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CONCENTRATION OF NODAL SOLUTIONS FOR
SEMICLASSICAL QUADRATIC CHOQUARD EQUATIONS

LU YANG, XIANGQING LIU, JIANWEN ZHOU

ABSTRACT. In this article concerns the semiclassical Choquard equation —e2 Au+
V(z)u = s_z(ﬁ xu?)u for x € R? and small e. We establish the existence of

a sequence of localized nodal solutions concentrating near a given local mini-
mum point of the potential function V', by means of the perturbation method
and the method of invariant sets of descending flow.

1. INTRODUCTION

In the past two decades, attention has devoted to the study of the existence,
multiplicity, and properties of the solutions for the nonlinear Choquard equation

—?Au+ V(z)u = *N( xuP)uP~ x € RY, (1.1)

-]

where 0 < a < N, QNN_O‘ <p< 211\\,7:2", and € > 0 is a small positive parameter.

When N =3, a =1 and € = 1, as an important model, the problem

Au+V(z)u= (ﬁ xu’)u, zER? (1.2)
was introduced by Pekar [30] to describe the quantum theory of a polaron at rest,
and then used by Choquard [I8] to study steady states of the one-component plasma
approximation to the Hartree-Fock theory. Later, the same equation re-emerged as
a model of self-gravitating matter [29], and in that context it is referred as to the
Schrodinger-Newton system.

For the existence and qualitative properties of solutions for the nonlinear Choquard
equation (LI)), we refer the reader to [2 Bl [5, 9, 10, 14, (17, 26} 27, 31}, 32, 134} [37]
and references therein. In particular, for p > 2, the existence of nodal solu-
tions for the Choquard equation is an appealing aspect which is investigated in
[Bl [8, 111 13, 15, 16, 23] by the variational method. In the physical case, for p = 2,
the existence of nodal solutions for only has few results. For p > 2 and V
is a radial symmetry function, Gui [I3] show that, for any positive integer k, the
equation(l.1)) has a sign-changing solution uj, which changes signs exactly k times.
When V' = 1 and p = 2, Ghimenti[I2] proved the existence of the least action
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nodal solutions. However, without symmetry or periodicity assumptions on the
potential function V', there is no result of the existence of infinitely many sign-
changing solutions for the equation with p = 2. Motivated by the works
mentioned above, we consider the existence of infinitely sign-changing solutions for
the following equation

—f;‘gAu—l—V(ac)u:g_Q(‘—l| s u)u, v € R3, (1.3)
where the potential function V satisfies the assumptions:
(A1) V € CY(R3,R) and there exist constants b > a > 0 such that
a<V(zr)<b VazecR3.
(A2) There exists a bounded domain M C R?® with smooth boundary M such
that
(7 (z), VV(z)) >0, VedM,
where 7/ (x) is the outer normal of M at z.
Under the assumption (A2), in view of the critical set
A={xe M:VV(z)=0}#0, (1.4)

without loss of generality we assume 0 € A. For each set B C RY and any 6 > 0,
we set

Bs; = {x € R?: 6z € B},
B® = {z € R® : dist(z, B) := inf |z —y| < §}.
yeB

The main result of this paper reads as follows.

Theorem 1.1. Assume that (Al), (A2) hold. For each positive integer k, there
exists €, > 0 such that if 0 < € < ¢}, then (1.3) has at least k pairs of sign-

changing solutions £v;., j =1,...,k. Moreover, for any é > 0 there exist u > 0,
C=Cy >0, and €,(5) > 0 such that if 0 < e < &}.(9), then
[vje(@)] < Ce £ dist@A) o 2 e RS, j=1,... k. (1.5)

In this article, we can also obtain the existence and concentration phenomenon
of the sign-changing solution of the equation. Here, we only consider the case
with « =1 and N = 3.

By making the change of variable ey = x, equation is equivalent to

1
—Au+V(ex)u = (W*uz)u, reR3 (1.6)
and the corresponding functional is
1 1 1
I.(u) = f/ (|Vu|* + V(ex)u?) d — 7/ (— xu?)u? dz. (1.7)
2 R3 4 R3 ° |

We will use the method of invariant sets of descending flow to prove the existence
of sign-changing solutions for , but the setting of invariant sets of descending
flow can not fit well for the Choquard equation. In [I5], we used the perturbation
method [24] to overcome this difficulty for Choquard equation with 2 < p <
211\7:20‘. However, the method described in [I5] becomes invalid for the case p = 2.

To obtain compactness for the functional I., we use the penalization method
in [, 36). Let G € C*(R,R), satisfy G'(s) € [0,1], G"(s) € [0,2], G(s) = 0 for
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s <1/2 and G(s) = s — 1 for s > 3/2. We also require that |G(s) — G'(s)s| < 3/2.

We define
0, if v € M,
XE(:E) = -6 . .
e~ 0((dist(z, M.)), if x ¢ M.,
where ( € C*° is a cut-off function such that (t) =0if ¢ <0; {(t) =1ift > 1

and 0 < ¢'(t) <2,0<((t) <1. Foreache>0,p € (2,p0), po € (2,5) is a fixed
constant, u € H'(R3), we consider functionals:

Te(u) = %/}R3(|VU|2 + V(ex)u?) dz + %G(/RS Xe(z)u? dz)

1 1 (1.8)
- f/ (— *u?)uPdz, ue H'(R?),
4 Jpa *] -
and
1 2 2 1 2
T.p(u) = 3 (IVul]® + V(ex)u®) dz + §G( Xe(z)u dm)
Fs ) R (1.9)
- — s |ulP) |ulP dx, ue HY(R?).
55 [ (7 + )l (=)
Note that
(De(u), @)
_ 1 2
= /RS(VquO—i— V(ex)up)dz + G (/RS Xe(z)u dm) /}RS Xe(2)up dx (1.10)
1
—/ (ﬁ *uZ)wpdx, Yo € HY(R?),
R3 |-
and

(DT p(u), »)

- /RB (VuVe + V(ex)up) dz + G/(/

[ Xelau? dz) /R xe@upds (g

1 ]
- / (ﬁ * |u|p|u\p72ug0dz, Yo € HY(R?).
R3 |-

We also note that the critical points of I'. and I, are, respectively, solutions of

