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Abstract. In this article, we consider a coupled system of two hyperbolic

equations with variable exponents in the damping and source terms, where the

dampings are modilated with time-dependent coefficients α(t), β(t). First, we
state and prove an existence result of a global weak solution, using Galerkin’s

method with compactness arguments. Then, by a Lemma due to Martinez, we

establish the decay rates of the solution energy, under suitable assumptions on
the variable exponents m and r and the coefficients α and β. To illustrate our

theoretical results, we give some numerical examples.

1. Introduction

In this work, we study the initial-boundary-value problem

utt −∆u+ α(t)|ut|m(x)−2ut + |u|p(x)−2u|v|p(x) = 0 in Ω× (0, T ),

vtt −∆v + β(t)|vt|r(x)−2vt + |v|p(x)−2v|u|p(x) = 0 in Ω× (0, T ),

u = v = 0 on ∂Ω× (0, T ),

u(0) = u0, ut(0) = u1 in Ω,

v(0) = v0, vt(0) = v1 in Ω,

(1.1)

where T > 0 and Ω is a bounded domain of Rn(n ∈ N∗) with a smooth boundary
∂Ω; α, β : [0,∞)→ (0,∞) are two non-increasing C1-functions and m, r and p are
given continuous functions on Ω satisfying some conditions to be specified later.

The wave equations with variable exponents of the nonlinearity occur in math-
ematical models of various physical phenomena such as flows of electro-rheological
fluids or fluids with temperature dependent viscosity, nonlinear viscoelasticity, fil-
tration processes through a porous media and image processing, thermorheological
fluids, or robotics, etc. For more details on the subject, the reader can see [1, 10]. In
fact, several works concerning hyperbolic problems with nonlinearities of variable-
exponent type have appeared, of which we mention some recent ones.
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For a class of one wave equation, Antontsev [4] studied the equation

utt − div(a|∇u|p(x,t)−2∇u)− α∆ut − bu|u|σ(x,t)−2 = f, in Ω× (0, T ),

where α > 0 is a constant and a, b, p, σ are given functions. Under specific conditions
on the exponents, he proved the existence of local and global weak solutions and a
blow-up result. Guo and Gao [12] took σ(x, t) = r > 2 and established a finite-time
blow-up result for certain solutions with positive initial energy. After that, Guo
[13] applied an interpolation inequality and some energy inequalities to obtain an
estimate of the lower bound for the blow-up time when the source is super-linear.
Sun et al. [27] study the equation

utt − div(a(x, t)∇u) + c(x, t)ut|ut|q(x,t)−1 = b(x, t)u|u|p(x,t)−2, in Ω× (0, T ),

established a blow-up result and gave lower and upper bounds for the blow-up time,
under some conditions on the initial data. In addition, they provided numerical
illustrations for their results. Messaoudi and Talahmeh [19] studied the equation

utt − div(|∇u|r(x)−2∇u) + aut|ut|m(x)−2 = bu|u|p(x)−2, in Ω× (0, T ),

where a, b > 0 are two constants and m, r, p are given functions. They proved
a finite-time blow-up result. In the absence of source term (b = 0), the same
authors in [21] obtained decay estimates of solutions and presented two numerical
applications as illustration for their theoretical results. After that, they gave in [22]
an overview of results concerning decay and blow up for nonlinear wave equations
involving variable and constant exponents. Recently, Xiaolei et al. [28] used some
energy estimates and a Komornik’s inequality to establish an asymptotic stability
of solutions to quasilinear hyperbolic equations with variable source and damping
terms.

Concerning coupled systems of hyperbolic equations with variable exponents, we
mention the work of Bouhoufani and Hamchi [9], where they proved the existence
of a global weak solution and established decay estimates of the energy depending
on the variable exponents. Messaoudi and Talahmeh [24] considered a system of
wave equations, with damping and source terms of variable-exponent nonlinearities,
and proved a blow-up result for solutions with negative initial energy. Recently,
Messaoudi et al. [25] studied a coupled hyperbolic system with variable exponents.
They obtained an existence and uniqueness result of a weak solution, showed that
certain solutions, with positive initial energy, blow up in finite time and gave some
numerical applications.

For the case of equations and systems with constant exponents, we can cite the
works of Mustafa and Messaoudi [26], Benaissa and Mimouni [5], Benaissa and
Mokaddem [6], Zennir [29], Bociu [7], Bociu and Lasiecka [8], Agre and Rammaha
[2], and Jianghao Hao and Li Cai [15]. In particular, Bociu [7] considered, in a
three-dimensional bounded domain, the wave equation with interior and boundary
nonlinear sources and dampings. She classified the “polynomial-type” sources in
four categories and established some local and global existence results. In her case,
the super-supercase, the exponent of the nonlinearity could approach 6, however,
in our case, the nonlinearity exponent p cannot exceed 2 when n = 3, due to the
nature of the source we have in our problem. See (H3) below.

In this work, we intend to prove the local and global existence for our problem
(1.1) and establish explicit decay rates of the solution energy depending on the range
of the variable exponents m, r and the time-dependent coefficients α and β. This
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article consists of six sections. After the introduction, we recall the definitions of
the variable-exponent Lebesgue and Sobolev spaces as well as some useful Lemmas.
In section 3, we state and prove the local and global existence of a weak solution
of (1.1). Section 4 is devoted to the statement and the proof of our aim result.
In section 5, we give numerical examples to illustrate our theoretical findings. We
conclude with some remarks in section 6.

2. Preliminaries

In this section, we present some essential facts from [3, 11, 17] related to the
Lebesgue and Sobolev spaces with variable exponents. Let q : Ω → [1,∞) be a
measurable function, where Ω is a domain of Rn. We define the Lebesgue space
with a variable exponent by

Lq(·)(Ω) = {f : Ω→ R measurable in Ω : %q(·)(λf) < +∞, for some λ > 0},
where

%q(·)(f) =

∫
Ω

|f(x)|q(x)dx.

