of Theorem 3.1 can be refined
as follows.

Theorem 3.6. Let λ > 1, p 6∈ V−(ω) ∪ V0(ω) and conditions (3.1) and (3.9) be
fulfilled. Then, there exists 0 < µ0 < +∞ such that the following conclusions hold:

(1) For any µ > µ0, problem (1.1) has a unique negative solution u∗ and no
positive solution. Moreover, every solution u to (1.1) satisfies

either u(t) > u∗(t) for t ∈ [0, ω], or u(t) ≡ u∗(t). (3.10)

(2) For µ = µ0, problem (1.1) has a unique negative solution u∗ and a unique
non-negative solution u∗. Moreover, every solution u to problem (1.1) dif-
ferent from u∗, u

∗ satisfies (3.5).
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(3) For µ ∈ ]0, µ0[ , problem (1.1) has a unique negative solution u∗ and a
positive solution u∗ such that every solution u to problem (1.1) different
from u∗, u

∗ satisfies (3.5).
(4) For µ = 0, problem (1.1) has a unique positive solution u0, the trivial

solution, and a unique negative solution −u0. Moreover, every solution u
to problem (1.1) different from u∗, u

∗ changes its sign and satisfies (3.5).
(5) For µ ∈ ] − µ0, 0[ , problem (1.1) has a unique negative solution u∗ and a

positive solution u∗ such that every solution u to problem (1.1) different
from u∗, u

∗ satisfies (3.5).
(6) For µ = −µ0, problem (1.1) has a unique non-positive solution u∗ and a

unique positive solution u∗. Moreover, every solution u to problem (1.1)
different from u∗, u

∗ satisfies (3.5).
(7) For any µ < −µ0, problem (1.1) has a unique positive solution u∗ an no

negative solution. Moreover, every solution u to (1.1) satisfies (3.2).

Remark 3.7. It follows from Theorem 3.1(1) that, in Theorem 3.6(3,5), if u1, u2

are distinct positive (resp. negative) solutions to problem (1.1) different from u∗

(resp. u∗), then conditions (3.4) hold.

Remark 3.8. Let ω > 0 and

p(t) := −a, h(t) := b, f(t) := 1 for t ∈ [0, ω],

where a, b > 0. Then, conditions (3.1) and (3.9) hold, p 6∈ V−(ω) ∪ V0(ω) (see
Remark 2.4), and all the conclusions of Theorem 3.6 are in compliance with those
in Proposition 1.2.

We showed in [11, Example 2.8] that assuming p 6∈ V−(ω) ∪ V0(ω), hypothesis
(3.1) in Theorems 3.1 and 3.6 (i.e. the positivity of h a. e. on [0, ω]) is essential
for the existence of a positive solution to problem (1.1) with µ = 0 and cannot be
weakened to the non-negativity of h. However, under a stronger assumption on the
coefficient p, namely, p ∈ V+(ω), hypothesis (3.1) of Theorems 3.1 and 3.6 can be
relaxed to

h(t) ≥ 0 for a.e. t ∈ [0, ω], h(t) 6≡ 0. (3.11)

Theorem 3.9. Let λ > 1, p ∈ V+(ω), h satisfy (3.11), and

(p, f) ∈ U(ω),

∫ ω

0

f(s) ds > 0. (3.12)

Then, there exist −∞ ≤ µ∗ < 0 and 0 < µ∗ < +∞ such that the following conclu-
sions hold:

(1) For any µ > µ∗, problem (1.1) has no positive solution.
(2) For µ = µ∗, problem (1.1) has a unique positive solution u∗ and, moreover,

every solution u to problem (1.1) satisfies (3.2).
(3) For µ ∈ ]0, µ∗[ , problem (1.1) has exactly two positive solutions u1, u2 and

these solutions satisfy

u1(t) > u2(t) > 0 for t ∈ [0, ω]. (3.13)

Moreover, every solution u to problem (1.1) different from u1 is such that

u(t) < u1(t) for t ∈ [0, ω]. (3.14)

(4) For µ = 0, problem (1.1) has exactly three solutions: a positive solution u0,
the trivial solution, a negative solution −u0.
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(5) For µ ∈ ]µ∗, 0[ , problem (1.1) has either one or two positive solutions.
Moreover, (1.1) has a positive solution u∗ such that every solution to prob-
lem (1.1) satisfies (3.2).

(6) If µ∗ > −∞, then, for any µ < µ∗, problem (1.1) has no positive solution.

Remark 3.10. Assume that hypotheses of Theorem 3.9 hold and µ∗ > −∞. If,
moreover, h(t) > 0 for a. e. t ∈ [0, ω], then it follows from Theorem 3.1(3b) that
problem (1.1) with µ = µ∗ has a unique non-negative solution u∗ and, moreover,
every solution to (1.1) with µ = µ∗ satisfies (3.2).

Open questions. The following two questions remain open in Theorem 3.9:

(1) Does the inequality µ∗ > −∞ hold without any additional assumption?
(2) What happens in the case of µ = µ∗, if µ∗ > −∞ and h(t) = 0 on a set of

positive measure?

Remark 3.11. It is proved in [10, Theorem 16.4] that, if p ∈ IntV+(ω), then the
inclusion (p, f) ∈ U(ω) holds for every function f ∈ L([0, ω]) satisfying f(t) 6≡ 0
and ∫ ω

0

[f(s)]+ ds ≥ Γ(p)

∫ ω

0

[f(s)]− ds,

where Γ is given by (2.3).
On the other hand, if p ∈ V+(ω) and f satisfies (3.9), then (p, f) ∈ U(ω) as well

(see [10, Remark 9.2]).

Remark 3.12. In [1], to show a possible use of the main results, the authors
consider the parameter-dependent periodic problem for the forced Mathieu-Duffing
equation

z′′ = −(e+ b cos(t))z + νz3 + c(t); z(0) = z(2π), z′(0) = z′(2π), (3.15)

where e ≥ 0 and b ∈ R are such that e+ |b| > 0 and

‖[e+ b cos(·)]+‖Lα ≤ max
{
K(2α∗, 2π) : α ≥ 1

}
,

K is the so-called best Sobolev constant, c satisfies
(
−(e+b cos(·)), c

)
∈ U(2π), and

ν ∈ R is a parameter. It is proved in [1, Corollary 45] that there exits ν0 > 0 such
that problem (3.15) has at least two positive solutions provided that 0 < ν < ν0.
Putting u(t) :=

√
ν z(t), problem (3.15) is equivalent, in some sense, with problem

(1.1) in which p(t) := −(e+ b cos(t)), h(t) := 1, f(t) := c(t), λ := 3, and µ :=
√
ν.