—Au+V(ex)u+ G'(/]Ra Xe(z)u? d:c) Xe(z)u = (ﬁ *u?)u, (1.12)
—Au+ V(ex)u + G/(/]Rs Xe(z)u? da)xe (z)u = (‘ 1| * JulP) [ulP~2u, (1.13)

for all uw € H*(R®). If u is a critical point of I'c and [ps Xe(#)u? dz < 3, then u is

a solution of (|L.6]).
Let b € C*(R™,[0,1]) such that b(t) = 1 if t < 1; b(t) = 0if t > 2 and

0 <b(t) <1, V() <0. Let 0 < A < 1, ba(t) = b(At),ma(t) = [ bx(7)dr,
ga(t) = m%(t) We define

L p p T
vl = [ (o)l a
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and
()‘) (|Vul? + V(ex)u?) dr + 1G Xe(z)u? dx
-1 o)
- ).
For each ¢ € H'(R?), since g} (t)t + g (t) = ba(t), we have

(DTY) (u), )

= VuVe + V(ex)up dr + G / Xe(z)u? dx / Xe (T)up dx
R3 ( ) ( R3 ( ) ) R3 ( ) (115)

1 1

= 3O 2 @) + @) [ ()l Fupda,

Define [[ul|? = [ps(|Vul? + u?)dz for u € H'(R?). By Hardy-Littlewood-Sobolev
inequality we know that there exists C), > 0 such that ¢'/?(u) < C,|lu||? and C,

independent of u. It is easy to know that when |u| < (Cl)\)%, we have I'c ,(u) =
P

?)(u) and DT, ,(u) = DT (u).

This article is organized as follows. In Section 2, we prove (PS),. condition for
I, , and give some uniform estimates (independent of p) on the critical points of
I'c . In Section 3, we prove the existence of sign-changing solutions for I'.. Section
4 is devoted to the proof of Theorem

For a Banach space E, we denote its dual space by E’. Throughout the paper,
¢, co,C1, ... denote different constants and cy, Cy denote constants depending on .

2. (PS). CONDITION FOR I'c ),

In this section, we first collect elementary properties of the Choquard term, and
then we prove that I'; , satisfies the (PS). condition.

Lemma 2.1 (Hardy—thtlewood—SoboleV inequality [19]). Suppose o € (0, N), and

s,;r>1with L+ 14+ & =2 Let g € L*(RY),h € L"(RY), there exists a sharp
constant C(s, a T N ), mdependently of g, h, such that

[ [ 228 gy < Clglr el v

RN JRN |$

Lemma 2.2. Assume u, — u in Hl(IR{3), then

1 1 1
/ (—*|un|p)\un\pd:r—/ (—*|un—u\p)\un—u\pdx—>/ (— * |[u|P)|ul? dz
RS || RS || RS ||
and

1
(m*

in (H(R?)).

1
$ [un — ulP) g — ulP72 (un — ) = (— * [ufP)|ulP"2u

‘un|p)|un|p72“n —(

The above lemma can be proved as in [I, Lemma 3.4].

Lemma 2.3. It holds that fort >0 and 0 < A < 1:
(1) ga(t) =1, g5(t) =0 if 0 <t < 1/A;
(2) —gh(O)t < ga(t) < cA/t where ¢y, = fo T)dT/\;
(3) ba(t)t < ga(t)t < c
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The above lemma can be obtained by direct calculation.

Lemma 2.4. Assume ||DF(>‘)( ) < 1“9,, (u) < L, then there exists App > 0
such that if 0 < X\ < App, then DF(’\)( ) = DI, ,(u), FQ,} (u) =Tep(u).

Proof. By (L.14)),(L.15) and Lemmal[2.3] we have

L+ [full > TE) (u) ~ p<DF§,§3(U),U>

- (% - ]1)) /Rs(wu\? +V(ex)u?) do + %G(/R e (@)u? do)
_ ]%G/(/]RB - (z)u? dz) /ﬂ@ Xe(2)u® dz (2.1)
g @) [ (s el da

>, [ (VuP+ V) o+ o,6( [ ol ds) - .
R3 R3

As a result, there exists a constant cy, such that '/?(u) < c|ju|? < cr, and
cLp — o0 as p — 2. Choose AL, < 57—, by Lemma we have DI'2 (u) =
sP ?

DT p(u), I‘Q’p(u) =TI p(u). O

Lemma 2.5. For each L > 0, there exists e, > 0 such that, for 0 < e < e, if
c < L, the following statements hold

(1) TheT., satisfies the (PS). condition.
(2) Let p, C (2,2%) be a sequence such that p, — 2 as n — oo. For {un} C
HY(R3) such that

Lo p, (un) = ¢, DT p, (un) = 0, (1),

there erists a critical point u € HY(R3) of T, such that u,, — u € H'(R3)
up to a subsequence.

Proof. (1) The proof of this part is similar to that in [I5].

2) By (1.9) and (L.11]), we have

1
2]Tn <Drs,pn (Un), un)
1 1

=(5-3,) /quvun\? + V(ex)ul) dx + %G(/

2pn, R3

_ 1 ! 2 2
EG </]R$ Xe(2)us dx) /11@3 Xe(2)us dx

>c /RS)(|Vun|2 + V(ex)ul) dr + cG(/ Xe(z)u2 dm) —c.

R3

L Z Fevpn (un) -

Xs(x)ui dx
) (2.2)

By (2.2) we know that there exists 7j, > 0 independent of e, p such that ||u,| < 7L,
and G([gs X=(®)uZ dz) < . Up to a subsequence, we assume that u,, — u in
HY(R?),

Cp o= G’(/]Rs Xe(z)u? dm) — (.
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It is easy to show that u is a solution of the equation

—Au+Viex)u+ Cxe(z)u = (‘—1| * u?)u. (2.3)

By Lemma 2.2} for any v € H'(R?),
o([[v]]) = (DTe p,, (un), v)
= / (V(up —u)Vo + V(ez)(u, — u)v) de
R3
€ n - d n € mn d
[ xe@ = wpda+ (6= 0) [ x@uods o)
- / (ﬁ s |y — u|P™) |y — P2 (uy, — u)v da
RS |

= [ (G = 2= (oo + ol o),

as m — oo. Since ||uy| < 7z, we have ||u|] < 7. Hence, there exists a constant
such that

1 1
ﬁ*|u|p" gc,ﬁ*zﬂgq

1 1
| P P =2 — (= u?)ul® < effulP =t 4+ w)? < eful2®mD 4 u?).