Endowed with the Luxembourg-type norm

‖f‖q(·) := inf{λ > 0 :

∫
Ω

|f(x)

λ
|q(x)dx ≤ 1}.

Lq(·)(Ω) is a Banach space (see [3, 11, 17]). We, also, define the variable exponent
Sobolev space

W 1,q(·)(Ω) = {f ∈ Lq(·)(Ω) : ∇f exists and |∇f | ∈ Lq(·)(Ω)}.
This is a Banach space with respect to the norm

‖f‖W 1,q(·)(Ω) = ‖f‖q(·) + ‖∇f‖q(·).

Definition 2.1. We say that a function q : Ω→ R is log-Hölder continuous on Ω,
if there exists a constant θ > 0 such that for all 0 < δ < 1, we have

|q(x)− q(y)| ≤ − θ

log |x− y|
, for a.e. x, y ∈ Ω, with |x− y| < δ.

Furthermore, for q satisfying the log-Hölder continuity, we denote by W
1,q(·)
0 (Ω)

the closure of C∞0 (Ω) inW 1,q(·)(Ω) and byW−1,q′(·)(Ω) the dual space ofW
1,q(·)
0 (Ω),

in the same way as the usual Sobolev spaces, where 1
q(·) + 1

q′(·) = 1.

Lemma 2.2 (Young’s Inequality [3, 11, 17]). Let r, q, s ≥ 1 be measurable functions
defined on Ω, such that

1

s(y)
=

1

r(y)
+

1

q(y)
, for a.e. y ∈ Ω.

Then for all a, b ≥ 0 we have

(ab)s(·)

s(·)
≤ (a)r(·)

r(·)
+

(b)q(·)

q(·)
.

Lemma 2.3 ([3, 11, 17]). If 1 < q− ≤ q(y) ≤ q+ < +∞ holds, then for each
f ∈ Lq(·)(Ω) we have (i)

min{‖f‖q
−

q(·), ‖f‖
q+

q(·)} ≤ %q(·)(f) ≤ max{‖f‖q
−

q(·), ‖f‖
q+

q(·)}
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(ii)

%q(·)(f) ≤ ‖f‖q
−

q− + ‖f‖q
+

q+ ,

where

q− = ess infx∈Ω q(x), q+ = ess supx∈Ω q(x).

Lemma 2.4 (Poincaré’s inequality [3, 17]). Let Ω ⊂ Rn be a bounded domain. If
q satisfies the log-Hölder continuity condition, then there exists a positive constant
C depending on Ω and q only, such that

‖f‖q(·) ≤ C‖∇f‖q(·), for all f ∈W 1,q(·)
0 (Ω).

In particular, the space W
1,q(·)
0 (Ω) has an equivalent norm,

‖f‖
W

1,q(·)
0 (Ω)

= ‖∇f‖q(·).

Corollary 2.5 ([3, 17]). Let Ω ⊂ Rn be a bounded domain with a smooth boundary
∂Ω. Assume that q : Ω→ (1,∞) is a continuous function such that

2 ≤ q− ≤ q(x) ≤ q+ <
2n

n− 2
, n ≥ 3,

then the embedding H1
0 (Ω) ↪→ Lq(·)(Ω) is continuous and compact.

To prove our decay result, we need the following Lemma.

Lemma 2.6 ([18]). Let E : R+ → R+ be a non-increasing function and σ : R+ →
R+ be an increasing C1-function, with σ(0) = 0 and σ(t)→ +∞ as t→∞. Assume
that there exists q ≥ 0 and C > 0 such that∫ ∞

S

σ′(t)E(t)q+1dt ≤ CE(S), 0 ≤ S <∞.

Then, there exist two positive constants c and w such that for all t ≥ 0,

E(t) ≤

{
ce−ωσ(t), if q = 0,

c
[1+σ(t)]1/q

, if q > 0.

Now, we specify the assumptions on the variable-exponent functions. We assume
that for all x ∈ Ω:

2 ≤ m(x), if n = 1, 2,

2 ≤ m− ≤ m(x) ≤ m+ ≤ 2n

n− 2
, if n ≥ 3,

(2.1)

2 ≤ r(x), if n = 1, 2,

2 ≤ r− ≤ r(x) ≤ r+ ≤ 2n

n− 2
, if n ≥ 3

(2.2)

1 ≤ p(x), if n = 1, 2,

1 ≤ p− ≤ p(x) ≤ p+ ≤ n− 1

n− 2
, if n ≥ 3,

(2.3)

with

m− = inf
x∈Ω

m(x), m+ = sup
x∈Ω

m(x),

r− = inf
x∈Ω

r(x), r+ = sup
x∈Ω

r(x),
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p− = inf
x∈Ω

p(x), p+ = sup
x∈Ω

p(x).

Since m, r, p are C1(Ω), they satisfy the log-Hölder continuity condition.