Since −(e+ b cos(·)) ∈ V+(ω) in the case considered, Theorem 3.9 complements
the conclusion of [1, Corollary 45] as follows: There exists ν0 > 0 such that problem
(3.15) has exactly two positive solutions provided that 0 < ν < ν0, a unique positive
solution provided that ν = ν0, and no positive solution provided that ν > ν0.

Theorem 3.9 guarantees the existence of certain “critical” values µ∗, µ
∗ of the

parameter µ such that crossing these values, a bifurcation of positive solutions to
problem (1.1) occurs. From an application point of view, the estimates of these
numbers are also needed.

Proposition 3.13. Let λ > 1, p ∈ IntV+(ω), h satisfy (3.11), and∫ ω

0

[f(s)]+ ds > Γ(p)

∫ ω

0

[f(s)]− ds > 0, (3.16)
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where Γ is given by (2.3). Then, the numbers µ∗, µ
∗ appearing in the conclusion

of Theorem 3.9 satisfy

µ∗ ≤ −
(λ− 1) [∆(p)]

− λ
λ−1

λ
[
λ
∫ ω

0
h(s) ds

] 1
λ−1

∫ ω
0

[f(s)]− ds
, (3.17)

µ∗ ≥ (λ− 1) [∆(p)]
− λ
λ−1

λ
[
λ
∫ ω

0
h(s) ds

] 1
λ−1

∫ ω
0

[f(s)]+ ds
, (3.18)

where ∆ is defined in Remark 2.5, and

µ∗ <
(λ− 1)[Γ(p)

∫ ω
0

[p(s)]− ds−
∫ ω

0
[p(s)]+ ds]

λ
λ−1

λ[λ
∫ ω

0
h(s) ds]

1
λ−1
[ ∫ ω

0
[f(s)]+ ds− Γ(p)

∫ ω
0

[f(s)]− ds
] . (3.19)

If the forcing term f is non-negative, then, similarly as in Theorem 3.6, the
conclusions of Theorem 3.9 can be extended as follows.

Theorem 3.14. Let λ > 1, p ∈ V+(ω), and conditions (3.9) and (3.11) be fulfilled.
Then, there exists 0 < µ0 < +∞ such that the following conclusions hold:

(1) For any µ > µ0, problem (1.1) has a unique solution which is negative.
(2) For µ = µ0, problem (1.1) has exactly two solutions: one positive and one

negative.
(3) For µ ∈ ]0, µ0[ , problem (1.1) has exactly three solutions u1, u2, u3 and

these solutions satisfy

u1(t) > u2(t) > 0, u3(t) < 0 for t ∈ [0, ω].

(4) For µ = 0, problem (1.1) has exactly three solutions: a positive solution u0,
the trivial solution, a negative solution −u0.

(5) For µ ∈ ]− µ0, 0[ , problem (1.1) has exactly three solutions u1, u2, u3 and
these solutions satisfy

u1(t) < u2(t) < 0, u3(t) > 0 for t ∈ [0, ω].

(6) For µ = −µ0, problem (1.1) has exactly two solutions: one positive and one
negative.

(7) For any µ < −µ0, problem (1.1) has a unique solution which is positive.

Remark 3.15. Theorem 3.14 extends the conclusions of Theorem 1.1 for the case
of c = 0 and confirms a conjecture formulated in [2, Remark 3, p. 2502] because,
at least in case of c = 0, the conclusions of Theorem 1.1 (except for the asymptotic
stability) are still true for d which changes its sign (and belongs to a certain class
of functions).

We finally provide the upper and lower estimates of the number µ0 appearing in
Theorem 3.14, which follow immediately from Proposition 3.13.

Proposition 3.16. Let λ > 1, p ∈ IntV+(ω), and conditions (3.9) and (3.11)
hold. Then, the number µ0 appearing in the conclusion of Theorem 3.14 satisfies

µ0 ≥
(λ− 1) [∆(p)]

− λ
λ−1

λ
[
λ
∫ ω

0
h(s) ds

] 1
λ−1

∫ ω
0
f(s) ds

,
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where ∆ is defined in Remark 2.5, and

µ0 <
(λ− 1)

[
Γ(p)

∫ ω
0

[p(s)]− ds−
∫ ω

0
[p(s)]+ ds

] λ
λ−1

λ
[
λ
∫ ω

0
h(s) ds

] 1
λ−1

∫ ω
0
f(s) dsds

,

where Γ is given by (2.3).

Remark 3.17. Let λ > 1, ω > 0, and

p(t) := −a, h(t) := b, f(t) := 1 for t ∈ [0, ω],

where 0 < a ≤ π2

ω2 and b > 0. Then, conditions (3.1), (3.9), and (3.11) hold, p ∈
V+(ω) (see Remark 2.4), and all the conclusions of Theorem 3.14 coincide with those
in Proposition 1.2. Moreover, from Remark 2.6, Remark 3.5, and Proposition 3.16,
we obtain

2

π

(λ− 1)a

λ

( a
λb

) 1
λ−1 ≤ µ0 <

( 1

cos ω
√
a

2

) λ
λ−1 (λ− 1)a

λ

( a
λb

) 1
λ−1

;

compare it with the number appearing in Proposition 1.2.

4. Auxiliary statements

We first recall some results stated in [15].

Lemma 4.1 ([15, Theorem 3.15(2,3)]). Let λ > 1, µ ∈ R, p 6∈ V−(ω)∪ V0(ω), and
h satisfy (3.1). Then, the following conclusions hold:

(1) Assume that there exists a positive function α ∈ AC `([0, ω]) such that

α′′(t) ≥ p(t)α(t) + h(t)αλ(t) + µf(t) for a.e. t ∈ [0, ω], (4.1)

α(0) = α(ω), α′(0) = α′(ω). (4.2)

Then, problem (1.1) has a positive solution u∗ satisfying

u∗(t) ≥ α(t) for t ∈ [0, ω] (4.3)

such that every solution u to problem (1.1) satisfies (3.2). Moreover, for
any couple of distinct positive solutions u1, u2 to (1.1) satisfying (3.3),
conditions (3.4) hold.

(2) If µf(t) ≤ 0 holds for a. e. t ∈ [0, ω], then problem (1.1) has a unique
positive solution.

Lemma 4.2 ([15, Corollary 3.16]). Let λ > 1, µ ∈ R, p 6∈ V−(ω)∪V0(ω), h satisfy
(3.1) and∫ ω

0

[µf(s)]+ ds < sup
{ r

∆
(
p+ rλ−1h

) : r > 0, p+ rλ−1h ∈ V+(ω)
}
,

where ∆ is defined in Remark 2.5. Then, there exists a positive function α ∈
AC 1([0, ω]) satisfying (4.1) and (4.2).