N N
Using the dominated convergence theorem, we obtain
1 -2 1 2
o ((ﬁ  ulPr)|ulPr e — (ﬁ xu’)u)vdr = of|[v]]).

Choose Ry > 0 such that M C B(0,Rj). Let ¢. be a C* function such that
de(x) =0 for |z| <e Y (Ro+1)+1; ¢(x) =1 for |z| > e H(Ro+1)+2,0< ¢ < 1
and |V¢.| < 4. Take v = ¢2(u,, — u) in (2.4), we obtain

/ (IV(6e(ttn — W) + V(e2)d2 (tn — u)?) d — / (tn — )2V d
R3 R3

+ (/ Xs(x)(bg(un - U>2 dx + (Cn - C)/ Xs(x)(bgun(un - u) dz (25)
R3 R3
- / (i # [ty — ulPr)[uy — ulPr 2P (un, — u)® do = o(1), n — oo.
R3

Since ¢, — ¢,n — oo and |V¢.|? has a compact support, by u,, — u in H*(R3) we
have

/ (tn — w2[V6el? dz = o(1), (o —C) / e ()8Rt (1 — 1) dz = o(1),
R3

R3
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as n — 00. Then by (A1), ||u|| <7y and (2.5), we obtain
min{1, a}(|¢e (un — u)|?

< / (i‘ # g — ulP) i — uPr 22 (uy, — w)? da + o(1)
Re |-
|un(y) — u(y)[P [un () — u(@) [P $Z(z)
< /RS / R dz dy

< |z =y
_ Pn — Pn )2

L () = )P o) = )P 2a)

R3 J|y|>e—1Ro+1 |z —yl

_ _ Pn—2 _ 2
Sl ey = w2 et )] .
+cloeun = w)lP( [ ] d
|z|>e~1Ro+1

5(2pn —2)

—|—/ |u|6pndx) 4 o(1)
|z|>e~1Ro+1

OGW%Wn—wW+wm@wn—ww(/ fun| 5" da
|z|>e~1Ro+1

52pn—2)

—|—/ |u|6§"dgc) 4 o(1), n— .
|z|>e~1Ro+1

Since (M.)! € B(0,e7 Ry + 1) and G(fgs X< (x)u? dz) < 7z, we have

1
/ ui dr < (= +7p)e’. (2.7)
|z|>e—1Ro+1 2
By Fatou’s Lemma, we have
1
/ u?dr < (= + 1)’ (2.8)
|z|>e~1 Ro+1 2
Using the interpolation inequality, for 2 < % < q < 2%, we have
lunll gn o) < < Nl sy 1l o sy < ellunll7s gyl ', (2.9)
5 (R3) (R3) (R3)

Where % =t 4 a qt ) 0 <ty < t, < 1. Combining with lunll < 7L, ) and

we obtaln
18pntg to

n 18
/ |un| S dr < CLE 5, / |u|6pTdac < Cpe &0, (2.10)
|z|>e~1 Ro+1 |z|>e~1 Ro+1

5(2pn —2)
where C, is independent of . Choose €1, > 0 such that ¢; - (C}, P
min{1,a}/2. Then by (2.6), for 0 < € < e, we have

3(2pn—2)t
€k ) <

Tim [ — u)]| = 0. (2.11)
Set v = (1 — ¢)?(up, — u) in (2.4)), it is easy to obtain
7g&nu—¢awnfmuzo (212)

The result of the lemma follows from (2.11]) and - O
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3. EXISTENCE OF SIGN-CHANGING CRITICAL POINTS FOR I'.

To obtain multiple sign-changing critical points of I‘g‘,p, we introduce the abstract

critical point theorem [22] Theorem 2.5], see also [6l, Theorem 3.2].

Let X be a Hilbert space, f be an even C?-functional on X. Let P,Q be open
convex sets of X, QQ = —P. Set

W=PUQ, X=0PNaQ.

For a critical point x € X of f, the augmented Morse index
m*(z) = max{dim Xy : Xo C Xis a subspace such that D?f(z)(h,h) < 0,Vh € X}.
Assume

(A3) there exists L > 0 such that f satisfies the (P.S). condition, for ¢ < L;

(A4) ¢* =infex f(z) > 0;

(A5) For every critical point x of f, D?f is a Fredholm operator.
Also assume there exists an odd continuous map A : X — X satisfying

(A6) given cg, by > 0, there exists b = b(co, bp) > 0 such that if |[Df(z)| >

by, |f(2)| < ¢o, then
(Df(x), x — Ax) > b||lz — Az| > 0;

(A7) A(OPj) C P;, A(0Q;) C Q4,5 =1,... k.

We define
I'y={FE|E C X, E compact, —-E = E, y(EN n (%)) > j for n € A},
A={n:neC(X,X):nisodd, n(P)C P,n(Q)CQ,j=1,...,k,
n(z) = if f(z) <0}

where v is the genus of symmetric sets,

v(E) = inf {n : there exists an odd map 1 : E — R™\{0}}.

Assume that
(A8) TI'; is nonempty.
Define

6= o sw () g =12

K.={z:Df(x)=0, f(z) =c}, K} = K. \W.

Theorem 3.1. Assume (A3)—(A8) hold. Ifc; < L,j=1,...,k, then
(1) ¢ 2 c, K:] # 0;
(2) There exists v € K., \W with m*(x) > j.