3. Existence of global solutions

Definition 3.1. Consider u0, v0 ∈ H1
0 (Ω) and u1, v1 ∈ L2(Ω). A pair of functions

(u, v) is said to be a weak solution of (1.1) on [0, T ), if

u, v ∈ L∞((0, T ), H1
0 (Ω)), ut, vt ∈ L∞((0, T ), L2(Ω)),

ut ∈ Lm(·)
α (Ω× (0, T )), vt ∈ Lr(·)β (Ω× (0, T ))

and (u, v) satisfies∫
Ω

utφdx−
∫

Ω

u1φdx+

∫ t

0

∫
Ω

α(τ)|ut|m(x)−2utφdx dτ

+

∫ t

0

∫
Ω

∇u.∇φdx dτ +

∫ t

0

∫
Ω

|u|p(x)−2u|v|p(x)φdx dτ = 0

and ∫
Ω

vtψ dx−
∫

Ω

v1ψ dx+

∫ t

0

∫
Ω

β(τ)|vt|r(x)−2vtψ dx dτ

+

∫ t

0

∫
Ω

∇v.∇ψ dx dτ +

∫ t

0

∫
Ω

|v|p(x)−2v|u|p(x)ψ dx dτ = 0,

for all φ, ψ ∈ H1
0 (Ω) and all t ∈ (0, T ), with

(u(·, 0), v(·, 0)) = (u0, v0), (ut(·, 0), vt(·, 0)) = (u1, v1).

Here,

Lm(·)
α (Ω× (0, T )) = {w : Ω× (0, T )→ R :

∫ T

0

∫
Ω

α(τ)|w(x, τ)|m(x) dx dτ < +∞},

L
r(·)
β (Ω× (0, T )) = {w : Ω× (0, T )→ R :

∫ T

0

∫
Ω

β(τ)|w(x, τ)|r(x) dx dτ < +∞}.

Theorem 3.2. Assume that (2.1)–(2.3) are satisfied. Then, for any initial data
u0, v0 ∈ H1

0 (Ω) and u1, v1 ∈ L2(Ω), there exists a weak solution (u, v) of (1.1) (in
the sense of Definition 3.1) defined in [0, T ), for all T > 0.

Proof. We use the Faedo-Galerkin approximations combined with arguments by
Aubin-Lions.

Step 1. Consider T > 0 fixed but arbitrary. Let {ωj}∞j=1 be an orthonormal basis

of H1
0 (Ω) and Vk = span{ω1, ω2, . . . , ωk} be the subspace generated by the k first

vectors ω1, ω2, . . . , ωk. Consider

uk(t) = Σkj=1aj(t)ωj and vk(t) = Σkj=1bj(t)ωj , t ∈ (0, T ),
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such that (uk, vk) is an approximate solution of problem (1.1), satisfying∫
Ω

uktt(t)ωj dx+

∫
Ω

∇uk(t)∇ωj dx+

∫
Ω

α(t)|ukt (t)|m(x)−2ukt (t)ωj dx

= −
∫

Ω

|uk(t)|p(x)−2uk(t)|vk(t)|p(x)ωj dx,∫
Ω

vktt(t)ωj dx+

∫
Ω

∇vk(t)∇ωj dx+

∫
Ω

β(t)|vkt (t)|r(x)−2vkt (t)ωj dx

= −
∫

Ω

|vk(t)|p(x)−2vk(t)|uk(t)|p(x)ωj dx,

(3.1)

for all j = 1, 2, . . . , k, and

uk(0) = uk0 → u0, vk(0) = vk0 → v0 in H1
0 (Ω),

ukt (0) = uk1 → u1 vkt (0) = vk1 → v1 in L2(Ω).
(3.2)

By ODE standard existence theory, problem (3.1) ,(3.2) has a unique local solution
(uk, vk) defined on [0, tk), 0 < tk ≤ T , for all k ≥ 1. In the following step and by a
priory estimates, we extend these solutions to the interval [0, T ) for all k ≥ 1.

Step 2. Multiplying both sides of (3.1)1 and (3.1)2 by a′j(t) and b′j(t), respectively,
using Green’s formula and the boundary conditions, and then summing each result
over j, from 1 to k, we obtain, for all 0 < t ≤ tk,

1

2

d

dt
[‖ukt ‖22 + ‖∇uk‖22] +

∫
Ω

α(t)|ukt (x, t)|m(x)dx

= −
∫

Ω

|uk|p(x)−2uk|vk|p(x)ukt dx

(3.3)

and

1

2

d

dt
[‖vkt ‖22 + ‖∇vk‖22] +

∫
Ω

β(t)|vkt (x, t)|r(x)dx

= −
∫

Ω

|vk|p(x)−2vk|uk|p(x)vkt dx.

(3.4)

Adding (3.3) and (3.4), and then integrating the result, over (0, t), with t ≤ tk, it
yields

1

2
[‖ukt ‖22 + ‖vkt ‖22 + ‖∇uk‖22 + ‖∇vk‖22]

+

∫ t

0

∫
Ω

(α(τ)|ukt (x, τ)|m(x) + β(τ)|vkt (x, τ)|r(x)) dx dτ

≤ 1

2
[‖uk1‖22 + ‖vk1‖22 + ‖∇uk0‖22 + ‖∇vk0‖22]

+

∫ t

0

∫
Ω

[|uk|p(x)−1|vk|p(x)|ukt |+ |vk|p(x)−1|uk|p(x)|vkt |] dx dτ.
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Recalling (3.2), for some C > 0 we have

1

2
[‖ukt ‖22 + ‖vkt ‖22 + ‖∇uk‖22 + ‖∇vk‖22]

+

∫ t

0

∫
Ω

(α(τ)|ukt (x, τ)|m(x) + β(τ)|vkt (x, τ)|r(x)) dx dτ

≤ C +

∫ t

0

∫
Ω

[|uk|p(x)−1|vk|p(x)|ukt |+ |vk|p(x)−1|uk|p(x)|vkt |] dx dτ.

(3.5)

Now, we handle the last term in the right-hand side of (3.5). Applying Young’s
inequality, with

q(x) =
2p(x)− 1

p(x)− 1
and q′(x) =

2p(x)− 1

p(x)
,

we obtain, that for a.e. x ∈ Ω,

|uk|p(x)−1|vk|p(x) ≤ 1

2
|uk|2p(x)−1 + C(x)|vk|2p(x)−1,

where

C(x) =
p(x)

2p(x)− 1

( 2p(x)

(2p(x)− 1)

) p(x)−1
p(x)

.