Lemma 4.3 ([15, Theorem 3.25(1,3,4,5)]). Let λ > 1, µ ∈ R, p ∈ V+(ω), and h
satisfy (3.11). Then, the following conclusions hold:

(1) Problem (1.1) has at most two positive solutions.
(2) Assume that there exists a positive function α ∈ AC `([0, ω]) satisfying (4.1)

and (4.2). Then, problem (1.1) has a positive solution u∗ satisfying (4.3)
such that, for every solution u to problem (1.1), condition (3.2) holds.
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(3) Assume that (p, µf) ∈ U(ω) and there exist functions α1 ∈ AC `([0, ω]) and
α2 ∈ AC 1([0, ω]) such that

0 < α2(t) < α1(t) for t ∈ [0, ω], (4.4)

α′′k(t) ≥ p(t)αk(t) + h(t)αλk(t) + µf(t) for a.e. t ∈ [0, ω], k = 1, 2, (4.5)

αk(0) = αk(ω), α′k(0) = α′k(ω), k = 1, 2. (4.6)

Then, problem (1.1) possesses exactly two positive solutions u1, u2 and
these solutions satisfy (3.13). Moreover, for every solution u to problem
(1.1) different from u1, condition (3.14) holds.

(4) If µf(t) ≤ 0 holds for a. e. t ∈ [0, ω], then problem (1.1) has a unique
positive solution.

Lemma 4.4 ([15, Corollary 3.29]). Let λ > 1, µ ∈ R, p ∈ V+(ω), and h satisfy
(3.11). Then, the following conclusions hold:

(1) If

0 <

∫ ω

0

[µf(s)]+ ds ≤ λ− 1

λ [∆(p)]
λ
λ−1 [λ

∫ ω
0
h(s) ds]

1
λ−1

,

where ∆ is defined in Remark 2.5, then there exists a positive function
α ∈ AC 1([0, ω]) satisfying (4.1) and (4.2).

(2) If (p, µf) ∈ U(ω) and

0 <

∫ ω

0

[µf(s)]+ ds <
λ− 1

λ [∆(p)]
λ
λ−1

[
λ
∫ ω

0
h(s) ds

] 1
λ−1

, (4.7)

where ∆ is defined in Remark 2.5, then there exists functions α1, α2 ∈
AC 1([0, ω]) satisfying (4.4), (4.5), and (4.6).

Lemma 4.5 ([15, Theorem 3.32]). Let λ > 1, µ ∈ R\{0}, p ∈ IntV+(ω), h satisfy
(3.11), f(t) 6≡ 0, and∫ ω

0

[µf(s)]+ ds− Γ(p)

∫ ω

0

[µf(s)]− ds

≥ λ− 1

λ

∣∣Γ(p)
∫ ω

0
[p(s)]− ds−

∫ ω
0

[p(s)]+ ds
∣∣ λ
λ−1[

λ
∫ ω

0
h(s) ds

] 1
λ−1

.

where Γ is given by (2.3). Then, problem (1.1) has no non-negative solution.

We now provide several lemmas needed in the proofs of the main results.

Lemma 4.6. Let λ > 1, µ ≥ 0, f satisfy (3.9), and either

p 6∈ V−(ω) ∪ V0(ω), h(t) > 0 for a.e. t ∈ [0, ω], (4.8)

or

p ∈ V+(ω), h(t) ≥ 0 for a.e. t ∈ [0, ω], h(t) 6≡ 0. (4.9)

Then, problem (1.1) has a unique negative solution u∗ and, moreover, every solution
u to problem (1.1) satisfies (3.10).

Proof. It is clear that u is a solution to problem (1.1) if and only if −u is a solution
to the problem

z′′ = p(t)z + h(t)|z|λ sgn z − µf(t); z(0) = z(ω), z′(0) = z′(ω). (4.10)
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It follows from Lemmas 4.1(2) and 4.3(4) that, in both cases (4.8) and (4.9), problem
(4.10) has a unique positive solution z∗. Moreover, Lemmas 4.1(1) and 4.3(2) (with
α(t) := z∗(t)) guarantee that, in both cases (4.8) and (4.9), every solution z to
problem (4.10) satisfies

either z(t) < z∗(t) for t ∈ [0, ω], or z(t) ≡ z∗(t).

Therefore, the conclusion of the lemma holds with u∗ := −z∗. �

Lemma 4.7. Let λ > 1, µ > 0, p ∈ V+(ω), and conditions (3.9) and (3.11) hold.
Then, every solution to problem (1.1) is either positive or negative.

Proof. Putting q(t, x) := h(t)|x|λ−1 sgnx for a. e. t ∈ [0, ω] and all x ∈ R, the
conclusion of the lemma follows immediately from [15, Theorem 3.13(4)]. �

Lemma 4.8. Let λ > 1, p ∈ V+(ω), conditions (3.11) and (3.12) hold, and
{µn}∞n=1 be a non-decreasing sequence of positive numbers. Let, for any n ∈ N, un
be a positive solution to problem (1.1) with µ = µn. Then, the sequence {‖un‖C}∞n=1

is bounded and limn→+∞ µn < +∞.

Proof. For any n ∈ N, Lemma 4.3(2) (with α(t) := un(t) and µ := µn) implies that
problem (1.1) with µ = µn has a positive solution u∗n such that

every solution u to (1.1) with µ = µn satisfies u(t) ≤ u∗n(t) for t ∈ [0, ω]. (4.11)

Let n ∈ N be arbitrary. Put

α(t) :=
µn
µn+1

u∗n+1(t) for t ∈ [0, ω].

Then, in view of (3.11) and the condition µn ≤ µn+1, (1.1) with µ = µn+1 yields
(4.2) and

α′′(t) = p(t)α(t) +
(µn+1

µn

)λ−1

h(t)αλ(t) + µnf(t)

≥ p(t)α(t) + h(t)αλ(t) + µnf(t) for a.e. t ∈ [0, ω].

Therefore, it follows from Lemma 4.3(2) (with µ := µn) and (4.11) that

µn
µn+1

u∗n+1(t) ≤ u∗n(t) for t ∈ [0, ω].