For u € H'(R3), we define v = Au by the unique solution to
— Av+Viex)v+ G (/ Xe (z)u? dx) Xe(z)v
R (3.1)

= 50N W2(0) + (82 (7 * )

Note that A is odd, well defined, and continuous on H*(R?); see [15, Lemma 3.1].
Lemma 3.2. Let u € HY(R3). If v = Au, then
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A
(1) (DTEp(u).u— ) > clju ~ vl
(2) IDTp (w)|| < e(X + [Tep (u)] + [lu —vl[)Y[Ju — .
This lemma can be proved as in [I5, Lemma 3.2]. Using Lemma it is easy

to prove assumption (A6).
For 6 > 0, let

P fu e H' (R : | onsges) < o)
Q:={ue H'(R?): [u” || por/s g3y < 0} -
Lemma 3.3. For 0 < A < 1, there exists 05 > 0 such that for 0 < § < dy,
AOP)C P, A(0Q)CQ, dx—0 asA—0.
Moreover, there exists 6o € (0,0y) and ¢* = ¢*(do) > 0 such that
Fg)‘g(u) >c*, forue€dPNoQ.

The proof of the above lemma is similar to that of [I5, Lemmas 3.4 and 3.5].

Let
— 1 2 2 _ 2 2
Jo(u) = (IVul® + bu®) dx — ¢ u“dz)
2 JB(o,1) B(0,1)

where ¢ independent of p, \. Let {e,} C H}(B(0,1)) be an orthogonal basis and
H, :=span{es,...,e,}. Then there exists an increasing sequence {R,,} such that

Jo(u) <0, Yué€ Hy, ||u| > R,.
Choose an appropriate € such that
B(0,1) € M.. (3.2)
Define ¢, € C(B,,, H3(B(0,1))) as

on(t) =Rn > tie;, t=(t1,...,ty) € By.
=1

Let
I, ={FEc H'(R®) : E is compact,—E = E, y(ENn~ ' (X)) > j for n € A},
A={neCH R’ : H'(R)), nis odd, n(P) C P, n(Q) C Q,
n(u) = u if I‘g’\p)(u) < 0}.
Lemma 3.4. There exists \; > 0, such that, for 0 < X\ < e and sufficiently small
g, Ej = (,0j+1(Bj+1) - Fjaj = 1; .. 'ak'

Proof. For x € M., we have x.(z) =0 and V(ex) < b. Then for u € E;, we have
G(f]Rs xeu?dr) = 0. For u € E;, choose A\ = c(Ry) such that, for 0 < A < Ag,
gx(¥2(u)) = 1. Then we have

1 1
Lo ) =5 / (IVul® + V(ez)u?) dz — ——4(u)
’ B(0,1) 2p

2
1 2
/ (|Vul|? 4 bu?) dz — 7</ |u|pda:>
B(0,1) 4 B(0,1)

2
/ (|Vul?® + bu?) dm—c(/ |u|2dx)
B(0,1) B(0,1)

IN
DN | =

IN
DN | =
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< Jo(u).
As for [21, Lemma 5.6], we can complete the proof. O
Lemma 3.5. For every critical point u of Tc ,, D*T. ,(u) is a Fredholm operator.

Proof. Note that every critical point of I'; ,, is a weak solution of

Xe (z)u? dm)xs(x)u = (i * |ulP) |ulP~%u,

—Au+Viez)u+ G (/ B .

R3
u € H'(R?).

Assume u solves (3.3]), by the sub-solution estimates, we have u € L*(R?) and

u(z) — 0 as * — oco. For ¢, 0 € HY(R?), we have

<D2Fe,p(u)?/f, ®)

- / (ViyVp + V(ex)hp) do + G’(/R3 X (2)u? dﬂi) /]R3 X (@)Y do

R3

vo( /R el dz) /R xele)uy da /R xelwyupds
1) / (L [ufP)[uP~2pp i + p / (L (P~ 2up) P2 e

a |- ra |-
Note —A+V (ex) + G'( [gs Xe(x)u? dx)x(x) : H'(R?) — H~'(R?) is the Fredholm
operator. On the other hand, the linear operator @ : H*(R?) — H~1(R3) defined
by

@) =6"( [ xloptde) [ xeapuds [ elaugds

+0=1) [ (7 * WPl g do (3.4

0 [ (7 + (Pl 2upda

is compact. Hence DT ,(u) is the Fredholm operator. O
We define
¢j(e,p,A\) = inf sup Fg)‘g(u), ¢ = sup Jo(u), j=1,... k.
E€lj yep\w uEE; 11

Theorem 3.6. Let L > 0,0 < A\ < )\(L]i;, 0<e<er, kbesuch that ¢, < L. T,

has at least k pairs of sign-changing critical points {£u; . ,, 1 < j <k} such that
e p(ujep) =cile,p) <, 1<j5<k.
Moreover, there exists ujcp € K7 ) such that m*(u;cp) > j.
Proof. By the definition of ¢;(e, A), é; and Lemma for 0 < A < Ag, we obtain
cle,p,A) < <erle,p,N) <éj=1,... k.
By Lemma there exists Ap, > 0 such that if 0 < A < )\(L]f; = min{Ar p, S\k},

DFSP) (u) = o(1) and FQ,B (u) < L, then we have DFQP) (u) = Dngp(u),Fgf\g (u) =
I, ,(u). By Lemma and Lemma for p € (2,p0), 0 <A < )\(Lk;j, 1“8,2 satisfies

(PS). condition with ¢ < L and szg\g (u) is the Fredholm operator for some u
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such that ng‘g (u) = O,Fg}g (u) < L. Hence, we have verified that I‘éf\g satisfies
all assumptions of Theorem By Theorem for 0 < € < e, we obtain
Fg}z, 0< A< /\(Lk; has at least k pairs of sign-changing critical points

{Zuil J1 < j <k}

such that
IO @) ) =cj(e,p,\) < @1 <j<k.

P \Yjep
(>\) )

Moreover, there exists z € K. px) \W with m*(u; > j, then we also have

W™ ) =T, ), prd w® ) = Dr. ,(u ;gp) = 0,5 = 1,...,k In this

Ujep J/\@p Uje,p
case, we can write u™ as Uj.e,p and the theorem is proved. O
j,€p €

Assume T, (u,) < L,DT.,, (u,) =0 and p, — 2 as n — oo. By Lemma
(2), there exists a critical point u € H*(R3) of T, such that u,, — u € H*(R?) up
to subsequence.

Lemma 3.7. Assume u, is sign-changing critical points of I'c p, and u, — u in
H(R3), then u is a sign-changing critical point of T..