From assumption (2.3), p is bounded on Ω. Therefore, C(x) is bounded too.
Hence, for some C1 > 0 and for a.e. x ∈ Ω it follows that

|uk|p(x)−1|vk|p(x) ≤ C1[|uk|2p(x)−1 + |vk|2p(x)−1] (3.6)

and, similarly,

|vk|p(x)−1|uk|p(x) ≤ C1[|vk|2p(x)−1 + |uk|2p(x)−1]. (3.7)

Under condition (2.3), we recall (3.6), (3.7), Lemma 2.3 and the embeddings result
(Corollary 2.5), to find that for all t ≤ tk,∫

Ω

|uk|p(x)−1|vk|p(x)|ukt | dx

≤ 1

2
‖ukt ‖22 +

C2
1

2

∫
Ω

[|uk|2p(x)−1 + |vk|2p(x)−1]2dx

≤ 1

2
‖ukt ‖22 + C

∫
Ω

(
|uk|2(2p+−1) + |uk|2(2p−−1) + |vk|2(2p+−1)

+ |vk|2(2p−)
)
dx

≤ 1

2
‖ukt ‖22 + C

(
‖∇uk‖2(2p+−1)

2 + ‖∇uk‖2(2p−−1)
2 + ‖∇vk‖2(2p+−1)

2

+ ‖∇vk‖2(2p−−1)
2

)
.

(3.8)

where C > 0 is a generic positive constant. Again, by (3.2), for some C > 0, we
have

Ek(t) ≤ Ek(0) ≤ C, ∀t ≤ tk, (3.9)

since
d

dt
Ek(t) = −

∫
Ω

|ukt (t)|m(x)+1 dx−
∫

Ω

|vkt (t)|r(x)+1 dx ≤ 0,
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where

Ek(t) =
1

2
[‖ukt ‖22 + ‖vkt ‖22 + ‖∇uk‖22 + ‖∇vk‖22] +

∫
Ω

|ukvk|p(x)

p(x)
dx.

So, thanks to (3.9), estimate (3.8) becomes∫
Ω

|uk|p(x)−1|vk|p(x)|ukt | dx

≤ 1

2
‖ukt ‖22 + C max

{
(Ek(0))4(p2−1), (Ek(0))4(p1−1)

}
[‖∇uk‖22 + ‖∇vk‖22]

≤ 1

2
‖ukt ‖22 + C[‖∇uk‖22 + ‖∇vk‖22]

≤ C[‖ukt ‖22 + ‖∇uk‖22 + ‖∇vk‖22].

(3.10)

In a similar way, for all t ≤ tk, we have∫
Ω

|vk|p(x)−1|uk|p(x)|vkt | dx ≤ C[‖vkt ‖22 + ‖∇vk‖22 + ‖∇uk‖22]. (3.11)

By substituting (3.10) and (3.11) into (3.5), we arrive at

1

2
[‖ukt ‖22 + ‖vkt ‖22 + ‖∇uk‖22 + ‖∇vk‖22]

+

∫ t

0

∫
Ω

(α(τ)|ukt (x, τ)|m(x) + β(τ)|vkt (x, τ)|r(x)) dx dτ

≤ C + C

∫ t

0

[‖ukt ‖22 + ‖vkt ‖22 + ‖∇uk‖22 + ‖∇vk‖22] dτ,

(3.12)

for all t ≤ tk (tk ≤ T ). Invoking Gronwall’s Lemma, inequality (3.12) yields

‖ukt ‖22 + ‖vkt ‖22 + ‖∇uk‖22 + ‖∇vk‖22

+

∫ t

0

∫
Ω

(α(τ)|ukt (x, τ)|m(x) + β(τ)|vkt (x, τ)|r(x)) dx dτ ≤ CT ,

for all 0 ≤ t ≤ tk, where CT is a constant independent of t and k. Therefore, we
can extend (uk)k and (vk)k on [0, T ). Moreover, we have

(uk)k and (vk)k are bounded in L∞((0, T ), H1
0 (Ω)),

(ukt )k is bounded in L∞((0, T ), L2(Ω)) ∩ Lm(·)
α (Ω× (0, T )),

(vkt )k is bounded in L∞((0, T ), L2(Ω)) ∩ Lr(·)β (Ω× (0, T )).

(3.13)

Step 3. From (3.13), there exist subsequences of (uk)k and (vk)k, still denoted by
(uk)k and (vk)k, (for simplicity), and two functions u, v : Ω× [0, T )→ R, such that

uk ⇀∗ u and vk ⇀∗ v in L∞((0, T ), H1
0 (Ω)),

ukt ⇀
∗ ut and vkt ⇀

∗ vt in L∞((0, T ), L2(Ω)).

Next, we show that

|uk|p(·)−2uk|vk|p(·) → |u|p(·)−2u|v|p(·) a.e. in Ω× (0, T ), (3.14)

|vk|p(·)−2vk|uk|p(·) → |v|p(·)−2v|u|p(·) a.e. in Ω× (0, T ). (3.15)
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Since H1
0 (Ω) ↪→compact L2(Ω) and by the Aubin-Lions theorem, there are subse-

quences of (uk)k and (vk)k, still denoted by (uk)k and (vk)k, respectively, such
that

uk → u and vk → v strongly in L2((0, T ), L2(Ω)),

uk → u and vk → v a.e. in Ω× (0, T ).
(3.16)

The continuity of the function

(u, v) 7→
(
|u|p(·)−2u|v|p(·), |v|p(·)−2v|u|p(·)

)
and the convergence (3.16) allow us to establish (3.14) and (3.15). Also, from (3.10)
and (3.13), it follows that∫ T

0

‖|uk|p(·)−2uk|vk|p(·)‖22 dτ ≤ C
∫ T

0

[‖∇uk‖22 + ‖∇vk‖22] dτ ≤ CT ,

which means that |uk|p(·)−2uk|vk|p(·) is bounded in L2(Ω× (0, T )). Combining this
result with (3.14), and invoking Lions’ Lemma, we deduce that

|uk|p(·)−2uk|vk|p(·) → |u|p(·)−2u|v|p(·) in L2(Ω× (0, T )).