Consequently,
µn
‖u∗n‖C

≤ µn+1

‖u∗n+1‖C
for t ∈ [0, ω], n ∈ N. (4.12)

We now show that

sup
{
‖un‖C : n ∈ N

}
< +∞. (4.13)

Suppose on the contrary that (4.13) does not hold. Then, in view of (4.11), we can
assume without loss of generality that

lim
n→+∞

‖u∗n‖C = +∞. (4.14)

Put

vn(t) :=
u∗n(t)

‖u∗n‖C
for t ∈ [0, ω], n ∈ N. (4.15)

Clearly,

‖vn‖C = 1, vn(t) > 0 for t ∈ [0, ω], n ∈ N. (4.16)
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It follows from (1.1) with µ = µn that, for any n ∈ N,

v′′n(t) = p(t)vn(t) + ‖u∗n‖λ−1
C h(t)vλn(t) +

µn
‖u∗n‖C

f(t) for a.e. t ∈ [0, ω], (4.17)

which yields

0 =

∫ ω

0

p(s)vn(s) ds+ ‖u∗n‖λ−1
C

∫ ω

0

h(s)vλn(s) ds+
µn
‖u∗n‖C

∫ ω

0

f(s) ds (4.18)

for n ∈ N. In view of (4.16), from the latter equality, we obtain

‖u∗n‖λ−1
C

∫ ω

0

h(s)vλn(s) ds+
µn
‖u∗n‖C

∫ ω

0

f(s) ds ≤
∫ ω

0

|p(s)|ds for n ∈ N. (4.19)

Put

A := sup
{
‖u∗n‖λ−1

C

∫ ω

0

h(s)vλn(s) ds : n ∈ N
}

(4.20)

B := sup
{ µn
‖u∗n‖C

: n ∈ N
}
. (4.21)

It follows from (3.11), (3.12), (4.16), and (4.19) that A ∈ ]0,+∞[ and B ∈ ]0,+∞[ .
For any n ∈ N, we choose tn ∈ [0, ω] such that v′n(tn) = 0. In view of (4.16), (4.20),
and (4.21), integrating (4.17) from tn to t, we obtain

|v′n(t)| =
∣∣ ∫ t

tn

[
p(s)vn(s) + ‖u∗n‖λ−1

C h(s)vλn(s) +
µn
‖u∗n‖C

f(s)
]

ds
∣∣

≤
∫ ω

0

|p(s)|vn(s) ds+ ‖u∗n‖λ−1
C

∫ ω

0

h(s)vλn(s) ds+
µn
‖u∗n‖C

∫ ω

0

|f(s)|ds

≤
∫ ω

0

|p(s)|ds+A+B

∫ ω

0

|f(s)|ds for t ∈ [0, ω], n ∈ N.

Therefore, the sequences {‖vn‖C}∞n=1 and {‖v′n‖C}∞n=1 are bounded and, thus, by
the Arzelá-Ascoli theorem, we can assume without loss of generality that

lim
n→+∞

vn(t) = v0(t) uniformly on [0, ω], (4.22)

where v0 ∈ C([0, ω]).
It follows from the hypothesis (p, f) ∈ U(ω) that the problem

v′′ = p(t)v + f(t); v(0) = v(ω), v′(0) = v′(ω) (4.23)

has a unique solution v which is positive. Putting z(t) := vn(t) − µn
‖u∗
n‖C

v(t) for

t ∈ [0, ω], n ∈ N, and taking into account (3.11) and (4.16), from (4.17) and (4.23),
we obtain

z′′(t) ≥ p(t)z(t) for a.e. t ∈ [0, ω], z(0) = z(ω), z′(0) = z′(ω)

and, thus, the hypothesis p ∈ V+(ω) yields zn(t) ≥ 0 for t ∈ [0, ω], i.e.,

vn(t) ≥ µn
‖u∗n‖C

v(t) ≥ µ1

‖u∗1‖C
v(t) for t ∈ [0, ω], n ∈ N,

because (4.12) holds and v is positive. Consequently, by (4.22), we obtain

v0(t) ≥ µ1

‖u∗1‖C
v(t) > 0 for t ∈ [0, ω]. (4.24)
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On the other hand, in view of (3.12), (4.19) yields∫ ω

0

h(s)vλn(s) ds ≤ 1

‖u∗n‖λ−1
C

∫ ω

0

|p(s)|ds for n ∈ N

and, therefore, passing the limit for n → +∞ and taking into account (4.14) and
(4.22), we conclude that ∫ ω

0

h(s)vλ0 (s) ds ≤ 0. (4.25)

However, by (4.24), the latter inequality contradicts (3.11). The obtained contra-
diction proves that (4.13) holds.

Now we show that limn→+∞ µn < +∞. Suppose on the contrary that

lim
n→+∞

µn = +∞. (4.26)

Integrating the equation in (1.1) with µ = µn over the interval [0, ω], we obtain

0 =

∫ ω

0

p(s)un(s) ds+

∫ ω

0

h(s)uλn(s) ds+ µn

∫ ω

0

f(s) ds for n ∈ N

which, in view of (3.11) and the positivity of un, yields∫ ω

0

f(s) ds ≤ ‖un‖C
µn

∫ ω

0

|p(s)|ds for n ∈ N.

Taking into account (4.13), (4.26) and passing the limit for n → +∞, we obtain∫ ω
0
f(s) ds ≤ 0, which contradicts (3.12). �

Lemma 4.9. Let λ > 1, p 6∈ V−(ω) ∪ V0(ω), h satisfy (3.1),∫ ω

0

f(s) ds > 0, (4.27)

and {µn}∞n=1 be a sequence of positive numbers. Let, for any n ∈ N, u∗n be a
positive solution to problem (1.1) with µ = µn. Then, the sequences {‖u∗n‖C}∞n=1

and {µn}∞n=1 are bounded.

Proof. We first show that

sup
{
‖u∗n‖C : n ∈ N

}
< +∞. (4.28)

Suppose on the contrary that (4.28) does not hold. Then, we can assume without
loss of generality that (4.14) is satisfied. Define the functions vn by (4.15). It is
clear that (4.16) holds and, in much the same way as in the proof of Lemma 4.8,
we show that the sequences {‖vn‖C}∞n=1 and {‖v′n‖C}∞n=1 are bounded. Therefore,
by the Arzelá-Ascoli theorem, we can assume without loss of generality that (4.22)
is satisfied, where v0 ∈ C([0, ω]). From (4.16) and (4.22), we obtain

v0(t) ≥ 0 for t ∈ [0, ω], ‖v0‖C = 1. (4.29)

Moreover, in much that same way as in the proof of Lemma 4.8, we derive inequality
(4.25) which, in view of (4.29), contradicts (3.1).