Proof. Since (DI, (uy), u,) =0, we have
s = [ (Vaf? + V(e da

1
< / (= *ubm)ubr dx (3.5)
ro ||
Zpn
L% ®e) ~

2pn

< CH“nH ||un||H1(R3).

So there exists m > 0 such that ||u,||g1(rsy > m and 0 # [Jul| g1 (rs) > m. Without
loss of generality, we assume that

T=0 and u~ #O0. (3.6)
We define the normalized part as
+
Uy = —om (3.7)
st |

Then, up to a subsequence, there exists v € H*(R?®) such that v, — v weakly in
HY(R3). Since

1
/ (L PP de
e T

1
> [l Pl ds
Re |- | (3.8)
> [ (VutP + V(e wh?) delu |
e T e R

we have

1 1
/ (— * |u|?)|v|* dz = lim / (— * |up|P™)|vp|P dz > 1. (3.9)
R |- P2 Jps ||
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Then, by Hardy-Littlewood Sobolev inequality

1 2y, 2 2
— <
L Pl de < clul? g 10 (3.10)
we have ”UHL%(D@) > 0. Therefore v # 0 and
S ={z R v(x)>0}#0.
Since w,, satisfies DI, ;, (u,) = 0, in the weak sense, we have
— Auy, + V(ez)u, + G (/ Xe(z)u2 dm) Xe(T)un,
) R (3.11)
= (— * [up|P") [tn P 2uy,.

|-
By elliptic regularity theory, we have u,, € CZ_(R3). Therefore, let z € S, we have
un () > 0 for n large enough and u(zg) = lim,— 00 un(xo) > 0.
On the other hand, since DT'c(u) = 0, we have
1
—Au+ V(ex)u+ G'(/ Xe (z)u? dx)xe(x)u = (ﬁ % |ul?)u, in R3. (3.12)
R3 :
Note that assumption (3.6 implies u < 0 in R3. Hence, by the classical regularity
argument and the strong maximum principle on (3.12)), we have u < 0 or v = 0 in

R3. Since u # 0, we obtain u < 0 in R3. This leads to u(xo) < 0, which contradicts
u(zg) > 0. Thus, the lemma is proved. O

4. PROOF OF THEOREM 1.1

Assume Uy, — upn, in H'(R?) as p — 2. Let &, — 0, assume DIc ,(upp) =
DI, (u,) = 0,1, p(tnp),Le, (un) < L. The following two lemmas can be proved
in a similar way as in [15].

Lemma 4.1. Up to a subsequence, there exists an integer m > 0, yn; C (M),
yi € M, U; € HY(R3\{0}, i = 1,...,m such that

(2) Yi = hmn—)oo EnYn,i € m
(3) For 1 < i < m, limy, e dist(yn,i, OM.,) — oo, U; is the weak limit of
Un (- 4+ Yni) in HY(R3) and satisfies

_AU 4 V(U = (ﬁ LU, U € H'(RY). (4.1)

(4) limy, oo lun — > oi Ui(- = Ynyi) | e sy = 0 for 2 < s < 2*.
Assume that the sequence {u,} satisfies the condition of Lemma [4.1] and define
Q) = RA{U By, B)}.
Lemma 4.2. There ezist c, i independent of n,p, such that

/Q(n)(|Vun‘2 + ui) de < ce MR, Cn /Sl(”) Xa(a:)ui de < ce HE,
R R

where C = G'( [gs Xxe(z)u? dx). Moreover,

—uR (n)
lun (z)] < ce ™ for z € Q5.
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Corollary 4.3. There exist ¢, u,p1, independent of n, such that, for 2 < p < p1,
we have

m
[t p(x)| < CZef“‘zfy"ﬂ'l for z € R3.

i=1

Proof. The Proof of Lemma can be done by the same method as [I5, Lemma
4.3]. We only need to prove that there exists p; > 2 such that, for 2 < p < pq,

1 _ a n
(ﬁ * \un,p|p)ufw2 < 3 for z € QS%) .

By Moser’s iteration, there exists a ¢ > 0 such that [, p || e ®s) < cfor 2 < p < po.
By Lemma and up,, — u, in HY(R3) as p — 2, for z € Qgg), we have

1 _
(W [t p ) [t p [Pt

2
U
< c/ 2P dyuy,
e |7 —
u? (4.2)
c(/ T — dy + op(1 )un
RS |CE _ y‘ P( ) p
2 1
(% u? dy + e‘“R/
R Jio—y|>r/2

|lz—y|<R/2 |z -y
< clor(1) + 0p(1))tnp -

IN

IA
o

dy + op(l))ump

Hence, there exists p; > 2 such that for 2 < p < py, we have co,(1) < ¢ and

sl

Lemma 4.4. If1 <i < m, then y} = limy, 00 €pYn,i € A.

Proof. If not, we assume that there exists ¢ such that 1 <i < m and ¢, > 0 such

that lim, o £, = 0 and dist(y;, A) > 0. Let t, = VV(y;) # 0, by (A2) we deduce
that there exists 6; > 0 such that

1
(t;, VV(x)) > §|ti\2 >0, (t;,Vdist(z, M)) >0 forz € Bs, (y:). (4.3)

Set

52:m1n{|yl_yl‘vyl7éylv 2,l:1,,m} (44)
Let

1
0<d< mlﬂ{§51, mc&}.

Denote

By, = {]|z — yn,i| <20¢,'},
T, = {z|6e; < | — yni| < 20e, ')
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Choose n € C§°(R?) such that n(z) = 0 if |z —yn | > 20e, Y n(z) = Lif |2 —yn | <
et and V| < 26,(< 1). By (DI., (uy), ) = 0 for ¢ € H'(R?), we have

[ (a4 Ve o+ 6, [ x@unpds
R3 R3

1 (4.5)
:/ (— = |un|2)ungod;v,

rs ||

where ¢, = G'( [gs Xe(x)u? dz). Choosing ¢ = t; - Vuy, - 1) as test function in (£.5),
we obtain the local PohoZaev identity

1 1
5%/ (tk,VV(enx))uindx—FiCn/ (Vxen(m),tk)uindx
R? R3

1
:/ (Vun,Vn)(tk,Vun)dx—f/ (|Vun|2+ui)(tk,Vn)d:17
RS 2 ]RS 46
1 1 1 (4.6)
= 560 [ X @ Tnda 5 [ (vl b, V) da
2 ]R:s " 2 R3 : |
1

1
+ */ (Vao(— xu?), tp)uln d.
2 Jps |-
Next, we estimate all terms of (4.6). By (4.3)), we have

en/ (te, VV (epx))uinda > cep,

]RS
1
ic”/ (VXe, (2), tp)uindr > 0.
]R?)