Similarly,

|vk|p(·)−2vk|uk|p(·) → |v|p(·)−2v|u|p(·) in L2(Ω× (0, T )).

By repeating the same steps of [25] for the sequences (Sk)k, (S̃k)k defined, for all
k ≥ 1, by

Sk =

∫ T

0

α(t)

∫
Ω

(h(ukt )− h(z))(ukt − z) dx dt,

for z ∈ Lm(·)
α ((0, T ), H1

0 (Ω)) and h(z) = |z|m(·)−2z, and

S̃k =

∫ T

0

β(t)

∫
Ω

(h(vkt )− h(z))(vkt − z) dx dt,

for z ∈ Lr(·)β ((0, T ), H1
0 (Ω)) and h(z) = |z|r(·)−2z, we easily show that

α(·)|ukt |m(·)−2ukt ⇀ α(·)|ut|m(·)−2ut in L
m(·)
m(·)−1 (Ω× (0, T )),

β(·)|vkt |r(·)−2vkt ⇀ β(·)|vt|r(·)−2vt in L
r(·)
r(·)−1 (Ω× (0, T ))

and establish that (u, v) satisfies the two identities of Definition 3.1, for all test
functions φ, ψ ∈ H1

0 (Ω), all t ∈ (0, T ) and all T > 0.

Step 4. As in [25], we easily establish that (u, v) satisfies the initial conditions.
Finally, we conclude that (u, v) is a global weak solution of (P ) in the sense of
Definition 3.1. �

Note that the uniqueness of the solution remains an open question. However, if
α(·) = β(·), we can obtain uniqueness by repeating the same steps of [23].
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4. Stability result

We first introduce the energy functional associated with system (1.1),

E(t) =:
1

2
[‖ut‖22 + ‖vt‖22 + ‖∇u‖22 + ‖∇v‖22] +

∫
Ω

|uv|p(x)

p(x)
dx,

for all t ∈ [0, T ).

Lemma 4.1. Along the solution of (1.1), the energy functional satisfies

E′(t) = −α(t)

∫
Ω

|ut|m(x)dx− β(t)

∫
Ω

|vt|r(x)dx ≤ 0,

for all t ∈ [0, T ).

Theorem 4.2. Suppose that (2.1)-(2.3) hold. Assume, further, that
∫∞

0
α(s)ds =

∞ and
∫∞

0
β(s)ds = ∞. Then, there exist two constants c, ω > 0 such that for all

t ≥ 0, the solution of (1.1) satisfies

E(t) ≤

{
ce−ω

∫ t
0
γ(s)ds, if λ+ = 2,
c

(1+
∫ t
0
γ(s)ds)2/(λ+−2)

, if λ+ > 2,

where λ+ = max{m+, r+} and γ = min{α, β}.

Proof. Let T > S > 0 and q ≥ 0 be specified later. Multiplying the first differential
equation of (1.1) by γEqu, the second one by γEqv, integrating each result over
Ω× (S, T ) and using Green’s formula, we obtain∫ T

S

γ(t)Eq(t)

∫
Ω

[(uut)t − u2
t + |∇u|2 + α(t)|ut|m(x)−2utu] dx dt

= −
∫ T

S

γ(t)Eq(t)

∫
Ω

|uv|p(x) dx dt

(4.1)

and ∫ T

S

γ(t)Eq(t)

∫
Ω

[(vvt)t − v2
t + |∇v|2 + β(t)|vt|r(x)−2vtv] dx dt

= −
∫ T

S

γ(t)Eq(t)

∫
Ω

|uv|p(x) dx dt.

(4.2)

We add and subtract the following two terms

−
∫ T

S

γ(t)Eq(t)

∫
Ω

u2
t dx dt and −

∫ T

S

γ(t)Eq(t)

∫
Ω

v2
t dx dt

to (4.1) and (4.2), respectively. The addition of the two results implies∫ T

S

γEq
∫

Ω

(u2
t + v2

t + |∇u|2 + |∇v|2) dx dt

= −
∫ T

S

γEq
∫

Ω

(uut + vvt)t dx dt+ 2

∫ T

S

γEq
∫

Ω

(u2
t + v2

t ) dx dt

−
∫ T

S

γEq
∫

Ω

(
α|ut|m(x)−2utu+ β|vt|r(x)−2vtv

)
dx dt

− 2

∫ T

S

γEq
∫

Ω

|uv|p(x) dx dt.

(4.3)
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Recalling the expression of E, (4.3) leads to

2

∫ T

S

γEq+1dt = −
∫ T

S

γEq
∫

Ω

(uut + vvt)t dx dt+ 2

∫ T

S

γEq
∫

Ω

(u2
t + v2

t ) dx dt

−
∫ T

S

γEq
∫

Ω

α
(
|ut|m(x)−2utu+ β|vt|r(x)−2vtv

)
dx dt

+

∫ T

S

γEq
∫

Ω

( 2

p(x)
− 2
)
|uv|p(x) dx dt.