Now we show that the sequence {µn}∞n=1 is bounded. Suppose on the contrary
that sup{µn : n ∈ N} = +∞. Then, we can assume without loss of generality that
(4.26) holds. Integrating the equation in (1.1) with µ = µn over the interval [0, ω],
we obtain

0 =

∫ ω

0

p(s)u∗n(s) ds+

∫ ω

0

h(s)
(
u∗n(s)

)λ
ds+ µn

∫ ω

0

f(s) ds for n ∈ N
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which, in view of (3.1) and the positivity of u∗n, yields∫ ω

0

f(s) ds ≤ ‖u
∗
n‖C
µn

∫ ω

0

|p(s)|ds for n ∈ N.

Taking into account (4.26), (4.28) and passing the limit for n → +∞, we obtain∫ ω
0
f(s) ds ≤ 0, which contradicts (4.27). �

Lemma 4.10. Let λ > 1, p 6∈ V−(ω) ∪ V0(ω), h satisfy (3.1), and {µn}∞n=1 be a
bounded sequence of real numbers. Let, for any n ∈ N, u∗n be a positive solution to
problem (1.1) with µ = µn. Then, the sequence {‖u∗n‖C}∞n=1 is bounded.

Proof. Suppose on the contrary that sup{‖u∗n‖C : n ∈ N} = ∞. Then, we can
assume without loss of generality that (4.14) holds. Let the functions vn be given
by (4.15). It is clear that (4.16) and (4.19) are fulfilled. Define the numbers A, B
by formulas (4.20) and (4.21), respectively. Since the sequence {µn}∞n=1 is bounded
and {‖u∗n‖C}∞n=1 satisfies (4.14), we conclude easily that B ∈ ]0,+∞[ . Hence, in
view of (3.1) and (4.16), condition (4.19) yields

‖u∗n‖λ−1
C

∫ ω

0

h(s)vλn(s) ds ≤
∫ ω

0

|p(s)|ds+B

∫ ω

0

|f(s)|ds for n ∈ N, (4.30)

which guarantees that A ∈ ]0,+∞[ . In much that same way as in the proof of
Lemma 4.8, we show that that the sequences {‖vn‖C}∞n=1 and {‖v′n‖C}∞n=1 are
bounded and, thus, by the Arzelá-Ascoli theorem, we can assume without loss of
generality that (4.22) is satisfied, where v0 ∈ C([0, ω]). From (4.16) and (4.22), we
obtain (4.29).

On the other hand, (4.30) yields∫ ω

0

h(s)vλn(s) ds ≤ 1

‖u∗n‖λ−1
C

(∫ ω

0

|p(s)|ds+B

∫ ω

0

|f(s)|ds
)

for n ∈ N

and, therefore, passing the limit for n → +∞ and taking into account (4.14) and
(4.22), we obtain (4.25). However, in view of (3.1), condition (4.25) contradicts
(4.29). �

The following lemma follows from the well-known Gronwall-Bellman’s lemma for
the systems of first-order ODEs (see, e. g., [7, §1.7] or [17] for the case of continuous
`).

Lemma 4.11. Let ` ∈ L([a, b]) be a non-negative function and w ∈ AC 1([a, b]) be
such that

w(t) ≥ 0 for t ∈ [a, b], w(a) = 0, w′(a) = 0, (4.31)

w′′(t) ≤ `(t)w(t) for a.e. t ∈ [a, b].

Then, w(t) ≡ 0.

Lemma 4.12. Let λ > 1, µ∗ > 0, p ∈ V+(ω), h satisfy (3.11), and there exist a
positive function α ∈ AC 1([0, ω]) such that (4.1) with µ = µ∗ and (4.2) hold. Then,
for any µ ∈ ]0, µ∗[ , there exist functions α1, α2 ∈ AC 1([0, ω]) satisfying conditions
(4.4), (4.5), and (4.6).

Proof. Let µ ∈ ]0, µ∗[ be arbitrary and α2(t) := µ
µ∗ α(t) for t ∈ [0, ω]. It follows

from (4.1) with µ = µ∗ and (4.2) that

α2(t) > 0 for t ∈ [0, ω], (4.32)



16 J. ŠREMR EJDE-2023/65

α2(0) = α2(ω), α′2(0) = α′2(ω), (4.33)

α′′2(t) = p(t)α2(t) +
(µ∗
µ

)λ−1
h(t)αλ2 (t) + µf(t)

≥ p(t)α2(t) + h(t)αλ2 (t) + µf(t) for a.e. t ∈ [0, ω],

(4.34)

meas
{
t ∈ [0, ω] : α′′2(t) > p(t)α2(t) + h(t)αλ2 (t) + µf(t)

}
> 0, (4.35)

because 0 < µ < µ∗ and h satisfies (3.11).
Therefore, Lemma 4.3(2) (with α(t) := α2(t)), problem (1.1) has a solution α1

such that
α1(t) ≥ α2(t) for t ∈ [0, ω]. (4.36)

Consequently, the functions α1, α2 satisfy conditions (4.5) and (4.6). We finally
show that (4.4) is fulfilled as well. Suppose on the contrary that (4.4) does not
hold. Extend the functions p, h, f , α1, α2 periodically to the whole real axis
denoting them by the same symbols. Then, in view of (4.32) and (4.36), there
exists a ∈ [0, ω[ such that

α1(a) = α2(a), α′1(a) = α′2(a). (4.37)

Put

w(t) := α1(t)− α2(t) for t ∈ [a, a+ ω],

ϕ(t) := g
(
α1(t), α2(t)

)
for t ∈ [a, a+ ω],

where

g(x, y) :=

{
xλ−yλ
x−y for x, y ∈ R, x 6= y,

λ|x|λ−1 sgnx for x, y ∈ R, x = y.

It is not difficult to verify that g : R2 → R is a continuous function and, thus, the
function ϕ is continuous and non-negative on [a, a + ω]. By (4.36) and (4.37), w
satisfies (4.31) with b = a + ω. Since α1 is a solution to problem (1.1) and α2

satisfies (4.34), we have

w′′(t) ≤ p(t)w(t) + h(t)
(
αλ1 (t)− αλ2 (t)

)
≤
(
|p(t)|+ h(t)ϕ(t)

)
w(t) for a.e. t ∈ [a, a+ ω].

Therefore, Lemma 4.11 (with `(t) := |p(t)|+h(t)ϕ(t) and b := a+ω) yields w(t) ≡ 0,
i., e., α1(t) ≡ α2(t). However, this contradicts condition (4.35), because α1 is a
solution to problem (1.1). �

Lemma 4.13. Let λ > 1, µ∗ > 0, p, h, f ∈ L([0, ω]), h satisfy (3.11), and there
exist functions α1, α2 ∈ AC 1([0, ω]) such that (4.5) with µ = µ∗ and (4.6) hold and

0 ≤ α2(t) < α1(t) for t ∈ [0, ω]. (4.38)

Then, there exist µ > µ∗ and a positive function α ∈ AC 1([0, ω]) satisfying (4.1)
with µ = µ∗ and (4.2).