Hence the left-hand side of (4.6 is greater than or equal to ce,,.

Since
2
|- s |7 — Y
and
1 un(y)?
V—*uiz—/ x —y)dy,
T = fa o yF Y

we have

i * ul Wndr = — M . o
Since
w2 (z)u?
/Rs /]RS m(tk, x—y)nx)n(y)dedy =0,

we have

1
/R3 (V(ﬁ * ui)jk)uin dx

u? (x)u?
= [ [ Oy o)1 - ) ey
R3 JR3 |.’17 yl
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Then

uZ (z)u?
} tk T]dZE| = C//{Iy yn1|>5sn } dedy

|z —yl?
(loyn 12667 )

2 2
<o f[ . @) g
{8en <ly—yp,i|<85e, "} |_r1; _ y|2

—1
{o—yp ;1<26e5 1)

2 2
Uy, (2)uy ()
+ C\//{Iy—y",”z&ss;l} W dx dy

—1
ey, i1<20en 1}

= T+1I,

(4.7)

where

1
17 < C//Uy Yn,i|>38ey } (y) n( ) 525 dxdy < Cg

{lz—yn,i1<28ey !

The region T,, = {y|de;* < |y — ynx| < 36e; 1} is contained in Q( ey and we have

lun (y)] < ce~hoen" , yeT,.

2
—pde;t un<x)
IS ce //{55171§|y7y"‘k|§35£;1} |I7y|2 d.’l?dy

—1
ey, ;1<25en 1}

2
< ce—hoen! » ui() dy dz
{lo—y|<56e5, '} | — y|2

—1
{le—yp,;1<26e, 7}

Then

-1
—pde, " —1 2
< ce g, <ce;, .

From the above estimates, by Lemma [4.2]

RHS of (4.6) < c/ (|Vu, 2 +ui)|V77|dx+Cn/ Xe(z)u2 | V| do + ce2
RS RS

< / (Van? + u2) V] dz + G, / (@2 |Vl da + ce2 (48)

n n

ude b 2 2
<ce'n +ce;, <cegp.

Therefore, ce,, < ce2 as n — co. We arrived at a contradiction and completes the
proof. O

Lemma 4.5. For each § > 0, there exists ¢ = ¢(L) > 0 such that
lun ()] < ce™H At (A)en),

Proof. By Lemmau [ty ()| < ce B for x € Q(n) Let R, (x) = min{|z — yn 4| :

i=1,...,m}, then |u,(z)| < ce @) Since gy, — yi € A, there exists £(0)
such that for &, < &(8), nyn.i € A, hence R, (z) > dist(z, (A%).,) and

|un(z)] < ce At @A) 5 RS, (4.9)

]

Proposition 4.6. Assume DI'.(u) = 0, I'-(u) < L. Then there exists € = (L)
such that T'.(u) = I.(u) and DI.(u) =0 if0 <e <E.
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Proof. By Lemma there exist ¢ = ¢(L) and p = u(L) such that

|u(:r)\ < Cefudist(z,(.A‘s)E) < Ce*MdiSt(LMa). (410)
Denote d = dist(.A%, M), then for = & M., we have
dist(z, (A°).) > dist(z, M) +de . (4.11)

Hence

/ Xe(2)u? dr < 576/ u? dx
R3 R3\M.

< 65_6/ e—2/tdiSt(fE,(.A6)s) dx
R3\ M.
< cg—ae—ude*/ p—pdist(@,(A%).) g
R3\ M.

< C€_6e_p’d€71/ e—udist(w,A‘s) dr
R3\M

-1
<ce ST 50 ase—0.

In particular there exists € such that for 0 < ¢ < & we have
G(/ Xe (z)u? dm) =0. (4.12)
R3
Hence, I.(u) = T'c(u) and DI.(u) = DI'c(u) = 0. O

Lemma 4.7. There is a direct sum H'(R®) = X, @ Xg- such that dim X, < oo
and for all p € X,

1 1
/ (‘V§0|2 + ath) - / (ﬁ * e—CQIm\)¢2 dr — ¢ / (| | * (6_62|r|tp))6_62‘z|<pdx
R3 R3 . R3 .

a 2
> — dx,
_2/st .

where ¢y, co > 0.

Proof. Tt suffices to prove that if X is a subspace of H'(R?) such that

a 1
L6l + 500 -1 [ (et an
ks g T

) (4.13)
B Cl/ <ﬁ s (e7lelp))el"lpde <0, ¢ € Xo,
R3 :

then X is finite-dimensional.

/ (L >|<(6762‘ﬂEI ))efCle‘tpdx

e—Cz2lz| e—cz2lyl
/ / o(x v 4. dy
R3 JR3 |$* |
/ / 1o / / (4.14)
R3\Br(0) JR3\BRr(0) R3\BRr(0) / Br(0)

e—czlz caly|
/ / p(z)e= =¥y )dzdy
Br(0) JBR(0) |z — vy
=11 + 215 + I,
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where

—ca|z] —c2ly
I :/ / G C)
R3\Br(0) JR3\ Br(0) |z —yl
—2calyl 1/2 1/2
S/ e—cz\x\w(l‘)(/ eizdy) / dm(/ (pzdx) /
R3\BR(0) R2\Bp(0) [T — Ul R3\Bp (0)
1/2
< c/ e~ 2%p(x) dx(/ 2 dm)
R3\BRr(0) R3\Br(0)

1
0(*)/ ¢’ dz.
R Jrs\Br(0)

Similarly, we have

IN

1
I, <o(=) <p2dx+c/ o2 de,
R7 Jrs\BR(0) Br(0)
I3 < c/ g02 dx.
Br(0)
Hence, we have
1 1
/ (— * (e~2l*lp)eme2l?lpde < o(=) ©* dr + c/ ©* da.
R || R\ BR (0) Br(0)