Since p(x) > 1, for all x ∈ Ω, it follows that

2

∫ T

S

γEq+1dt

≤ −
∫ T

S

γEq
∫

Ω

(uut + vvt)t dx dt+ 2

∫ T

S

γEq
∫

Ω

(u2
t + v2

t ) dx dt

−
∫ T

S

γEq
∫

Ω

(
α|ut|m(x)−2utu+ β|vt|r(x)−2vtv

)
dx dt .

(4.4)

On the other hand, for a.e. t ∈ [S, T ], we have

d

dt

(
γEq

∫
Ω

(uut + vvt) dx
)

= (γEq)′
∫

Ω

(uut + vvt) dx+ γEq
∫

Ω

(uut + vvt)tdx

which gives

γEq
∫

Ω

(uut + vvt)t dx

=
d

dt

(
γEq

∫
Ω

(uut + vvt) dx
)
− (γEq)′

∫
Ω

(uut + vvt) dx.

(4.5)

Substituting (4.5) into (4.4), we arrive at

2

∫ T

S

γEq+1dt ≤ I1 + I2 + I3 + I4, (4.6)

where

I1 = −[γEq
∫

Ω

(uut + vvt) dx]TS ,

I2 =

∫ T

S

(γ′Eq + qγEq−1E′)

∫
Ω

(uut + vvt) dx dt,

I3 = 2

∫ T

S

γEq
∫

Ω

(u2
t + v2

t ) dx dt,

I4 = −
∫ T

S

γEq
∫

Ω

(
α|ut|m(x)−2utu+ β|vt|r(x)−2vtv

)
dx dt.

In what follows, we estimate Ii, for i = 1, . . . , 4. First, using Young’s and Poincaré’s
inequalities and the definition of E, we obtain

|
∫

Ω

(uut + vvt) dx| ≤
ce
2

[‖∇u‖22 + ‖∇v‖22 + ‖ut|22 + ‖vt‖22] ≤ CE(t), (4.7)
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where ce is the Poincaré constant. Therefore, recalling Lemma 4.1,

I1 = γ(S)Eq(S)

∫
Ω

(u(x, S)ut(x, S) + v(x, S)vt(x, S)) dx

− γ(T )Eq(T )

∫
Ω

(u(x, T )ut(x, T ) + v(x, T )vt(x, T )) dx

≤ C[γ(S)Eq+1(S) + γ(T )Eq+1(T )] ≤ Cγ(S)Eq+1(S)

≤ CE(S),

(4.8)

where C is a generic positive constant. Next, using E′(t) ≤ 0, we obtain

I2 ≤ C
∫ T

S

(γ′Eq + qγEq−1E′)E(t) dt

≤ C
∣∣ ∫ T

S

γ′Eq+1 dt
∣∣+ C|

∫ T

S

qγEqE′ dt|

≤ CEq+1(S)
∣∣ ∫ T

S

γ′dt
∣∣+ Cqγ(S)

∣∣ ∫ T

S

EqE′ dt
∣∣

≤ CEq+1(S)[γ(S)− γ(T )] + CE(S) ≤ CE(S).

(4.9)

For the third integral, we have

I3 = 2

∫ T

S

γEq
∫

Ω

|ut|2 dx dt+ 2

∫ T

S

γEq
∫

Ω

|vt|2 dx dt = J1 + J2.

To estimate J1, we consider the following partition of Ω,

Ω+ = {x ∈ Ω : |ut(x, t)| ≥ 1}, Ω− = {x ∈ Ω : |ut(x, t)| < 1}.
Therefore, by Hölder’s inequality and the definition of λ+, we obtain

J1 = 2

∫ T

S

γEq
[ ∫

Ω−

|ut|2dx+

∫
Ω+

|ut|2dx
]
dt

≤ C
∫ T

S

γEq
(∫

Ω−

|ut|λ
+

dx
)2/λ+

dt+ C

∫ T

S

γEq
∫

Ω+

|ut|m(x) dx dt

≤ C
∫ T

S

γEq
(∫

Ω−

|ut|m(x) dx
)2/λ+

dt+ C

∫ T

S

Eq
(
γ

∫
Ω+

|ut|m(x)dx
)
dt.

This yields

J1 ≤ C
∫ T

S

γ(1− 2

λ+
)Eq

(
γ

∫
Ω

|ut|m(x)dx
)2/λ+

+ C

∫ T

S

Eq
(
γ

∫
Ω

|ut|m(x)dx
)
dt

≤ C
∫ T

S

γ(1− 2

λ+
)Eq

(
α

∫
Ω

|ut|m(x)dx
)2/λ+

+ C

∫ T

S

Eq
(
α

∫
Ω

|ut|m(x)dx
)
dt

≤ C
∫ T

S

γ(1− 2

λ+
)Eq(−E′)2/λ+

dt+ C

∫ T

S

Eq(−E′)dt

≤ C
∫ T

S

γ(1− 2

λ+
)Eq(−E′)2/λ+

dt+ CE(S),

using Lemma 4.1, and the definition of γ. Similarly, we find that

J2 ≤ C
∫ T

S

γ(1− 2

λ+
)Eq(−E′)2/λ+

dt+ CE(S).
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By addition,

I3 ≤ C
∫ T

S

γ(1− 2

λ+
)Eq(−E′)2/λ+

dt+ CE(S).

Two cases are possible:

Case 1. If λ+ = 2, then

I3 ≤ C
∫ T

S

Eq(−E
′
)dt+ CE(S)

≤ C[Eq+1(S)− Eq+1(T )] + CE(S) ≤ CE(S).

Case 2. if λ+ > 2, by Young’s inequality with δ = q + 1 and δ′ = (q + 1)/q, we
have that for all ε > 0,

I3 ≤ εC
∫ T

S

γ(1− 2

λ+
)( q+1

q )Eq+1dt+ Cε

∫ T

S

(−E′)
2(q+1)

λ+ dt+ CE(S).