The proof of the above lemma is similar to the proof of [14, Lemma 4.9] and
thus, it is omitted.

Lemma 4.14. Let λ > 1, µ∗ ∈ R, p 6∈ V−(ω) ∪ V0(ω), and h satisfy (3.1). Then,
for any c > 0, there exists a function β ∈ AC 1([0, ω]) such that

β′′(t) ≤ p(t)β(t) + h(t)βλ(t) + µ∗f(t) for a.e. t ∈ [0, ω], (4.39)
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β(0) = β(ω), β′(0) = β′(ω), (4.40)

β(t) ≥ c for t ∈ [0, ω]. (4.41)

Proof. Put

q0(t, x) := h(t)|x|λ−1 for a.e. t ∈ [0, ω] and all x ∈ R.

Since limx→+∞ xλ−1
∫
E
h(s) ds = +∞ for every E ⊆ [0, ω], measE > 0, it follows

from [15, Lemma 4.15] that there exists R > 0 such that p + q0(·, R) ∈ V−(ω).
Therefore, the conclusion of the lemma follows from [15, Proposition 4.21] (with
q(t, x) := q0(t, x) and x0 := 0). �

Lemma 4.15 ([10, Proposition 10.8, Remark 0.7]). If p ∈ V−(ω) ∪ V0(ω), then
either

∫ ω
0
p(s) ds > 0 or p(t) ≡ 0.

5. Proofs of main results

Proof of Theorem 3.1. Put

A :=
{
µ ∈ R : problem (1.1) has a positive solution

}
. (5.1)

In view of Lemmas 4.1(1) and 4.2, there exists ε > 0 such that ]−ε, ε[∩A 6= ∅. Let

µ∗ := inf A, µ∗ := supA. (5.2)

Then, −∞ ≤ µ∗ < 0 and 0 < µ∗ ≤ +∞.

Conclusion (1): Let µ0 ∈ A\{0} be arbitrary and µ ∈ R be such that 0 < |µ| ≤ |µ0|
and sgnµ = sgnµ0. Let, moreover, u0 be a positive solution to problem (1.1) with
µ = µ0. Put

α(t) :=
µ

µ0
u0(t) for t ∈ [0, ω]. (5.3)

Clearly, α(t) > 0 for t ∈ [0, ω]. It follows from (1.1) with µ = µ0 that α satisfies
(4.2) and

α′′(t) = p(t)α(t) +
(µ0

µ

)λ−1
h(t)αλ(t) + µf(t)

≥ p(t)α(t) + h(t)αλ(t) + µf(t) for a.e. t ∈ [0, ω],
(5.4)

because |µ0| ≥ |µ| > 0 and (3.1) holds. Therefore, Lemma 4.1(1) yields µ ∈ A.
Consequently, ]µ∗, µ

∗[⊆ A and, thus, conclusion (1) of the theorem follows from
Lemma 4.1(1).

Conclusion (2): Assume that µ∗ < +∞. Then, it follows immediately from (5.1)
and (5.2) that conclusion (2a) of the theorem holds.

Let {µn}∞n=1 be a sequence of positive numbers such that

µn ∈ A for n ∈ N, lim
n→+∞

µn = µ∗ (5.5)

and, for any n ∈ N, let un be a solution to problem (1.1) with µ = µn. Lemma 4.10
yields (4.13). By the standard arguments using in the proof of a well-possedness
of the periodic problems for second-order ODEs, one can show that there exists a
subsequence {unk}∞k=1 of {un}∞n=1 such that

lim
k→+∞

u(i)
nk

(t) = (u∗)(i)(t) uniformly on [0, ω], i = 0, 1, (5.6)
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where u∗ ∈ AC 1([0, ω]) is a solution to problem (1.1) with µ = µ∗. All the functions
unk are positive and, thus, it is clear that

u∗(t) ≥ 0 for t ∈ [0, ω].

We now prove that u∗ is a unique non-negative solution to problem (1.1) with
µ = µ∗. Suppose on the contrary that u∗ is a non-negative solution to (1.1) with
µ = µ∗ such that

u∗(ξ) 6= u∗(ξ) for some ξ ∈ [0, ω]. (5.7)

Put
α(t) := max

{
u∗(t), u

∗(t)
}

for t ∈ [0, ω].

It is not difficult to verify that α ∈ AC `([0, ω]), condition (4.2) with µ = µ∗ holds,
and

α(a) = α(ω), α′(a) ≥ α′(ω). (5.8)

Let us show that
α(t) > 0 for t ∈ [0, ω]. (5.9)

If this condition does not hold, then, in view of the non-negativity of u∗, u
∗, there

exists t0 ∈ [0, ω] such that

u∗(t0) = 0, u∗(t0) = 0. (5.10)

Extend the functions p, h, f , u∗, u
∗ periodically to the whole real axis denoting

them by the same symbols. Then, using (5.10) and the non-negativity of u∗, u
∗,

we obtain
u′∗(t0) = 0, (u∗)′(t0) = 0. (5.11)

Since the function x 7→ |x|λ sgnx is Lipschitz on every compact interval, for any
c1, c2 ∈ R, the Cauchy problem

u′′ = p(t)u+ h(t)|u|λ sgnu+ µ∗f(t); u(t0) = c1, u
′(t0) = c2 (5.12)

is uniquely solvable. Therefore, (5.10) and (5.11) yield u∗(t) ≡ u∗(t), which con-
tradicts (5.7). Hence, (5.9) holds. Now, in view of (4.2) with µ = µ∗, (5.8), and
(5.9), it follows from Lemma 4.1(1) that problem (1.1) with µ = µ∗ has a positive
solution ũ∗ such that

0 ≤ u∗(t) < ũ∗(t) for t ∈ [0, ω] or 0 ≤ u∗(t) < ũ∗(t) for t ∈ [0, ω].

Therefore, Lemma 4.13 guarantees that there exist µ̃ > µ∗ and a positive function
α̃ ∈ AC 1([0, ω]) satisfying

α̃′′(t) ≥ p(t)α̃(t) + h(t)α̃λ(t) + µ̃f(t) for a.e. t ∈ [0, ω], (5.13)

α̃(0) = α̃(ω), α̃′(0) = α̃′(ω). (5.14)

Consequently, it follows from Lemma 4.1 (with α(t) := α̃(t) and µ := µ̃) that
problem (1.1) with µ = µ̃ has at least one positive solution, which contradicts
the above-proved conclusion (2a). The contradiction obtained proves that u∗ is a
unique non-negative solution to problem (1.1) with µ = µ∗.