Since limy| o ﬁ x e~°l*l =0, we choose R > 0 such that

1 1
c/ (W * e_czlx‘)goz dxr + c/ (ﬁ * (e_c""zl@))e_@lm‘(pdx
R3 * R-’_’) *

Sg/ thdx—Fc/ 02 da.
4 Jr3\Br(0) Br(0)

By (4.13)) and (4.15)), we have, for ¢ € X,

/ (|V<p|2+%<p2)dx—c/ ©*dr <0.
R3 Br(0)

(4.15)

Hence, we obtain

/ |Ve|? da —|—/ (IVe|* + g<,02) dzx < c/ % da. (4.16)
Br(0) R\ B (0) 4 Br(0)

Now define the restriction operator P from L?(R?) to L?(Bg(0)) by Pe = ¢| g, 0)-
Since 1' holds, it is easy to see that P is injective. Let X, = PXo, it suffice to
prove Xy is finite-dimensional. It also follows from (4.16)) that

el (Ba)) < cllellzBao), @ € Xo- (4.17)
Let S :={p € X0|H()0|‘L2(BR(0)) = 1}, then the set S is compact by (4.17). Hence,
we obtain that X is finite-dimensional subspace. (I

Proposition 4.8. For each positive integer k, there exists ), > 0 such that for 0 <
€ < ey, I'c has at least k pairs of sign-changing critical points £uy,,, j =1,... k.

Proof. Choose €, small enough to satisfy Theorem [3.6|and Lemma We denote
En 1= {&n, %} By Lemma without loss of generality, we may assume ¢, (¢,p) —
cn(e) and upep — Upe in HY(R?) as p — 2. By Lemma cn(€) is a critical
value of I'. with sign-changing critical point u, . € H'(R3).
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We claim that for any M > 0, there is n such that ¢, . > M for any € € (0,¢,).
Then for every positive integer k, we can choose (n;)h_, and &} = min{e,, }*_,
such that for e € (0,¢7,), cn,.c > G > cn; e, 2 < j < k. As aresult, we can find k
different critical values (¢, c)5_; of T'c as e € (0,&},).

By contradiction, we assume there exists M > 0, &, — co as n — oo such that
Cp i= Cnz, < M. Hence, there exists p, € (2,p0), such that ¢, = ¢p(En,p) <
M +1 for all p € (2,p,). By Theorem let u, , € H'(R?) be such that

Pep(tnp) =cnp < M+1, DIz p(tunp) =0, m (tpp) >n.
By Corollary [£:3] we have

p—1 1
5 [y

m
1
p))‘un,p|p_2%@2 dr < ZC/RS(W * e—C\JC—yn,H)(pQ dx
=1

and
p 1 _ _
) IO R G Ts) O
2 Jrs ||
m
1 —C|T— i —C|Tx— i
SZC/ (ﬁ*(e le=vmilp))emele—vmily da
i=1 JR?
+ZC/ (e emmlg))emerindpda
iz VR
i 1
< Zc (— * (e_c‘””_y”*ilnp))e_cl‘”_y"*i‘godx +o(1) [ p*dx.
— RS || R3
=1
Let

m
Xin ={p(@ —yna)lo € Xo},  Xn={D_ ¢ilpi € Xin}-
=1

Then dim X;,, = dim Xy, dim X,, < mdim X,y < oo, Hl(R3) =X, X,J;, where
Xt = ﬂ{’;lXiJ’-n. By Lemma for p € X;-, we have

(DTe, p(un ), @)
1 _
> [ Vel b agtin = [ (gl sl b
R® ro ||

1 _ _
- /s (ﬁ * (Jun,pl” 2Un,p90))|un7p|p 2“n,p90 dx
Ik
" 1
Z / |VS0|2 + 0@2 dr — Zc/ (ﬁ * S*C‘I*yn,”)sOQ dx
RS i=1 YR

S 1
- Zc/ (— * (e~clrmynilp))eelz=ynil o gy — 0(1)/ ©*dx
2 o1 .

a

(G0 [ s

a 2
— dz .
4/RS¢ *

As a result, we can get m*(u, ) < mdim X, < C, for some C > 0 independent of
n, which contradicts to m*(uy ) > n — oco. O

Y

Y



EJDE-2023/75 QUADRATIC CHOQUARD EQUATIONS 19

The proof Theorem [I.1] follows from Propositions [4.6] and [£.8]

Acknowledgments. The authors are grateful to the referees for their helpful com-
ments. This work is supported by NSFC 12161093 and 11961078, and by the Yun-
nan Key Laboratory of Modern Analytical Mathematics and Applications, Yunnan
Province, China.

(1]
2]
(3]
(4]

(5]

6

[7

8

(10]
(11]
(12]
(13]

(14]

[15]
(16]
(17]
18]
(19]
20]
21]

(22]

REFERENCES

N. Ackermann; On a periodic Schrédinger equation with nonlocal superlinear part. Math. Z.,
248 (2004), 423-443.

C. O. Alves, H. Luo, M. Yang; Ground state solutions for a class of strongly indefinite
Choquard equations. Bull. Malays. Math. Sci. Soc., 43 (2020), 3271-3304.

C. O. Alves, A. B. Nébrega, M. Yang; Multi-bump solutions for Choquard equation with
deepening potential well. Calc. Var. Partial Differential Equations, 55 (2016), 1-28.

J. Byeon, Z. Q. Wang; Standing waves with a critical frequency for nonlinear Schrédinger
equations. Arch. Ration. Mech. Anal., 165 (2002), 295-316.

D. Cassani, J. Van Schaftingen, J. Zhang; Ground states for Choquard type equations with
Hardy-Littlewood-Sobolev lower critical exponent. Proc. Roy. Soc. Edinburgh Sect. A, 150
(2020), 1377-1400.

S. Chen, Z. Q. Wang; Localized nodal solutions of higher topological type for semiclassical
nonlinear Schrédinger equations. Calc. Var. Partial Differential Equations, 56 (2017), 1-26.
S. Cingolani, K. Tanaka; Semi-classical states for the nonlinear Choquard equations: ex-
istence, multiplicity and concentration at a potential well. Rev. Mat. Iberoam., 35 (2019),
1885-1924.