If we take ε = 1
2C and q = λ+

2 − 1, then

I3 ≤
1

2

∫ T

S

γEq+1dt+ Cε

∫ T

S

(−E′)dt+ CE(S)

≤ 1

2

∫ T

S

γEq+1dt+ CE(S).

Therefore, for λ+ ≥ 2,

I3 ≤
1

2

∫ T

S

γEq+1dt+ CE(S). (4.10)

Finally, we handle I4 as follows. Since α and β are bounded functions on R+, then

I4 ≤ C
∫ T

S

γEq
∫

Ω

|u||ut|m(x)−1 dx dt+ C

∫ T

S

γEq
∫

Ω

|v||vt|r(x)−1 dx dt

= J3 + J4.

Now, as in [21], applying Young’s inequality with

δ(x) =
m(x)

m(x)− 1
and δ′(x) = m(x),

we obtain that for all ε > 0,

J3 ≤
∫ T

S

γEq
[
ε

∫
Ω

|u|m(x)dx+

∫
Ω

Cε(x)|ut|m(x)dx
]
dt,

where

Cε(x) =
[m(x)− 1]m(x)−1

[m(x)]m(x)εm(x)−1
.

Similarly,

J4 ≤
∫ T

S

γEq
[
ε

∫
Ω

|v|r(x)dx+

∫
Ω

C ′ε(x)|vt|r(x)dx
]
dt,

where

C ′ε(x) =
[r(x)− 1]r(x)−1

[r(x)]r(x)εr(x)−1
.
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By addition, we find

I4 ≤
∫ T

S

γEq
∫

Ω

(
ε|u|m(x) + ε|v|r(x) +Cε(x)|ut|m(x) +C ′ε(x)|vt|r(x)

)
dx dt. (4.11)

Using (2.1) and recalling that m−, r− ≥ 2, we have the estimate

J5 = ε

∫ T

S

γEq
∫

Ω

(
|u|m(x) + |v|r(x)

)
dx dt

≤ εC
∫ T

S

γEq
∫

Ω

(
|u|m− + |u|m+ + |v|r− + |v|r+

)
dx dt

≤ εC
∫ T

S

γEq
(
‖∇u‖m−2 + ‖∇u‖m+

2 + ‖∇v‖r−2 + ‖∇v‖r+2

)
dt

≤ εC
∫ T

S

γEq+1
(
E
m−
2 −1 + E

m+
2 −1 + E

r−
2 −1 + E

r+
2 −1

)
dt

≤ εC
(
E(0)

m−
2 −1 + E(0)

m+
2 −1 + E(0)

r−
2 −1 + E(0)

r+
2 −1

) ∫ T

S

γEq+1 dt.

by taking

ε =
1

2C

(
E(0)

m−
2 −1 + E(0)

m+
2 −1 + E(0)

r−
2 −1 + E(0)

r+
2 −1

)−1

,

it yields

J5 ≤
1

2

∫ T

S

γEq+1dt.

Moreover, Cε(·) and C ′ε(·) are bounded since m(·) and r(·) are bounded. Conse-
quently, (4.11) becomes

I4 ≤
1

2

∫ T

S

γEq+1dt+ C

∫ T

S

γEq
(
|ut|m(x) + |vt|r(x)

)
dx dt

≤ 1

2

∫ T

S

γEq+1dt+ C

∫ T

S

Eq
(
α|ut|m(x) + β|vt|r(x)

)
dx dt

≤ 1

2

∫ T

S

γEq+1dt+ C

∫ T

S

Eq(−E′(t))dt

≤ 1

2

∫ T

S

γEq+1dt+ CE(S).

(4.12)

Finally, by inserting (4.8), (4.9), (4.10) and (4.12) into (4.6), we have∫ T

S

γEq+1(t)dt ≤ CE(S).

Taking T →∞, it follows that∫ ∞
S

γEq+1(t)dt ≤ CE(S).

Invoking Lemma 2.6 with σ(t) =
∫ t

0
γ(s)ds, we obtain the desired result. �

As a special case, when α and β are constants, we obtain the result of [23]. More
precisely, we have the following result.
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Corollary 4.3. Assume that (2.1)-(2.3) hold. Then there exist two constants c, ω >
0 such that the solution of (1.1) satisfies

E(t) ≤

{
ce−ωt, if λ+ = 2,

c

(1+t)2/(λ+−2)
, if λ+ > 2.

for all t ≥ 0.

We end this section with examples illustrating our stability result.

Example 4.4. if α(t) = β(t) = 1
1+t , then the estimate in Theorem 4.2 gives

E(t) ≤

{
c

(1+t)ω , if λ+ = 2,
c

(1+ln(1+t))2/(λ+−2)
, if λ+ > 2.

Example 4.5. If α(t) = 1
(1+t)a , β(t) = 1

(1+t)b
, for 0 ≤ b < a < 1 then the estimate

in Theorem 4.2 gives

E(t) ≤

{
ce
−ω
1−a (1+t)(1−a) , if λ+ = 2,

c/(1 + 1
1−a [(1 + t)(1−a) − 1])2/(λ+−2), if λ+ > 2.

Example 4.6. If α(t) = 1/(2 + t) ln(2 + t), β(t) = 1/(2 + t)2(ln(2 + t))2, then the
estimate in Theorem 4.2 gives

E(t) ≤

{
c( ln 2

ln(2+t) )ω, if λ+ = 2,

c/[1 + ln( ln(2+t)
ln 2 )]2/(λ

+−2), if λ+ > 2.