It remains to show that every solution u to problem (1.1) with µ = µ∗ satisfies
(3.2). Indeed, suppose on the contrary that u is a solution to problem (1.1) with
µ = µ∗ such that (3.2) does not hold. We have mentioned above that, for any
t0 ∈ [0, ω] and c1, c2 ∈ R, the Cauchy problem (5.12) is uniquely solvable and, thus,
the solution u satisfies

max
{
u(t)− u∗(t) : t ∈ [0, ω]

}
> 0. (5.15)
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Put

α(t) := max
{
u(t), u∗(t)

}
for t ∈ [0, ω]. (5.16)

It is not difficult to verify that α ∈ AC `([0, ω]) and conditions (4.2) with µ = µ∗ and
(5.8) hold. Moreover, it follows from Lemma 4.14 that there exists β ∈ AC 1([0, ω])
satisfying (4.39), (4.40), and

β(t) ≥ α(t) for t ∈ [0, ω]. (5.17)

Therefore, by (4.2) with µ = µ∗, (4.39), (4.40), (5.8), and (5.17), we conclude
that α and β form a well-ordered pair of lower and upper functions and, thus,
problem (1.1) with µ = µ∗ has a solution û such that

α(t) ≤ û(t) ≤ β(t) for t ∈ [0, ω].

However, this condition, together with (5.15) and (5.16), implies that û is a non-
negative solution to problem (1.1) with µ = µ∗ different from u∗, which contradicts
the above-proved fact concerning the uniqueness of the non-negative solution u∗.

Conclusion (3): It can be proved in much the same way as conclusion (2) consid-
ering −µ and −f instead of µ and f .

Conclusion (4): It follows immediately from Lemma 4.9. �

Proof of Corollary 3.2. It is clear that u is a solution to problem (1.1) if and only
if −u is a solution to problem (4.10). Therefore, the conclusion of the corollary
follows from Theorem 3.1(1). �

Proof of Proposition 3.4. Let µ∗, µ
∗ be the numbers appearing in the conclusion of

Theorem 3.1.
Assume that [f(t)]+ 6≡ 0 and suppose on the contrary that (3.6) does not hold,

i.e.,

µ∗ <
1∫ ω

0
[f(s)]+ ds

sup
{ r

∆
(
p+ rλ−1h

) : r > 0, p+ rλ−1h ∈ V+(ω)
}
,

where ∆ is defined by Remark 2.5. Then, µ∗ ∈ ]0,+∞[ and there exists ε > 1 such
that ∫ ω

0

[εµ∗f(s)]+ ds < sup
{ r

∆
(
p+ rλ−1h

) : r > 0, p+ rλ−1h ∈ V+(ω)
}
.

Therefore, from Lemmas 4.2 and 4.1(1) that problem (1.1) with µ = εµ∗ has at
least one positive solution, which contradicts conclusion (2a) of Theorem 3.1.

Assuming [f(t)]− 6≡ 0, estimate (3.7) can be proved analogously to (3.6). �

Proof of Theorem 3.6. It follows from Theorem 3.1 and Lemmas 4.6 and 4.9 that
there exists µ0 ∈ ]0,∞[ such that conclusions (1), (2), and (3) of the theorem hold.
Since u is a solution to problem (1.1) if and only if−u is a solution to problem (4.10),
conclusions (5), (6), and (7) of the theorem hold as well. Finally, conclusion (4) of
the theorem follows from Lemma 4.6 and the above-mentioned equivalence. �

Proof of Theorem 3.9. Let the set A be given by formula (5.1). In view of Lem-
mas 4.3(2,3) and 4.4(1), there exists ε > 0 such that ] − ε, ε[∩A 6= ∅. Define the
numbers µ∗ and µ∗ by (5.2). Then, −∞ ≤ µ∗ < 0, µ∗ > 0, and Lemma 4.8 implies
that µ∗ < +∞.

Conclusion (1): It follows from (5.1), (5.2), and the condition µ∗ ∈ ]0,+∞[ .
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Conclusion (2): We first show that

µ∗ ∈ A. (5.18)

Indeed, let {µn}∞n=1 be a non-decreasing sequence of positive numbers such that

µn ∈ A for n ∈ N, lim
n→+∞

µn = µ∗.

Moreover, for any n ∈ N, let un be a positive solution to problem (1.1) with µ = µn.
It follows from Lemma 4.8 that condition (4.13) holds. By the standard arguments
using in the proof of a well-possedness of the periodic problems for second-order
ODEs, one can show that there exists a subsequence {unk}∞k=1 of {un}∞n=1 such

that (5.6) is satisfied, where u∗ ∈ AC 1([0, ω]) is a solution to problem (1.1) with
µ = µ∗. Since the functions unk , k ∈ N, are positive, it is clear that

u∗(t) ≥ 0 for t ∈ [0, ω]. (5.19)

In view of the hypothesis (p, f) ∈ U(ω) and the positivity of µ∗, problem (4.23) has
a unique solution v, which is positive. By (1.1) with µ = µ∗, (3.11), (4.23), and
(5.19), we obtain

z′′(t) ≥ p(t)z(t) for a.e. t ∈ [0, ω], z(0) = z(ω), z′(0) = z′(ω),

where z(t) := u∗(t) − µ∗v(t) for t ∈ [0, ω]. Therefore, the hypothesis p ∈ V+(ω)
yields z(t) ≥ 0 for t ∈ [0, ω]. Hence, we have

u∗(t) ≥ µ∗v(t) > 0 for t ∈ [0, ω]

and, thus condition (5.18) holds.
Since u∗ is a positive solution to problem (1.1) with µ = µ∗, in view of Lemma

4.3(2), to prove conclusion (2) of the theorem, it is sufficient to show that problem
(1.1) with µ = µ∗ does not have more than one positive solution. Suppose on the
contrary that problem (1.1) with µ = µ∗ has a positive solution different from u∗.
Then, it follows from Lemma 4.3(2) (with α(t) := u∗(t) and µ := µ∗) that problem
(1.1) with µ = µ∗ possesses solutions ũ∗, ũ

∗ such that

ũ∗(t) > ũ∗(t) > 0 for t ∈ [0, ω].

Therefore, Lemma 4.13 (with α1(t) := ũ∗(t) and α2(t) := ũ∗(t)) guarantees that
there exist µ̃ > µ∗ and a positive function α̃ ∈ AC 1([0, ω]) satisfying (5.13) and
(5.14). Consequently, by Lemma 4.1(1) (with α(t) := α̃(t) and µ := µ̃), we conclude
that problem (1.1) with µ = µ̃ has at least one positive solution, which contradicts
the above-proved conclusion (1).