M. Clapp, D. Salazar; Positive and sign changing solutions to a nonlinear Choquard equation.
J. Math. Anal. Appl., 407 (2013), 1-15.

F. Gao, E. D. da Silva, M. Yang, J. Zhou; Existence of solutions for critical Choquard
equations via the concentration-compactness method. Proc. Roy. Soc. Edinburgh Sect. A,
150 (2020), 921-954.

F. Gao, M. Yang; On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical
exponents. J. Math. Anal. Appl., 448 (2017), 1006-1041.

M. Ghimenti, V. Moroz, J. Van Schaftingen; Least action nodal solutions for the quadratic
Choquard equation. Proc. Amer. Math. Soc., 145 (2017), 737-747.

M. Ghimenti, J. Van Schaftingen; Nodal solutions for the Choquard equation. J. Funct.
Anal., 271 (2016), 107-135.

C. Gui, H. Guo; On nodal solutions of the nonlinear Choquard equation. Adv. Nonlinear
Stud., 19 (4)(2019), 677-691.

L. Guo, T. Hu, S. Peng, W. Shuai; Existence and uniqueness of solutions for Choquard equa-
tion involving Hardy-Littlewood-Sobolev critical exponent. Calc. Var. Partial Differential
Equations, 58 (2019), 1-34.

R. He, X. Liu; Localized nodal solutions for semiclassical Choquard equations. J. Math.
Phys., 62 (2021), 091511.

Z. Huang, J. Yang, W. Yu; Multiple nodal solutions of nonlinear Choquard equations. Elec-
tron. J. Differential Equations, 268 (2017), 1-18.

X. Li, S. Ma; Choquard equations with critical nonlinearities. Commun. Contemp. Math., 22
(2020), 1950023, 28.

E. H. Lieb; Existence and uniqueness of the minimizing solution of Choquard’s nonlinear
equation. Studies Appl. Math., 57 (1976/77), 93-105.

E. H. Lieb, M. Loss; Analysis, second ed., in Graduate Studies in Mathematics, vol. 14,
American Mathematical Society, Providence, RI, 2001.

P. L. Lions; The Choquard equation and related questions. Nonlinear Anal., 4(1980), 1063—
1072.

J. Liu, X. Liu, Z. Q. Wang; Sign-changing solutions for coupled nonlinear Schrédinger equa-
tions with critical growth. J. Differential Equations, 261 (2016), 7194-7236.

J. Liu, X. Liu, Z. Q. Wang; Multiple mixed states of nodal solutions for nonlinear Schrédinger
systems. Calc. Var. Partial Differential Equations, 52 (2015), 565-586.



20

L. YANG, X. LIU, J. ZHOU EJDE-2023/75

[23] X. Liu; Localized nodal solutions for system of critical Choquard equations. Commun. Non-

linear Sci. Numer. Simul., 121 (2023), 107190.

[24] X. Liu, J. Liu, Z. Q. Wang; Quasilinear elliptic equations via perturbation method. Proc.

Amer. Math. Soc., 141 (2013), 253-263.

[25] L. Ma, L. Zhao; Classification of positive solitary solutions of the nonlinear Choquard equa-

tion. Arch. Ration. Mech. Anal., 195 (2010), 455-467.

[26] V. Moroz, J. Van Schaftingen; Groundstates of nonlinear Choquard equations: existence,

qualitative properties and decay asymptotics. J. Funct. Anal., 265 (2013), 153-184.

[27] V. Moroz, J. Van Schaftingen; Groundstates of nonlinear Choquard equations: Hardy-

Littlewood-Sobolev critical exponent. Commun. Contemp. Math., 17 (2015), 1550005, 12.

(28] V. Moroz, J. Van Schaftingen; Semi-classical states for the Choquard equation. Calc. Var.

Partial Differential Equations, 52 (2015), 199-235.

[29] I. M. Moroz, R. Penrose, P. Tod; Spherically-symmetric solutions of the Schrédinger-Newton

equations. Class. Quantum Gravity, 15 (1998), 2733-2742.

[30] S. I. Pekar; Untersuchungen iiber die elektronentheorie der kristalle. De Gruyter, 1954.
[31] D. Qin, V. D. Ridulescu, X. Tang; Ground states and geometrically distinct solutions for

periodic Choquard-Pekar equations. J. Differential Equations, 275 (2021), 652—-683.

[32] D. Ruiz, J. Van Schaftingen; Odd symmetry of least energy nodal solutions for the Choquard

equation. J. Differential Equations, 264 (2018), 1231-1262.

[33] K. Tintarev, K. H. Fieseler; Concentration compactness. Functional-analytic grounds and

applications. Imperial College Press, London, 2007.

[34] B. Zhang, X. Liu; Localized nodal solutions for semiclassical quasilinear Choquard equations

with subcritical growth. Electron. J. Differential Equations, 11 (2022), 1-29.

[35] C. L. Xiang; Uniqueness and nondegeneracy of ground states for Choquard equations in three

dimensions. Calc. Var. Partial Differential Equations, 55 (2016), 1-25.

[36] C. X. Zhang, Z.-Q. Wang. Concentration of nodal solutions for logarithmic scalar field equa-

tions. J. Math. Pures Appl., 135 (2020), 1-25.

Lu YaNG

DEPARTMENT OF MATHEMATICS, YUNNAN UNIVERSITY, KUNMING, 650091, CHINA

Email address: 2973434415@qq.com

XIANGQING LIu

DEPARTMENT OF MATHEMATICS, YUNNAN NORMAL UNIVERSITY, KUNMING, 650500, CHINA

Email address: 1xq8u8@163. com

JIANWEN ZHOU (CORRESPONDING AUTHOR)

DEPARTMENT OF MATHEMATICS, YUNNAN UNIVERSITY, KUNMING, 650091, CHINA

Email address: jwzhou@ynu.edu.cn



	1. Introduction
	2. (PS)c condition for ,p
	3. Existence of sign-changing critical points for 
	4. Proof of Theorem 1.1
	Acknowledgments

	References