5. Numerical tests

In this section, we illustrate numerically the theoretical results of the present
work. We solve the system (1.1) under the corresponding initial and boundary
conditions. The nonlinear system (1.1) is discritized using the classical second order
finite difference method in time and space. In addition, we implement the stable
and conservative scheme of Lax-Wendroff. For more details and similar techniques,
we refer to [16]. Here we give five performed tests, for Ω = (0, 1) and [0, T ] = [0, 20]:
Test 1. Based on Theorem 4.2 and the result explained in Example 4.4, we obtain
the polynomial decay of the energy

E1(t) ≤ E1
f (t) =

c

(1 + t)w
,

for two positive constants c and w. For this test, we use the functions

m(x) = r(x) = 2, p(x) = 2− 1

1 + x
, ∀x ∈ Ω,

α(t) = β(t) =
1

1 + t
, ∀t > 0.

Test 2. Examining the second result explained in Example 4.4, we obtain a
logarithmic-polynomial decay of the energy

E2(t) ≤ E2
f (t) =

c

(1 + ln(1 + t))2
,

for a positive constant c. For this test, we use the functions

m(x) = 2, r(x) = 2 +
1

1 + x
, p(x) = 2− 1

1 + x
, ∀x ∈ Ω,
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α(t) = β(t) =
1

1 + t
, ∀t > 0.

Test 3. Examining the result explained in Example 4.5, we obtain an exponential-
type decay of the energy

E3(t) ≤ E3
f (t) = c1e

−c2
√
t,

for two positive constants c1 and c2. For this test, we use the functions

m(x) = r(x) = 2, p(x) = 1 +
1

1 + x
, ∀x ∈ Ω,

α(t) = β(t) =
1√

1 + t
, ∀t > 0.

Test 4. Examining the second result explained in Example 4.5, we obtain a poly-
nomial type decay of the energy

E4(t) ≤ E4
f (t) =

c

(1 + t)w
,

for two positive constants c and w. For this test, we use the functions

m(x) = r(x) = 2 +
1

1 + x
, p(x) = 1 +

1

1 + x
, ∀x ∈ Ω,

α(t) = β(t) =
1√

1 + t
, ∀t > 0.

Test 5: Examining the results obtained in Example 4.6, we obtain a logarithmic-
polynomial decay of the energy

E5(t) ≤ E5
f (t) =

c

(ln(2 + t))w
,

for two positive constants c and w. For this test, we use the functions

m(x) = r(x) = p(x) = 2, ∀x ∈ Ω,

α(t) =
1

(2 + t) ln(1 + t)
, β(t) =

1

((2 + t) ln(1 + t))2
, ∀t > 0.
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Figure 1. Test 1: Damping cross section waves, energy decay and
upper bound function E1

f (t) = 1
(1+t)2 .
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Figure 2. Test 2: Damping cross section waves, energy decay and
upper bound function E2
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(1+ln(1+t))2 .

0 10 20

-0.2

0

0.2

0.4

u(0.25, t)

0 10 20

-0.2

0

0.2

0.4

u(0.5, t)

0 10 20

-0.2

0

0.2

0.4

u(0.75, t)

0 10 20

-0.2

0

0.2

0.4

v(0.25, t)

0 10 20

T ime

-0.2

0

0.2

0.4

v(0.5, t)

0 10 20

-0.2

0

0.2

0.4

v(0.75, t)

0 5 10 15 20

T ime

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E
(t
)

Test 3.

E(t)
E3

f (t)

Figure 3. Test 3: Damping cross section waves, energy decay and

upper bound function E3
f (t) = e−0.85

√
t.

0 10 20

-0.2

0

0.2

0.4

u(0.25, t)

0 10 20

-0.2

0

0.2

0.4

u(0.5, t)

0 10 20

-0.2

0

0.2

0.4

u(0.75, t)

0 10 20

-0.2

0

0.2

0.4

v(0.25, t)

0 10 20

T ime

-0.2

0

0.2

0.4

v(0.5, t)

0 10 20

-0.2

0

0.2

0.4

v(0.75, t)

0 5 10 15 20

T ime

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
(t
)

Test 4.

E(t)
E4

f (t)

Figure 4. Test 4: Damping cross section waves, energy decay and
upper bound function E4
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.
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Figure 5. Test 5: Damping cross section waves, energy decay and

the upper bound function E5
f (t) = (ln(2))3

(ln(2+t))3 .

It should be stressed that the numerical stability of the method implemented is
ensured by taking in consideration the Courant-Friedrichs-Lewy (CFL) inequality
∆t � 0.5∆x, where ∆t represents the numerical time step and ∆x the numerical
spatial step. The spatial interval Ω = (0, 1) is subdivided into 200 subintervals and
the temporal interval [0, T ] = [0, 20] is deduced from the stability condition above.
We run our code for 10000 time steps ∆t = 2 · 10−3, using the initial conditions

u(x, 0) = sin(πx), v(x, 0) = − sin(πx) in Ω,

ut(x, 0) = 1, vt(x, 0) = 1 in Ω.

Our computational simulations show in Figures 1–5(left) all decay types. We
restricted our plotings to three cross-section cuts for the numerical solution (u, v)
at x = 0.25, x = 0.5 and at x = 0.75. For all components of the solutions, the
decay behavior is clearly demonstrated in all tests. Moreover, the dotted curves in
Figures 1–5 (right) represent the corresponding upper bound of the energy function
Eif (t) for i = 1, . . . , 5.

6. Concluding remarks

In this work, we studied a coupled system of two weakly damped wave equations,
where the coupling terms and the dampings are of non-standard forms. We first
proved the existence of a weak global solution then established some decay results
in terms of the damping exponents and the damping coefficients. We also give
some examples and presented various numerical tests to illustrate our theoretical
findings. All numerical tests came in agreement with the theoretical results. This
work generalizes many other works in the literature. In particular, we obtain the
results of [9, 23], if α(·) = β(·).
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