Conclusions (3): Having a positive solution u∗ to problem (1.1) with µ = µ∗, it
is clear that all the hypotheses of Lemma 4.12 (with α(t) := u∗(t)) are fulfilled.
Consequently, for any µ ∈ ]0, µ∗[ , (p, µf) ∈ U(ω) and there exist functions α1, α2 ∈
AC 1([0, ω]) satisfying conditions (4.4), (4.5), and (4.6) and, therefore, conclusion
(3) of the theorem follows from Lemma 4.3(3).

Conclusion (4): It follows immediately from [11, Corollary 2.31(2)].

Conclusion (5): Let µ0 ∈ A∩ ] −∞, 0[ and µ ∈ [µ0, 0[ be arbitrary and let u0 be
a positive solution to problem (1.1) wigth µ = µ0. Define the function α by (5.3).
Clearly, α(t) > 0 for t ∈ [0, ω]. It follows from (1.1) with µ = µ0 that α satisfies
(4.2) and (5.4), because µ0 ≤ µ < 0 and (3.11) holds. Therefore, Lemma 4.3(2)
yields µ ∈ A. Consequently, ]µ∗, 0[⊆ A and, thus, conclusion (5) of the theorem
follows from Lemma 4.3(1,2).
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Conclusion (6): Assume that µ∗ > −∞. Then, it follows immediately from (5.1)
and (5.2) that, for any µ < µ∗, problem (1.1) has no positive solution. �

Proof of Proposition 3.13. By Remark 3.11, it follows from (3.16) that condition
(3.12) holds. Let µ∗, µ

∗ be the numbers appearing in the conclusion of Theorem 3.9.
We first show that µ∗ satisfies (3.17), where ∆ is defined in Remark 2.5. Suppose

on the contrary that (3.17) does not hold, i.e.,

µ∗ > −
(λ− 1) [∆(p)]

− λ
λ−1

λ
[
λ
∫ ω

0
h(s) ds

] 1
λ−1

∫ ω
0

[f(s)]− ds
.

Then, µ∗ ∈ ]−∞, 0[ and there exists ε > 1 such that

0 <

∫ ω

0

[εµ∗f(s)]+ ds = −εµ∗
∫ ω

0

[f(s)]− ds ≤ (λ− 1) [∆(p)]
− λ
λ−1

λ
[
λ
∫ ω

0
h(s) ds

] 1
λ−1

.

Therefore, it follows from Lemmas 4.4(1) and 4.3(2) that problem (1.1) with
µ = εµ∗ has a positive solution, which contradicts conclusion (6) of Theorem 3.9.

Now we show that µ∗ satisfies (3.18), where ∆ is defined in Remark 2.5. Suppose
on the contrary that (3.18) does not hold, i.e.,

µ∗ <
(λ− 1) [∆(p)]

− λ
λ−1

λ
[
λ
∫ ω

0
h(s) ds

] 1
λ−1

∫ ω
0

[f(s)]+ ds
. (5.20)

By the conditions (p, f) ∈ U(ω) and µ∗ > 0, we obtain (p, µ∗f) ∈ U(ω). Therefore,
in view of (5.20), it follows from Lemmas 4.4(2) and 4.3(3) that problem (1.1)
with µ = µ∗ has exactly two positive solutions, which contradicts conclusion (2) of
Theorem 3.9.

We finally show that µ∗ satisfies (3.19), where Γ is given by (2.3). Suppose on
the contrary that (3.19) does not hold, i.e.,

µ∗ ≥
(λ− 1)[Γ(p)

∫ ω
0

[p(s)]− ds−
∫ ω

0
[p(s)]+ ds]

λ
λ−1

λ
[
λ
∫ ω

0
h(s) ds

] 1
λ−1 [

∫ ω
0

[f(s)]+ ds− Γ(p)
∫ ω

0
[f(s)]− ds]

.

Then, it follows from Lemma 4.5 that problem (1.1) with µ = µ∗ has no positive
solution, which contradicts conclusion (2) of Theorem 3.9. �

Proof of Theorem 3.14. We first note that, by Remark 3.11, condition (3.12) holds.
Therefore, it follows from Theorem 3.9(1,2,3) and Lemmas 4.6 and 4.7 that there
exists µ0 ∈ ]0,+∞[ such that conclusions (1), (2), and (3) of the theorem hold.
Since u is a solution to problem (1.1) if and only if −u is a solution to problem
(4.10), conclusions (5), (6), and (7) of the theorem hold as well. Finally, the validity
of conclusion (4) of the theorem follows immediately from Theorem 3.9(4). �

6. Conclusions

The existence and exact multiplicity of solutions to problem (1.1) was studied
depending on the choice of the parameter µ. We extended the conclusions stated in
[2, Theorem 1.1] for the case of undamped Duffing equation (1.2) with c := 0 and
weakened hypotheses (1.3) and (1.4). Our results confirm a conjecture formulated
in [2, Remark 3, p. 2502] because, at least in the case of c = 0, the conclusions of
Theorem 1.1 (except for the asymptotic stability) are still true for d which changes
its sign (and belongs to a certain class of functions). We also provided both lower
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and upper estimates of the “critical” values µ∗, µ
∗ (resp. µ0) of the parameter µ

appearing in the conclusions of Theorems 3.1 and 3.9 (resp. Theorems 3.6 and 3.14).
The approach used in [2] employs identifying the fold point on bifurcation curves

and the continuation method combined with the Sturm’s comparison theorem, topo-
logical degree, and the maximum principle. We used a slightly different approach;
we proved our results by using the method of lower and upper functions only, which
was combined with the the maximum and anti-maximum principles. The results
obtained substantially generalize the results available in the literature because they
are not only specific sufficient conditions. Our general results hold for all the equa-
tions of the type studied whose coefficient in the linear part belongs to a certain
sufficiently wide class of functions. Such a class is described in terms of the behav-
ior of the corresponding linear periodic problem and does not exclude the so-called
resonant cases.

Finally, it is worth mentioning that if the results concerning the maximum and
anti-maximum principles are known for the periodic linear problem

u′′ = p(t)u+ g(t)u′; u(0) = u(ω), u′(0) = u′(ω)

with p, g ∈ L([0, ω]), the parameter-dependent problem

u′′ = p(t)u+ g(t)u′ + h(t)|u|λ sgnu+ µf(t); u(0) = u(ω), u′(0) = u′(ω)

might be also studied in a similar way as (1.1). The first steps are already done for
the Duffing equation with a constant damping coefficient g (see, e. g., [2, 8]).
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membres monotones et leurs applications, Ann. Soc. Polon. Math., 23 (1950), 112–166, in

French.
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